quinta-feira, 12 de julho de 2012

Água da Terra veio do Cinturão de Asteroides

A ciência afirma que a água que veio parar na Terra foi formada nos confins do Sistema Solar, além de Netuno.

nebulosa planetária

© NASA (nebulosa planetária)

Contudo, um estudo indica que a substância veio de uma região muito mais próxima, o Cinturão de Asteroides (entre Marte e Júpiter), através de meteoritos e asteroides o que contradiz algumas das principais teorias sobre a evolução do Sistema Solar.

Muitos cientistas acreditam que nosso planeta era quente demais nos seus primórdios para ter água e, portanto, a substância deve ter vindo de fora. Uma das hipóteses afirma que ela se formou na região transneptuniana (que fica além de Netuno, o último planeta conhecido do Sistema Solar) e depois se moveu para mais perto do Sol junto com cometas, meteoritos e asteroides. Contudo, é possível saber a distância em que as moléculas de água se formaram em relação ao Sol ao analisar os isótopos de hidrogênio presentes. Quanto mais longe da estrela, haverá menos radiação e, portanto, mais deutério.

O novo estudo comparou a presença de deutério no gelo trazido por condritos (um tipo de meteorito) e indicou que ela foi formada muito mais próxima de nós, no Cinturão de Asteroides. Esses meteoritos não contêm mais água, mas a substância fica registrada através de um tipo de mineral chamado de silicato hidratado, e é o hidrogênio presente nele que é investigado. Além disso, comparando com os isótopos de cometas, a pesquisa indica que esses corpos se formaram em regiões diferentes dos asteroides e meteoritos e, portanto, não atuaram na origem da água no nosso planeta.

"Dois modelos dinâmicos têm os cometas e os meteoritos condritos se formando na mesma região, e alguns destes objetos devem ter sido injetados na região em que a Terra se formava. Contudo, a composição da água de cometa é inconsistente com nossos dados de meteoritos condritos. O que realmente deixa apenas os asteroides como fonte da água na Terra", disse Conel Alexander, do Instituto Carnegie, líder do estudo.

Em 2011, a hipótese de que os cometas tiveram pouca importância na origem da água na Terra já estava com pouca força. Mas um estudo divulgado na revista Nature usou o telescópio Herschel, da ESA, para descobrir que a composição do cometa Hartley 2 tem uma quantidade de deutérios similar à encontrada no oceano. Foi o primeiro cometa com essa composição, já que outros seis analisados anteriormente tinham uma quantidade de deutério muito diferente dos mares da Terra.

Contudo, o novo estudo também refuta essa possibilidade. Segundo os pesquisadores, o cometa não traz apenas água, mas também outras substâncias (inclusive orgânicas) que contêm hidrogênio. E a quantidade de deutério presente nos cometas ainda fica acima daquela observada no nosso planeta, o que impede que esses corpos sejam considerados como uma importante fonte de água.

"A recente medição do cometa Hartley 2 tem uma composição isotópica de hidrogênio parecida com à da Terra, mas nós argumentamos que todo o cometa, incluindo a matéria orgânica, é provavelmente rica demais em deutério para ser uma fonte da água da Terra", diz Alexander.

Sobram duas possíveis fontes, que devem ter atuado juntas: rochas do Cinturão de Asteroides e gases (hidrogênio e o oxigênio) que existiam na nebulosa na qual o Sistema Solar se formou. O estudo foi conduzido por pesquisadores do Instituto Carnegie (EUA), Universidade da Cidade de Nova York, Museu de História Natural de Londres e da Universidade de Alberta, no Canadá.

Fonte: Science

quarta-feira, 11 de julho de 2012

Descoberta a quinta lua de Plutão

As agências espaciais europeia (ESA) e americana (NASA) divulgaram nesta quarta-feira a descoberta de uma nova lua em Plutão feita com o uso do telescópio Hubble.

Plutão e suas 5 luas

© Hubble(Plutão e suas 5 luas)

A imagem feita pelo Hubble mostra a recém-descoberta lua P5, ao lado das já conhecidas Nix, Hidra (Hydra), Caronte (Charon) e P4, que orbitam o planeta anão Plutão (Pluto).

Segundo as agências, estima-se que ela tenha entre 10 e 25 km, formato irregular e uma órbita de aproximadamente de 95 mil km ao redor do planeta anão.

A maior lua de Plutão, Caronte, foi descoberta em 1978. Somente em 2006, o Hubble foi achar mais dois corpos ao redor do planeta anão, as luas Nix e Hidra. Em 2011, foi encontrado o quarto satélite natural, chamado por enquanto de P4. A nova lua é designada temporariamente como "S/2012 (134340) 1", ou apenas P5.

Mas por que Plutão, um corpo tão pequeno que nem é considerado planeta, tem tantos satélites naturais? Uma teoria afirma que isso seria resultado de um choque com outro objeto transneptuniano (aqueles que ficam além de Netuno, o último planeta do Sistema Solar). Os escombros dessa colisão teriam dado origem a P5 e suas "irmãs".

O time de astrônomos, liderados pelo Instituto SETI (Search for Extra-Terrestrial Intelligence), utilizou nove conjuntos de imagens registrados pelo telescópio entre 26 de junho e 9 de julho deste ano.

A sonda New Horizons está a caminho de Plutão e deve fazer o primeiro sobrevoo em 2015; o resultado, espera a NASA, serão as primeiras imagens detalhadas já feitas do planeta anão e suas luas, que estão tão distantes que até mesmo o Hubble tem dificuldade em registrá-los.

Fonte: ESA e NASA

Encontradas galáxias escuras no Universo primordial

Foram encontradas pela primeira vez galáxias escuras, uma fase inicial da formação de galáxias prevista teoricamente mas que até agora nunca tinha sido observada.

encontradas pela primeira vez galáxias escuras (anotada)

© ESO (encontradas pela primeira vez galáxias escuras)

Estes objetos são essencialmente galáxias ricas em gás mas sem estrelas. Utilizando o Very Large Telescope do ESO, uma equipe internacional detectou estes objetos evasivos observando-os brilhando ao serem iluminados por um quasar.

As galáxias escuras são galáxias pequenas ricas em gás do Universo primordial, muito pouco eficazes em formar estrelas. São previstas pelas teorias de formação de galáxias e pensa-se que são os blocos constituintes das atuais galáxias brilhantes ricas em estrelas. Os astrônomos pensam que estes objetos devem ter alimentado as galáxias maiores com o gás que posteriormente deu origem às estrelas que existem atualmente.

Uma vez que são essencialmente desprovidas de estrelas, estas galáxias escuras não emitem muita radiação, o que as torna muito difíceis de detectar. Durante anos, os astrônomos tentaram desenvolver novas técnicas para confirmar a existência destas galáxias. Pequenos decréscimos em absorção nos espectros de fontes luminosas de fundo apontavam para a sua existência. No entanto, este novo estudo marca a primeira vez que estes objetos foram vistos diretamente.

"A nossa abordagem do problema de detectar uma galáxia escura foi simplesmente iluminá-la com uma luz brilhante", explica Simon Lilly (ETH Zurich, Suíça), co-autor do artigo científico que descreve o resultado. "Procuramos o brilho fluorescente do gás em galáxias escuras quando estas são iluminadas pela radiação ultravioleta de um quasar próximo muito brilhante. A radiação do quasar ilumina as galáxias escuras num processo semelhante ao das lâmpadas ultravioletas que iluminam as roupas brancas numa discoteca". A fluorescência é a emissão de radiação por uma substância iluminada por uma fonte luminosa. Na maioria dos casos, a radiação emitida tem um comprimento de onda maior que a da fonte luminosa. Por exemplo, as lâmpadas fluorescentes transformam radiação ultravioleta - invisível para nós - em radiação visível. A fluorescência ocorre naturalmente em alguns compostos, como rochas ou minerais, mas pode ser também adicionada intencionalmente, como no caso de detergentes que contêm químicos fluorescentes, no intuito de fazer com que as roupas brancas pareçam mais brilhantes sob luz normal.

A equipe tirou partido da grande área coletora e sensibilidade do Very Large Telescope (VLT) e de uma série de exposições muito longas, para detectar o brilho fluorescente extremamente tênue das galáxias escuras. A equipe utilizou o instrumento FORS2 para mapear a região do céu em torno do quasar brilhante HE 0109-3518, à procura da radiação ultravioleta que é emitida pelo hidrogênio gasoso quando sujeito a radiação intensa. Os quasares são galáxias distantes e muito brilhantes. Acredita-se que sua energia provém de buracos negros de elevada massa situados nos seus centros. O seu brilho torna-os faróis poderosos que podem ajudar a iluminar a região circundante, dando-nos pistas sobre a época em que as primeiras estrelas e galáxias se formavam a partir do gás primordial.

Devido à expansão do Universo, esta radiação é, na realidade, observada com uma tonalidade de violeta quando chega ao VLT. Esta emissão de hidrogênio é conhecida por radiação de Lyman-alfa e é produzida quando os elétrons nos átomos de hidrogênio descem do segundo para o primeiro nível de energia. É um tipo de luz ultravioleta. Uma vez que o Universo se encontra em expansão, o comprimento de onda da radiação dos objetos aumenta à medida que atravessa o espaço. Quanto mais longe viajar a radiação, mais o comprimento de onda é aumentado. Como o vermelho é o maior comprimento de onda que os nossos olhos podem ver, este processo é literalmente um desvio em comprimento de onda em direção à ponta vermelha do espectro - daí o nome "desvio para o vermelho". O quasar HE 0109-3518 situa-se a um desvio para o vermelho de z = 2,4 e a radiação ultravioleta das galáxias escuras é desviada para a região visível do espectro. Um filtro de banda estreita foi especialmente concebido para isolar o comprimento de onda específico para o qual a emissão fluorescente é desviada. O filtro está centrado a cerca de 414,5 nanômetros, de maneira a capturar a emissão de Lyman-alfa desviada para o vermelho de z = 2,4 (corresponde a uma tonalidade de violeta) e tem uma largura de banda de apenas 4 nanômetros.

"Depois de vários anos de tentativas para detectar a emissão fluorescente das galáxias escuras, os nossos resultados demonstram o potencial deste método para descobrir e estudar estes fascinantes objetos previamente invisíveis", diz Sebastiano Cantalupo (Universidade da Califórnia, Santa Cruz), autor principal do estudo.

A equipe detectou quase 100 objetos gasosos que se situam num raio de alguns milhões de anos-luz do quasar. Depois de uma análise detalhada com o intuito de excluir objetos nos quais a emissão possa ser oriunda de formação estelar interna nas galáxias, em vez da radiação do quasar, o número de objetos diminuiu para 12. São as identificações mais convincentes até hoje de galáxias escuras no Universo primordial.

Os astrônomos conseguiram determinar também algumas das propriedades das galáxias escuras. Estimam que a massa do gás nestes objetos seja de cerca de um bilhão de vezes a do Sol, típica de galáxias de pequena massa ricas em gás, existentes no Universo primordial. A equipe conseguiu também estimar que a eficiência da formação estelar é suprimida de um fator maior que 100 relativamente a galáxias típicas com formação estelar encontradas em fases semelhantes na história cósmica. A eficiência de formação estelar é calculada como a massa de estrelas recentemente formadas sobre a massa de gás disponível para formar estrelas. A equipe descobriu que estes objetos precisariam de mais de 100 bilhões de anos para converter todo o gás em estrelas. Este resultado está de acordo com estudos teóricos recentes que sugeriram que halos de pequena massa ricos em gás a elevados desvios para o vermelho podem ter uma eficiência de formação estelar muito baixa, como consequência do baixo conteúdo em metais.

"As nossas observações com o VLT mostram evidências da existência de nuvens escuras compactas e isoladas. Com este estudo demos um importante passo em frente no sentido de revelar e compreender as fases iniciais da formação de galáxias e de como as galáxias adquirem o seu gás", conclui Sebastiano Cantalupo.

O espectrógrafo de campo integral MUSE, que chegará ao VLT em 2013, será uma ferramenta extremamente poderosa no estudo destes objetos.

Este trabalho foi descrito no artigo científico "Detection of dark galaxies and circum-galactic filaments fluorescently illuminated by a quasar at z=2.4", por Cantalupo et al. que será publicado na revista especializada Monthly Notices of the Royal Astronomical Society.

Fonte: ESO

terça-feira, 10 de julho de 2012

Casulo cósmico ao redor de uma supernova

Usando observações feitas com o observatório de raios X Chandra da NASA, os pesquisadores obtiveram a primeira evidência em raios X da onda de choque de uma supernova passando através de um casulo de gás ao redor de uma estrela que explodiu.

galáxia UGC 5189A

© Chandra/Hubble (galáxia UGC 5189A)

Essa descoberta pode ajudar os astrônomos a entenderem por que algumas supernovas são tão mais poderosas do que outras.

No dia 3 de Novembro de 2010, uma supernova foi descoberta na galáxia UGC 5189A, localizada a aproximadamente 160 milhões de anos-luz de distância. Usando dados do telescópio All Sky Automated Survey no Havaí, os astrônomos determinaram que a supernova explodiu no começo do mês de Outubro de 2010.

A imagem acima é uma composição de imagens da UGC 5189A que mostra os raios X do Chandra em roxo e os dados ópticos obtidos pelo telescópio espacial Hubble em vermelho, verde e azul.  A chamada SN 2010jl é a fonte bem brilhante de raios X perto do topo da galáxia.

Uma equipe de pesquisadores usou o Chandra para observar essa supernova no mês de Dezembro de 2010 e novamente em Outubro de 2011. A supernova foi uma das mais luminosas que já foram detectadas em raios X.

Na primeira observação do Chandra da SN 2010jl, os raios X  da onda gerada na explosão eram fortemente absorvidos por um casulo de gás denso situado ao redor da supernova. Esse casulo era formado por gás que foi soprado para longe pela estrela massiva antes dela explodir.

Na segunda observação feita quase que um ano depois, existia muito menos absorção da emissão de raios X, indicando que a onda da explosão teria passado pelo casulo ao redor. Os dados do Chandra mostraram que o gás emitindo os raios X tinha uma temperatura bem alta, maior que 100 milhões de graus Kelvin, forte evidência de que havia sido aquecido pela onda de choque da supernova.

Num raro exemplo de uma coincidência cósmica, a análise dos raios X de uma supernova mostrou que existia uma segunda fonte não correlacionada quase que na mesma localização da supernova. Essas duas fontes, se sobrepõem de maneira  marcante como é observado hoje. Essa segunda fonte provavelmente é uma fonte de raios X ultraluminosa, possivelmente contendo um buraco negro de massa estelar ou um buraco negro de massa intermediária.

Fonte: NASA

segunda-feira, 9 de julho de 2012

Uma bela imagem da Nebulosa Pata de Gato

O Observatório Europeu do Sul (ESO) divulgou nova imagem da Nebulosa Pata de Gato, ou NGC 6334.

Nebulosa Pata de Gato

© ESO (Nebulosa Pata de Gato)

A imagem foi obtida da combinação de observações do telescópio de 2,2 metros MPG/ESO com 60 horas de exposição em um telescópio amador, capturadas pelos astrônomos Robert Gendler e Ryan M. Hannahoe.

A forma distintiva da Nebulosa é revelada entre nuvens avermelhadas de gás brilhante no contraste com um céu escuro coberto de estrelas. A resolução existente das observações do telescópio MPG/ESO foi combinada com as informações de cor das observações dos astrônomos, tendo como resultado uma bela combinação de telescópios amadores e profissionais.

Localizada na direção do centro da Via Láctea, a 5.500 anos-luz da Terra, na constelação do Escorpião, a Nebulosa Pata de Gato estende-se ao longo de 50 anos-luz e é uma enorme maternidade estelar, local de nascimento de centenas de estrelas de grande massa.

Fonte: ESO

sábado, 7 de julho de 2012

Buraco negro descontrolado na Via Láctea

A imagem abaixo mostra uma vista oblíqua da nossa galáxia, a Via Láctea.

buraco negro arremessado através do plano da Via Láctea

© ESA (buraco negro arremessado através do plano da Via Láctea)

O sistema que contém o buraco negro GRO J1655-40 está cruzando o espaço a uma taxa de 400.000 quilômetros por hora (111,11 km/s) - 4 vezes mais rápido que a velocidade média das estrelas na vizinhança galáctica. A estrela amarela é o nosso Sol. O buraco negro foi formado no disco a uma distância superior a 3 kpc (kiloparsec = 9,25 x1016 km) do centro galáctico e deve ter sido ejetado para uma órbita excêntrica pela explosão de supernova da estrela progenitora. O momento linear e a energia cinética descontrolados deste buraco negro binário são comparáveis ​​aos de estrelas de nêutrons solitárias e pulsares de milisegundos. O GRO J1655-40 é o primeiro buraco negro que há evidências de um movimento de fuga transmitida por um impulso em uma explosão de supernova.

Para efeito de comparação, o Sol e outras estrelas próximas têm velocidades típicas da ordem de 20 km/s em relação à velocidade média de estrelas se movendo com a rotação do disco galáctico, que apoia a ideia de que o buraco negro se frmou a partir do colapso do núcleo de uma estrela massiva. Como o núcleo entrou em colapso, as suas camadas exteriores explodiu como uma supernova deixando o sistema remanescente movendo-se através da galáxia com uma velocidade anormalmente elevada.

Fonte: ESA

sexta-feira, 6 de julho de 2012

Estranha união de estrelas vermelhas binárias

Uma equipe de astrônomos usou o telescópio infravermelho United Kingdom Infrared Telescope (UKIRT) no Havaí para descobrir quatro pares de estrelas que orbitam um ao outro em menos de 4 horas.

estrelas vermelhas binárias

© J. Pinfield (estrelas vermelhas binárias)

Até agora pensava-se que este ínfimo período reduzido em estrelas binárias não poderia existir. As novas descobertas vêm da Wide Field Camera (WFCAM) Transit Survey do telescópio, e aparece no periódico Monthly Notices of the Royal Astronomical Society.

Cerca de metade das estrelas na Via Láctea são, ao contrário do nosso Sol, parte de um sistema binário em que duas estrelas orbitam uma à outra. Muito provavelmente, as estrelas nestes sistemas se formaram juntas e orbitam em torno de si a partir de seus nascimentos. Sempre se pensou que se as estrelas binárias forem formadas muito próximas umas das outras, elas rapidamente se fundem em uma estrela única e maior. Isto estava em consonância com muitas observações colhidas ao longo das últimas três décadas que mostram a população abundante de binários estelares, mas nenhuma com períodos orbitais menores do que 5 horas.
Pela primeira vez, a equipe investigou binários de anãs vermelhas, estrelas até dez vezes menores e mil vezes menos luminosas que o Sol. Embora constituam o tipo mais comum de estrelas na Via Láctea, as anãs vermelhas apresentam obscuridade na luz visível.

Nos últimos cinco anos, o UKIRT tem acompanhado o brilho de centenas de milhares de estrelas, incluindo milhares de anãs vermelhas, em luz infravermelha, utilizando a câmera de campo amplo.

"Para nossa surpresa, encontramos várias anãs vermelhas binárias, com períodos orbitais significativamente menor que o de 5 horas para estrelas semelhantes ao Sol, algo que se pensava ser impossível", disse Bas Nefs do Observatório Leiden, na Holanda.

Como as estrelas diminuem de tamanho no início de sua vida, o fato de que esses binários muito apertados existam significa que suas órbitas também deve ter encolhido desde o seu nascimento, caso contrário, as estrelas teriam estado em contato logo no início e se fundiriam. No entanto, não está claro como essas órbitas poderiam ter diminuído acentuadamente. Uma possível resposta para esse enigma é que estrelas frias em sistemas binários são muito mais ativas e violentas do que se pensava anteriormente.

É possível que as linhas do campo magnético que saem das estrelas companheiras frias ficam distorcidas, gerando a atividade extra através do vento estelar, protuberâncias e manchas estelares. A atividade magnética poderosa poderia freiar estas estrelas que giram, fazendo com que elas se aproximem.

A natureza ativa dessas estrelas e seus aparentemente poderosos campos magnéticos tem profundas implicações para os ambientes em torno de anãs vermelhas em toda a nossa galáxia.

Fonte: Royal Astronomical Society

A cauda de maré de uma galáxia

A grande galáxia espiral NGC 3628 (na parte central esquerda), localizada a 30 milhões de anos-luz de distância, compartilha sua vizinhança no Universo local com duas outras galáxias espirais, num impressionante grupo conhecido como Tripleto de Leão.

Tripleto de Leão

© Thomas Davis (Tripleto de Leão)

Além da NGC 3628, fazem parte também da trinca de galáxias a M65 perto da borda central direita da imagem com a M66 um pouco acima e a esquerda. Mas talvez, o mais intrigante nessa região seja a espetacular cauda que se estica para cima e para a esquerda por aproximadamente 300.000 anos-luz desde o disco da NGC 3628. Conhecida como cauda de maré, a estrutura tem sido gerada pelas marés gravitacionais ocorridas durante um breve e violento encontro dessa galáxia com suas vizinhas. Quase nunca registrada com muito detalhe, a cauda é composta por jovens aglomerados estelares azulados e por regiões de formação de estrelas.

Fonte: NASA

quinta-feira, 5 de julho de 2012

Vários microblazares são observados

Astrônomos encontraram evidências de centenas de buracos negros em uma galáxia a milhões de anos-luz de distância.

galáxia ARP 220

© NRAO (galáxia ARP 220)

A descoberta, feita com uma rede mundial de radiotelescópios, dá aos cientistas uma nova maneira de descobrir como os buracos negros são criados. Esses objetos, conhecidos pelos astrônomos como microblazares, foram teoricamente previstos mais de uma década atrás.

Os astrônomos acreditam que os microblazares são versões reduzidas dos faróis cósmicos conhecidos como blazares. Em um blazar, um buraco negro supermassivo abastecendo-se do gás denso no centro de uma galáxia cria jatos potentes que podem ser observados da Terra, se forem dirigidos para nós.
Uma equipe liderada por astrônomos na Chalmers University of Technology e Onsala Space Observatory tem acompanhado os sinais de rádio a partir do núcleo da galáxia ARP 220, que está 250 milhões de anos-luz da Terra. Além de um número de supernovas, eles também descobriram algumas fontes que estavam à primeira vista difícil de entender.

Os cientistas acompanharam as três fontes de rádio peculiares por vários anos. Agora eles pensam que sabem o que está por trás dos sinais de rádio: jatos criados por buracos negros. Isto pode ser a emissão de rádio a partir de sistemas estelares binários em que uma estrela já explodiu e deixou para trás um buraco negro. O buraco negro absorve o gás de sua companheira, produzindo poderosos jatos que emitem ondas de rádio.

Os jatos de buracos negros são visíveis a esta distância, se forem apontando diretamente em nossa direção. Provavelmente existem muitos outros sistemas como este nesta galáxia, mas seus jatos apontam em outras direções.

A galáxia ARP 220 já é famoso por criar novas estrelas a um ritmo furioso. Uma pesquisa anterior pela mesma equipe também demonstrou que existem muitas explosões de supernovas na galáxia, até 250 vezes mais do que na Via Láctea. Os astrônomos acreditam que os buracos negros são criados quando estrelas com massas mais do que cerca de 20 vezes a do o Sol explodem.

Esta descoberta na ARP 220 colocará em breve essa idéia à prova. Apenas uma dúzia de buracos negros deste tipo são conhecidos na Via Láctea, e apenas alguns são conhecidos em outras galáxias.

A descoberta foi feita com uma rede de radiotelescópios ao redor do mundo, ligados entre si para criar imagens muito nítidas, usando a técnica de VLBI (Very Long Baseline Interferometry). Os radiotelescópios podem acompanhar os acontecimentos nos centros densos de galáxias que estão por trás de grossas camadas de poeira, invisíveis a outros telescópios. A fim de descobrir quais são as fontes de rádio na ARP 220 a equipe fez medições em comprimentos de onda de rádio diferentes durante um período de 17 anos.

"Este resultado só surgiu depois de muitos anos de observações cuidadosas e melhorias nas técnicas de VLBI", diz Philip Diamond, membro da equipe e chefe do CSIRO Astronomy and Space Science, na Austrália.

Fonte: Astronomy & Astrophysics

Uma família de nebulosas na Via Láctea

O telescópio WISE da NASA flagrou um ângulo diferente de uma família de nebulosas localizada na constelação de Órion, a mais visível do Hemisfério Norte nas noites de inverno.
nebulosa da Chama
© WISE (nebulosa da Chama)
Na imagem, a enorme nuvem espacial ganha uma versão atualizada a partir de dados infravermelhos coletados pelo WISE. Os objetos mais frios, como a poeira das nebulosas, aparecem nas cores verde e vermelha.
Os astrônomos estavam interessados em estudar as áreas mais brilhantes dessa região sem tanto brilho. Vista pela nova perspectiva, o campo espacial contém uma vasta nuvem de gás e poeira onde as estrelas nascem. No centro, podem ser vistas três nebulosas: da Chama, Cabeça de Cavalo e NGC 2023.
A Nebulosa da Chama é a mais brilhante da imagem, pois recebe em seu interior a iluminação de uma estrela que tem 20 vezes a massa do Sol e que só não é tão brilhante por causa da poeira ao redor, que a faz parecer 4 bilhões de vezes menor do que realmente é.
A NGC 2023 é o círculo brilhante menor, logo abaixo da Nebulosa da Chama. A terceira delas, Cabeça de Cavalo, fica fora da borda da nuvem, à direita da NGC 2023. Ela não aparece direito por causa da poeira e dos raios infravermelhos usados pelo WISE, mas em luz visível vira uma nuvem escura sobre gases brilhantes.
Duas estrelas do cinturão de Órion também podem ser vistas na foto: Alnitak ou Zeta Orionis, um astro triplo que fica a 736 anos-luz da Terra – aparece bem brilhante, de cor azul, à direita – e Alnilam ou Epsilon Orionis, uma supergigante azul que fica a 1.980 anos-luz daqui. Apesar de ela ter um raio duas vezes maior e uma luminosidade 275 mil vezes maior que o Sol, aparece com um brilho de pouca intensidade no canto à direita.
Outro objeto que chama a atenção na imagem é o arco vermelho. Ele rodeia a estrela Sigma Orionis, uma anã-azul logo abaixo de Aniltak, situada na "espada" que sai da cintura do caçador Órion, a 1.070 anos-luz de distância da Terra.
Esse arco se move a uma velocidade de 2.400 quilômetros por segundo. Os ventos criados pelo movimento colidem contra o gás e a poeira e produzem uma onda de choque, cuja energia aquece a região e a faz brilhar em luz infravermelha.
Fonte: NASA

Estrela semelhante ao Sol perde brilho

Uma estrela semelhante ao Sol sofreu um dramático escurecimento em um curto espaço de tempo, aponta estudo realizado pela Universidade da Califórnia, dos Estados Unidos.

estrea emitindo radiação infravermelha

© Lynette Cook (estrea emitindo radiação infravermelha)

Um disco de poeira em torno da estrela TYC 8241 2652, localizada a 456 anos-luz da Terra, foi visto pela primeira vez pelo IRAS (Infrared Astronomical Satellite) da NASA em 1983, e continuou com seu brilho intensamente por 25 anos.

O primeiro indício forte do desaparecimento do disco surgiu de imagens tiradas em janeiro de 2010 pelo WISE (Wide-field Infrared Survey Explorer) da NASA, que realiza um amplo levantamento de campo infravermelho. Uma imagem infravermelha obtida pelo telescópio Gemini, no Chile, em 1 de Maio de 2012, confirmou que a poeira já havia sido dispersada.

A pesquisa relata que a estrela TYC 8241 26521 perdeu em 30 vezes seu fluxo de radiação infravermelha em apenas dois anos e houve ainda um rápido desaparecimento dos restos de poeira em uma região equivalente ao nosso Sistema Solar.

sistema após o desaparecimento da poeira

© Lynette Cook (sistema após o desaparecimento da poeira)

Com os resultados, os cientistas sugerem que o sistema passou por um acontecimento dramático, mas afirmam que não existe atualmente nenhuma explicação ou modelo que detalhe tais observações.

Uma possibilidade é que o gás produzido no impacto que lançou o pó ajudou a arrastar rapidamente as partículas de poeira para dentro da estrela gerando sua condenação. Em outra possibilidade, colisões de grandes rochas que sobraram de um impacto inicial maior proporcionaram uma nova infusão de partículas de poeira no disco, fazendo com que os grãos de poeira rompessem em pedaços cada vez menores.

Fonte: Nature

O comportamento de estrelas recém-nascidas

O trabalho conjunto de telescópios revelou características do corportamento considerado agressivo de estrelas recém-nascidas.

núcleo e disco de poeira e gás da estrela V1647 Ori

© ESA (núcleo e disco de poeira e gás da estrela V1647 Ori)

Estas estrelas giram em alta velocidade e expelem plasma em alta temperatura, o que pode ajudar na compreensão de um dos mais fundamentais assuntos da astronomia, o nascimento de estrelas como o Sol.

As imagens foram registradas pelos telescópios Chandra da NASA, do XMM-Newton da ESA e Suzaku do Japão. Todos operam com tecnologia de identificação de raios X, o que permite monitorar variações nas intensidades desse tipo de emissões, mesmo que estejam enconbertas por nuvens de gás ou poeira cósmica, como ocorre no caso de estrelas jovens.

Estrelas recém-nascidas se formam com resíduos de poeira e gases, que se agrupam em torno do centro gravitacional formando um disco residual, criando assim uma protoestrela. Os componentes desse disco viajam em direção ao núcleo, no processo de expansão comum, mas uma pequena fração desses resíduos acaba sendo expelido em forma de jatos nas extremidades dos astros. Esses jatos são bastante variáveis e apontam a atividade energética nas regiões internas de cada estrela.

As equipes monitoraram a jovem estrela V1647 Ori, que está na nebulosa de McNeil, situada a cerca de 1,3 mil anos-luz da Terra. A observação dos telescópios teve duas etapas, uma que durou de 2003 a 2006 e outra que começou em 2008 e dura até agora. Nesses períodos, a estrela apresentou aumento de massa, temperatura e do nível de emissões de raios X.

"Acreditamos que a atividade magnétida na superfície estelar e em volta dela cria um plasma muito quente", diz o autor do estudo Kenji Hamaguchi. Esse comportamento se sustenta com a constante torção, quebra e reconexão dos campos magnéticos, que conectam o núcleo com o disco", explica.

Os astrônomos também identificaram uma variação singular de emissões, que se repetia regularmente, mas pelo período de apenas um dia. Para uma estrela do tamanho da V1647 Ori, isso significa que ela está girando o mais rápido que pode sem se despedaçar.

"Acreditamos que o plasma se localiza na superfície da estrela. O aumento e a diminuição do fluxo que identificamos é provavelmente o ponto brilhante que aparece e desaparece nas imagens que capturamos", completa o astrônomo japonês.

Ainda assim, as emissões analisadas desde 2004 sugerem que, apesar do comportamento caótico, a configuração de larga escala da estrela se mantém estável em relação à escala temporal. "As observações da V1647 Ori por esses três telescópios dão novas informações sobre o que pode estar acontecendo dentro dos discos nebulosos dessas estrelas em formação", disse Norbert Schartel, da ESA.

Fonte: ESA e Astrophysical Journal

Matéria escura interliga aglomerados de galáxias

Uma descoberta expressiva no campo da cosmologia, foi realizada por Jörg Dietrich e seus colegas da Universidade de Munique, na Alemanha.

galáxias constituídas de matéria escura

© U. Michigan (galáxias constituídas de matéria escura)

Foram detectados componentes de matéria escura entre dois super-aglomerados de galáxias a 2,7 bilhões de anos-luz de distância da Terra. É a primeira vez que se detecta claramente a estrutura de matéria escura que permeia a teia cósmica de matéria no Universo.

E, o que é mais interessante, essa estrutura aparece justaposta com a distribuição de matéria comum, permitindo uma comparação sem precedentes entre as duas fontes de gravidade.

A matéria comum forma uma teia no espaço, com galáxias e aglomerados de galáxias interligados por filamentos de gases quentes muito tênues, mas formados por átomos de matéria comum.

O Universo é um imenso espaço vazio apesar de aglomerados de galáxias serem estruturas descomunais. Como esses filamentos se espalham por distâncias imensas, os cálculos indicam que eles contêm mais da metade de toda a matéria do Universo.

Assim, um espaço aparentemente vazio ganha uma estrutura graças à presença desses filamentos.

A gravidade produzida por eles, contudo, indica que esses filamentos não podem ser feitos apenas de matéria bariônica, ou seja a matéria comum, que compõe 4% da massa do Universo.

Até hoje não havia sido identificado o componente de matéria escura de um filamento.

Dietrich e seus colegas encontraram-no no filamento que une os aglomerados Abell 222 e Abell 223, que são dois aglomerados de galáxias pertencentes ao catálogo criado pelo astrônomo George Abell em 1958, que contém 2.712 enxames de galáxias.

A forte gravidade do filamento que une os dois aglomerados funciona como uma lente para a luz que vem de galáxias mais distantes em direção à Terra.

Os pesquisadores usaram essa luz para calcular a massa e o formato do filamento.

Os raios X emitidos pelo gás quente de matéria comum mostram que essa matéria está distribuída ao longo de todo o filamento, mas compondo apenas cerca de 9% de sua massa.

Simulações em computador mostraram que outros 10% de massa podem ser atribuídos às estrelas e galáxias visíveis. O resto só pode ser parte de uma rede de matéria escura que conecta aglomerados de galáxias através do Universo.

Astrônomos já haviam usado uma técnica semelhante para traçar um mapa da distribuição da matéria escura no interior de um outro aglomerado de galáxias, o Abell 1689. Mas, esta é a primeira vez que se detecta a matéria escura nas interligações de matéria comum.

filamentos que unem os aglomerados de galáxia

©  Nature (filamentos que unem os aglomerados de galáxia)

A possibilidade de fazer um mapa mostrando matéria comum e matéria escura juntas pode mostrar a relação entre as duas e ajudar a determinar como a matéria escura é formada. Esta observação pode ajudar os astrofísicos a entender a estrutura do Universo e, usando a mesma técnica, tentar descobrir o que compõe essa substância invisível conhecida como matéria escura.

Fonte: Nature

terça-feira, 3 de julho de 2012

Gigante vermelha infla uma bolha de gás

Uma estrela brilhante é circundada por uma tênue concha de gás nessa incomum imagem feita pelo telescópio espacial Hubble.

gigante vermelha U Camelopardalis

© Hubble (gigante vermelha U Camelopardalis)

A estrela U Camelopardalis, ou simplesmente U Cam, é uma estrela que está perto do fim da sua vida. À medida que seu combustível começa a acabar, ela se torna instável. A cada poucos milhares de anos, ela expele uma concha esférica de gás enquanto que uma camada de hélio ao redor de seu núcleo começa a fundir. O gás ejetado na última erupção da estrela é claramente visível nessa imagem como uma apagada bolha de gás ao redor da estrela.

A U Cam é um exemplo de uma estrela de carbono. Esse é um tipo bem raro de estrela que tem como característica ter uma atmosfera  que contém mais carbono do que oxigênio. Devido à sua baixa gravidade superficial, normalmente metade da massa total de uma estrela de carbono pode ser perdida por meio de poderosos ventos estelares.

Localizada na constelação de Camelopardalis, A Girafa, perto do Polo Celeste Norte, a U Cam por si só é na verdade muito menor do que aparece nessa imagem do Hubble. De fato, a estrela cabe perfeitamente dentro de um único pixel no centro da imagem. Seu brilho, contudo, é suficiente para oprimir a capacidade da Advanced Camera for Surveys do Hubble a fazer a estrela parecer bem maior do que ela realmente é.

A concha de gás, que é tanto muito maior e muito mais apagada do que a sua estrela progenitora, é visível com detalhes impressionantes nessa bela imagem do Hubble. Embora esse fenômeno que ocorre no final da vida de uma estrela seja irregular e instável, a concha de gás expelida pela U Cam é quase uma esfera perfeita.

Fonte: ESA

segunda-feira, 2 de julho de 2012

O mistério da ausência de oxigênio molecular

A procura por oxigênio molecular interestelar (O2), têm uma longa história, e a motivação para essas pesquisas evoluiu.

nebulosa de Órion

© Robert Gendler (nebulosa de Órion)

Antes do final de 1990, os esforços para detectar O2 foram impulsionados por um desejo de confirmar o seu papel previsto como um importante reservatório de oxigênio elementar dentro de densas nuvens moleculares e como o refrigerante de gás mais importante de nuvens típicas após o monóxido de carbono (CO). Mas o O2 nunca foi encontrado. A satélite SWAS (Submillimeter Wave Astronomy Satellite), em 1998, e o satélite Odin, em 2001, ambos não conseguiram detectar O2 num grande número de fontes níveis com uma pequena percentagem das abundâncias previstas por modelos químicos em equilíbrio na fase gasosa.

A conclusão forçou uma mudança na ênfase das buscas. Hoje, o interesse no O2 já não reside no fato de ser um importante reservatório de oxigênio elementar ou em seu poder de arrefecimento. Em vez disso, as pesquisas tornaram-se um meio importante para testar a nossa compreensão atual da química interestelar e os diversos processos de formação, destruição, e esgotamento de O2 e do equilíbrio entre eles.
Os astrônomos Gary Melnick e Sinos Volker do CfA (Harvard Center for Astrophysics0 lideraram uma equipe de dezenove astrônomos usando o observatório espacial Herschel, no estudo da presença de oxigênio molecular na nebulosa de Órion, um local bem conhecido por sua rica química. Os instrumentos do Herschel possuem tanto  sensibilidade elevada como a cobertura de comprimento de onda amplo necessário para pesquisar a molécula em várias das suas linhas de emissão.

Os cientistas relatam que ainda não encontraram a molécula de O2.

As conclusões preliminares aborda quatro questões: a forma de como o oxigênio se agarra ao gelo no meio interestelar (talvez mais forte do que se suspeitava anteriormente), a quantidade de material total na região de Órion (menos do que havia sido pensado), a maneira como o O2 se junta (aglomerados mais pequenos), bem como a localização destas moléculas nas nuvens (enterrado mais profundo do que as estimativas anteriores).

A imagem no topo  mostra o gás brilhante da nebulosa circundante às estrelas quentes e jovens à beira de uma nuvem molecular interestelar imensa com cerca de 1.500 anos-luz de distância. Simultaneamente, são visíveis as estrelas brilhantes do Trapézio no coração de Órion, as faixas amplas de poeira escura que atravessam o centro, o gás hidrogênio vermelho brilhante, e o pó azul colorido que reflete a luz de estrelas recém-nascidas. A complexa nebulosa de Órion inclui a nebulosa Horsehead, que lentamente se dispersará durante os próximos 100.000 anos.

Fonte: The Astrophysical Journal