quarta-feira, 5 de fevereiro de 2014

Descoberto um exoplaneta oscilante

Imagine viver num planeta com estações tão erráticas que você dificilmente saberia o que vestir: uma bermuda ou casaco de neve! Essa é a situação num mundo estranho e oscilante encontrado pelo telescópio espacial caçador de planetas Kepler da NASA.

8x10.ai

© STScI (ilustração do sistema binário Kepler-413b)

O planeta designado Kepler-413b, está localizado a aproximadamente 2.300 anos-luz de distância na constelação de Cygnus. Ele circula um par de estrelas, sendo uma anã laranja e outra anã vermelha a cada 66 dias.

Mas o que faz esse planeta bem incomum é que ele oscila, ou sofre um movimento de precessão, de forma violenta em seu eixo. A inclinação do eixo de rotação do planeta pode variar em torno de 30 graus num período de 11 anos, levando a rápidas e erráticas mudanças nas estações. No caso da Terra a precessão do eixo gravitacional é de 23,5 graus num período de 26.000 anos. O fato desse planeta sofrer precessão numa escala de tempo humana é simplesmente magnífico dizem os pesquisadores.

Provavelmente você não desejaria estar nesse planeta para experimentar essas mudanças de estações, ele é muito mais quente do que conhecemos para que a vida possa ali florescer. Ele tem uma órbita muito próxima de uma das estrelas, se localizando na borda interna da zona habitável do sistema, ou seja, uma região onde as temperaturas permitem que a água líquida exista na superfície do planeta. Ele também é um gigante gasoso com uma massa equivalente a 65 Terras, ou seja, um super-Netuno, assim não existe também nenhuma superfície onde possamos ficar de pé.

A órbita do planeta é incomum, ela é inclinada de 2,5 graus em relação ao plano da órbita do sistema binário. No período de 11 anos, a órbita do planeta parece oscilar à medida que ele orbita o par de estrelas.

Os astrônomos usando o Kepler descobriram essas características quando eles encontraram um padrão incomum de trânsito para o Kepler-413b. Normalmente, planetas em trânsito são vistos passando em frente das suas estrelas progenitoras como um relógio. O Kepler descobriu esses planetas notando a diminuição de brilho da estrela.

“O que nós vimos nos dados do Kepler em mais de 1.500 dias foram 3 trânsitos nos primeiros 180 dias (um trânsito a cada 66 dias), então nós tivemos 800 dias sem trânsito”, explicou Veselin Kostov, o principal pesquisador nas observações. Kostov é afiliado com o Space Telescope Science Institute (STScI), e da Johns Hopkins University (JHU), em Baltimore (EUA). “Depois disso, nós observamos mais cinco trânsitos em sequência”.

O próximo trânsito não está previsto para ocorrer até 2020. Isso se deve não somente à oscilação orbital, mas também aos diâmetros diminutos das estrelas e o fato de que o plano orbital das estrelas não estar exatamente de lado com relação à nossa linha de visão. O que aconteceu então foi que os astrônomos registraram o planeta agora enquanto ele estava realizando o trânsito.

Devido à oscilação orbital, a órbita continuamente se move para cima e para baixo com relação ao nosso ponto de vista. Essa mudança é grande o suficiente que algumas vezes da Terra, se perde o momento em que o planeta passa em frente às estrelas.

Para entender os complicados movimentos desse planeta, imagine uma roda de bicicleta localizada do seu lado. Gire a roda, enquanto ela está no chão, e ela então ficará oscilando. Isso é o que acontece com a órbita do planeta. Agora imagine colocando um pião no anel da roda girando horizontalmente. Esse é como o movimento oscilante de precessão rotacional do planeta acontece.

Os astrônomos ainda estão tentando explicar por que esse planeta está fora de alinhamento com relação a suas estrelas. Podem existir outros corpos planetários no sistema que estejam inclinando a órbita. Ou, pode existir uma terceira estrela próxima que é uma companheira visual que pode na verdade estar gravitacionalmente presa ao sistema e exercendo uma influência.

“Provavelmente existem mais planetas como esse que não foram vistos devido ao período não favorável”, disse Peter McCullough, um membro da equipe do STScI e da JHU.

Os resultados da pesquisa foram publicados na edição de 29 de Janeiro deste ano no periódico The Astrophysical Journal.

Fonte: HubbleSite

domingo, 2 de fevereiro de 2014

Canais de hidrogênio fluindo no espaço intergaláctico

Usando o telescópio Robert C. Byrd Green Bank (GBT)  da Fundação Nacional de Ciência, o astrônomo D.J. Pisano da Universidade West Virginia (WVU), descobriu que poderia ser um canal nunca antes visto de hidrogênio que flui através do espaço.

canais de hidrôgenio fluindo da NGC 6946

© Palomar Observatory/WVU (canais de hidrôgenio fluindo da NGC 6946)

Este filamento muito tênue de gás está fluindo da galáxia próxima NGC 6946 pode ajudar a explicar como certas galáxias espirais desenvolvem seu ritmo constante de formação de estrelas.

"Sabíamos que o combustível para a formação de estrelas teve que vir de algum lugar. Até agora, no entanto, temos detectado apenas cerca de 10% do que seria necessário para explicar o que observamos em muitas galáxias", disse Pisano. "A principal teoria é que o hidrogênio pode ser transportado através de rios no espaço intergaláctico, clandestinamente alimentando a formação de estrelas. Mas esse fluxo tênue de hidrogênio era simplesmente demasiado difuso para ser detectado, até agora."
As galáxias espirais, como a nossa Via Láctea, normalmente mantêm um ritmo bastante tranquilo, mas constante de formação de estrelas. Outras, como a NGC 6946, que está localizada a aproximadamente 22 milhões de anos-luz da Terra, na fronteira das constelações Cepheus e Cygnus, são muito mais ativas, embora menos do que as galáxias starburst mais extremas. O que está sustentando a alimentação da formação de estrelas nesta e em outras galáxias espirais similares?

Estudos anteriores da vizinhança galáctica em torno NGC 6946 com o radiotelescópio Westerbork Synthesis (WSRT) nos Países Baixos revelaram uma auréola prolongada de hidrogênio (uma característica comum em galáxias espirais, o que pode ser formada por hidrogênio ejetado do disco da galáxia pela intensa formação de estrelas e explosões de supernovas). Um fluxo frio de hidrogênio ocorre a partir de uma fonte completamente diferente: o gás a partir do espaço intergaláctico, que nunca tenha sido aquecido a temperaturas extremas por processos de nascimento de estrela ou supernova de uma galáxia.

Usando o GBT de 100 metros, operado pelo National Radio Astronomy Observatory (NRAO), Pisano foi capaz de detectar o brilho emitido pelo gás hidrogênio neutro na conexão da NGC 6946 com as suas vizinhas cósmicos. Este sinal foi simplesmente abaixo do limiar de detecção de telescópios.

Astrônomos teorizam há muito tempo que as galáxias maiores poderiam receber um fluxo constante de hidrogênio frio de outras companheiras menos maciças.

Ao olhar para a NGC 6946, o GBT detectou exatamente o tipo de estrutura filamentar que estaria presente em um fluxo gelado, embora não haja outra explicação provável para o que tem sido observado. Também é possível que em algum momento no passado, esta galáxia teve um encontro próximo e passou por seus vizinhos, deixando uma fileira de hidrogênio atômico neutro em sua esteira.

Nessa situação, não deveria haver uma população pequena, mas perceptível de estrelas nos filamentos. Mais estudos ajudarão a confirmar a natureza desta observação e poderia evidenciar a possível função que os fluxos gelados desempenham na evolução das galáxias.

A imagem composta no topo da página contém três características distintas: a região central da galáxia NGC 6946 cheio de estrelas brilhantes na luz óptica (azul), o denso vestígio de hidrogênio nos braços espirais da galáxia e no halo galáctico (laranja), e o campo extremamente difuso e extenso de hidrogênio englobando a NGC 6946 e suas companheiras (vermelho). Os novos dados do GBT mostram que o hidrogênio levemente brilhante abre caminho entre a maior galáxia e suas companheiras menores. Esta estrutura fraca é precisamente o que os astrônomos esperam que apareça quando o hidrogênio fluir a partir do meio intergaláctico das galáxias ou a partir de um encontro ocorrido entre as galáxias.

Fonte: NRAO

sexta-feira, 31 de janeiro de 2014

O mistério das galáxias ultra compactas

Astrônomos combinando o poder do telescópio espacial Hubble, e dos telescópios infravermelhos Spitzer e Herschel, com telescópios baseados na superfície da Terra, conseguiram montar uma imagem coerente da história de formação das estrelas mais massivas no Universo.

desenvolvimento das galáxias elípticas massivas

© NASA/ESA (desenvolvimento das galáxias elípticas massivas)

A evolução ocorre desde a explosão inicial da formação violenta de estrelas, passando pela sua aparência como núcleos galácticos com alta densidade estelar e finalizando com o seu destino final como gigantes elípticas.

Isso resolve um mistério que dura décadas sobre como as galáxias compactas de forma elípticas que existiam quando o Universo tinha somente 3 bilhões de anos de existência, ou seja, um quarto da idade atual do universo de 13,8 bilhões de anos, já tinham completado sua formação estelar. Essas galáxias elípticas compactas têm sido agora definitivamente integradas diretamente com uma população anterior de galáxias de explosão de estrelas empoeiradas que vorazmente usaram o gás disponível para gerar estrelas de forma bem rápida. Então elas cresceram lentamente por meio de fusão à medida que a formação de estrelas nelas diminuía, e elas eventualmente tornaram-se galáxias elípticas gigantes.

“Essa é a primeira vez que alguém agrupa uma amostra espectroscópica representativa de galáxias ultra compactas, com a alta qualidade de imageamento infravermelho do Hubble”, disse Sune Toft do Dark Cosmology Center no Niels Bohr Institute em Copenhagen.

“Nós mostramos como essas galáxias compactas podem se formar, como isso aconteceu e quando isso aconteceu”, disse Toft. “Essa é basicamente a peça que faltava no entendimento sobre como as galáxias mais massivas se formaram, e como elas se desenvolveram tornando-se as gigantescas galáxias elípticas que observamos hoje. Esse tem sido um grande mistério por muitos anos pois apenas 3 bilhões de anos depois do Big Bang nós observamos que a maior parte das galáxias já haviam completado a sua formação de estrelas”.

Ainda mais surpreendente, essas galáxias massivas uma vez foram extremamente compactas, se comparadas com as galáxias elípticas similares vistas hoje no Universo próximo. Isso significa que as estrelas foram amontoadas de 10 a 100 vezes mais densas do que o que é observado nas galáxias atualmente. “Essa é uma densidade comparada à densidade de estrelas em aglomerados globulares, mas numa escala muito maior, de uma galáxia”, disse Toft.

Ao tentar criar uma sequência evolucionária conjunta para essas galáxias massivas compactas, Toft identificou seus progenitores como as galáxias altamente obscurecidas pela poeira submetidas a uma rápida formação de estrelas em taxas que são milhares de vezes mais rápidas do que na nossa Via Láctea. Explosões de estrelas nessas galáxias são provavelmente disparadas quando duas galáxias ricas em gás colidem. Essas galáxias são tão empoeiradas que elas são quase invisíveis em comprimentos de onda ópticos, mas são brilhantes em comprimentos de onda submilimétricos, onde elas foram identificadas, aproximadamente a duas décadas atrás pela câmera SCUBA (Submillimeter Common-User Balometer Array) acoplada ao Telescópio James Clerk Maxwell no Havaí.

A equipe de Toft, pela primeira vez agrupou amostras representativas de duas populações de galáxias usando o rico conjunto de dados no programa COSMOS (Cosmic Evolution Survey) do Hubble.

Eles construíram a primeira amostra representativa das galáxias compactas com distâncias e tamanhos precisos (desvio para o vermelho espectroscópico) medidos dos programas CANDELS (Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey) e 3D-HST do Hubble. O 3D-HST é uma pesquisa espectroscópica no infravermelho próximo feita pelo Hubble para estudar os processos físicos que formaram as galáxias no Universo distante. Os astrônomos combinaram esses dados com observações do telescópio Subaru no Havaí e com dados do telescópio espacial Spitzer da NASA. Isso permitiu que os astrônomos conseguissem estimar de forma precisa a idade das estrelas, de onde eles concluíram que as galáxias se formaram em intensas explosões de estrelas entre 1 bilhão a 2 bilhões de anos antes, no Universo bem recente.

A equipe então fez a primeira amostra representativa das galáxias mais distantes submilimnétricas usando os ricos dados do COSMOS do Hubble, Spitzer, e do Herscehl, e de telescópios com base em solo terrestre como o Subaru, o James Clerk Maxwell e o Submillimeter Array. Essa informação multi-espectral, desde a luz óptica até os comprimentos de onda submilimétricos forneceu um conjunto completo de informações sobre os tamanhos, as massas estelares, as taxas de formação de estrelas, o conteúdo de poeira, e as distâncias precisas das galáxias escondidas na poeira presentes no início do Universo.

Quando a equipe de Toft comparou as amostras dessas duas populações galácticas, eles descobriram um elo entre as galáxias compactas elípticas e as galáxias submilimétricas observadas entre 1 bilhão e 2 bilhões de anos antes. Essas observações mostram que a atividade violenta de formação de estrelas nas galáxias anteriores tinham as mesmas características previstas para as progenitoras das galáxias elípticas compactas. A equipe também calculou que a intensa atividade de explosão de estrelas durou cerca de 40 milhões de anos antes que o suprimento de gás interestelar se exaurisse.

Fonte: HubbleSite

quarta-feira, 29 de janeiro de 2014

Primeiro mapa meteorológico de uma anã marrom

O Very Large Telescope (VLT) do ESO foi utilizado para criar o primeiro mapa meteorológico da superfície da anã marrom mais próxima da Terra.

ilustração de Luhman 16B

© ESO/I. Crossfield/N. Risinger (ilustração de Luhman 16B)

Uma equipe internacional fez um mapa das regiões claras e escuras da WISE J104915.57-531906.1B, também conhecida pelo nome informal Luhman 16B e uma das duas anãs marrons recentemente descobertas que formam um par a apenas seis anos-luz de distância.

As anãs marrons preenchem a lacuna entre os planetas gigantes gasosos e as estrelas frias de pouco brilho. Não possuem massa suficiente para dar início à fusão nuclear nos seus centros e apenas conseguem brilhar fracamente nos comprimentos de onda do infravermelho. A primeira anã marrom confirmada foi descoberta há apenas cerca de vinte anos e só se conhecem algumas centenas destes objetos tão elusivos.
As anãs marrons que se encontram mais próximas do Sistema Solar formam um par chamado Luhman 16AB e situam-se a apenas seis anos-luz de distância, na constelação  da Vela. Este par foi descoberto pelo astrônomo americano Kevin Luhman em imagens do satélite de rastreio infravermelho WISE. Como Luhman tinha já descoberto quinze estrelas duplas, foi adotado o nome Luhman 16. Seguindo a convenção usual de nomear as estrelas duplas, Luhman 16A é a mais brilhante das duas componentes, Luhman 16B é a componente secundária e referimo-nos ao par como Luhman 16AB. Este par é o terceiro sistema mais próximo da Terra, depois de Alfa Centauri e da Estrela de Barnard, mas só foi descoberto no início de 2013. Sendo que a componente menos brilhante, Luhman 16B, variava ligeiramente em brilho a cada poucas horas, à medida que girava, um indício de que poderia ter regiões bem demarcadas em sua superície.
Os astrônomos usaram agora o poder do VLT para, não apenas fotografar estas anãs marrons, mas também mapear regiões claras e escuras na superfície de Luhman 16B.

Mapa de superfície de Luham 16B

© ESO/I. Crossfield (Mapa de superfície de Luham 16B)

O astrofísico Ian Crossfield (Instituto Max Planck de Astronomia, Heidelberg, Alemanha), autor principal do novo artigo científico que descreve este trabalho, sumariza os resultados: “Observações anteriores sugeriam que as anãs marrons poderiam ter superfícies manchadas, mas agora podemos de fato mapeá-las. Dentro de pouco tempo, poderemos ver padrões de nuvens formando-se, evoluindo e dissipando-se nesta anã marrom, eventualmente os exometeorologistas poderão prever se um visitante de Luhman 16B poderá contar com céus limpos ou nublados”.
Para mapear a superfície da anã marrom os astrônomos usaram uma técnica inteligente. Observaram as anãs marrons com o instrumento CRyogenic high-resolution InfraRed Echelle Spectrograph (CRIRES) montado no VLT, o que lhes permitiu não somente ver o brilho variável à medida que Luhman 16B gira, mas também observar se as regiões claras e escuras estavam se movendo em direção ao observador ou afastando-se dele. Combinando toda esta informação conseguiram recriar um mapa das regiões claras e escuras situadas na superfície.
As atmosferas das anãs marrons são muito semelhantes às dos exoplanetas gigantes gasosos quentes, por isso ao estudar comparativamente anãs marrons fáceis de observar, os astrônomos podem também aprender mais sobre as atmosferas dos planetas gasosos jovens, muitos dos quais serão descobertos num futuro próximo pelo novo instrumento Spectro-Polarimetric High-contrast Exoplanet REsearch (SPHERE), que será instalado no VLT ainda este ano.
Esta anã marrom possibilita compreender os padrões de clima em outros sistemas solares. Além disto, é muito importante o mapeamento de objetos localizados além do nosso Sistema Solar!

Os novos resultados serão publicados amanhã na revista Nature, num artigo científico intitulado: “A Global Cloud Map of the Nearest Known Brown Dwarf”.

Fonte: ESO

A galáxia espiral Cata-Vento do Sul

A M83 é uma das mais próximas e mais brilhantes galáxias espirais no céu. Visível com binóculos na constelação de Hydra, os majestosos braços espirais deram a ela o belo nome de Cata-Vento do Sul.

M83

© Hubble (galáxia espiral M83)

Embora descoberta a 250 anos atrás, somente, muito tempo depois se percebeu que a M83 não era uma nuvem de gás próxima, mas sim uma galáxia espiral barrada muito parecida com a nossa Via Láctea. A M83, mostrada acima, numa imagem obtida pelo Telescópio Espacial Hubble, é um membro proeminente de um grupo de galáxias que inclui a Centaurus A e a NGC 5253, todas elas localizadas a aproximadamente 15 milhões de anos-luz de distância da Terra. Algumas explosões de supernovas brilhantes foram registradas na M83. Um intrigante anel duplo circunuclear foi descoberto no centro da M83.

Fonte: NASA

terça-feira, 28 de janeiro de 2014

Sonda Swift registra supernova na galáxia M82

Uma explosão estelar excepcionalmente próxima descoberta em 21 de Janeiro de 2014 tornou-se o foco dos observatórios ao redor do mundo, incluindo alguns observatórios espaciais da NASA.

aparição da supernova SN 2014J

© NASA (aparição da supernova SN 2014J)

A explosão, designada como SN 2014J, ocorreu na galáxia M82 localizada a 12 milhões de anos-luz de distância da Terra. Isso faz dela a supernova óptica mais próxima nas últimas duas décadas e potencialmente a supernova do Tipo Ia mais próxima que ocorreu na vida das atuais missões espaciais.

Para poder aproveitar o evento ao máximo, os astrônomos têm planejado observações com o Telescópio Espacial Hubble, com o Chandra X-Ray Observatory, com o Nuclear Spectroscopic Telescope Array (NuSTAR), com o Fermi Gamma-ray Space Telescope e com o Swift.

O Swift foi o primeiro a observar a supernova. Em 22 de Janeiro de 2014, apenas um dia depois da descoberta, o Ultraviolet/Optical Telescope (UVOT) do Swift captou a supernova e a sua galáxia hospedeira.

De forma impressionante, a SN 2014J pôde ser vista em imagens feitas uma semana antes que qualquer um pudesse notar sua presença. Foi só quando Steve Fossey e seus estudantes no Observatório da Universidade de Londres imageou a galáxia notando a supernova.

Embora a explosão seja incomumente próxima, a luz da supernova é atenuada pelas espessas nuvens de poeira na galáxia, que pode reduzir seu brilho de pico aparente.

A poeira interesterar preferencialmente dispersa a luz azul, e é por isso que o UVOT do Swift vê a SN 2014J intensamente brilhante na luz visível e na luz ultravioleta próxima, mas quase não é vista em comprimentos de onda do ultravioleta médio.

Contudo, essa supernova próxima fornece aos astrônomos uma oportunidade importante para estudar como a poeira interestelar afeta a sua luz. Como uma classe, as supernovas do Tipo Ia explodem com um brilho intrinsicamente similar, uma propriedade que faz delas extremamente úteis como velas padrão para que se possa explorar o Universo.

Os raios X nunca foram observados de forma conclusiva a partir de uma supernova do Tipo Ia, assim a detecção feita pelo Telescópio de raios X do Swift, do Chandra ou do NuSTAR será significante, bem como a detecção dos raios gama de alta energia pelo Fermi.

Uma supernova do Tipo Ia representa a total destruição de uma estrela do tipo anã branca por dois possíveis cenários. Em um deles, a anã branca orbita uma estrela normal, puxa um fluxo de matéria dela, e ganha massa até atingir um limite crítico e explodir. Em outro cenário, a explosão acontece quando duas anãs brancas em um sistema binário eventualmente epiralam uma em direção a outra até colidirem.

Em qualquer situação, a explosão produz uma concha superaquecida de plasma que se expande no espaço a dezenas de milhões de quilômetros por hora. Elementos radioativos de vida curta se formam durante a explosão e mantêm a concha quente à medida que ela se expande. A relação entre o tamanho da concha, a transparência e o aquecimento radioativo determina quando a supernova alcança o pico de seu brilho. Os astrônomos esperam que a SN 2014J continue a brilhar durante as primeiras semanas de Fevereiro de 2014, quando ainda poderá ser observada com binóculos.

A M82, também é conhecida como a Galáxia do Charuto, está localizada na constelação da Ursa Maior e é um alvo popular para telescópios. A M82 está passando por um episódio poderoso de formação de estrelas que faz dela muitas vezes mais brilhante do que a nossa própria Via Láctea e dá a ela sua incomum aparência fotogênica.

Outras informações da descoberta da supernova acesse o link Cosmo Novas.

Fonte: NASA

sábado, 25 de janeiro de 2014

O buraco negro mais poderoso do Universo?

Astrônomos utilizaram observatório de raios X Chandra da NASA e um conjunto de outros telescópios para revelar um dos mais poderosos buracos negros conhecidos.

aglomerado RX J1532

© Chandra/VLA (aglomerado RX J1532)

O buraco negro tem criado enormes estruturas no gás quente em torno dele e impediu a formação de trilhões de estrelas. Este monstro está em um aglomerado de galáxias chamado RX J1532.9+3021 (RX J1532), localizado a cerca de 3,9 bilhões de anos-luz da Terra. O aglomerado é muito brilhante em raios X o que implica que é extremamente grande, com uma massa de cerca de um quatrilhão de vezes a do Sol. No centro do aglomerado existe uma grande galáxia elíptica que contém o buraco negro supermassivo.

A grande quantidade de gás quente perto do centro do conjunto apresenta um quebra-cabeças. O gás quente brilhando em raios X deve esfriar, e o gás denso no centro do aglomerado deve esfriar mais rápido. A pressão neste gás central frio deve cair, fazendo com que o gás mais distante afunde em direção à galáxia, propiciando a formação de trilhões de estrelas ao longo do caminho. No entanto, os astrônomos  não encontraram evidência desta explosão de estrelas se formando no centro deste aglomerado.
Este problema tem sido observado em muitos aglomerados de galáxias, mas o RX J1532 é um caso extremo, onde o resfriamento do gás deve ser especialmente dramático por causa da alta densidade de gás perto do centro. Fora dos milhares de grupos conhecidos até o momento, menos de uma dúzia são tão extremas como o RX J1532. O aglomerado Phoenix é o mais extremo, onde foi observado elevada formação de estrelas.

aglomerado Phoenix

© South Pole Telescope (aglomerado Phoenix)

Esta imagem composta mostra uma imagem de microondas do aglomerado Phoenix obtida pelo telescópio South Pole do National Science Foundation (NSF), em laranja, combinado com imagens no ultravioleta, em azul, e no óptico, em vermelho, verde e azul. A imagem de microondas fez uso do efeito Sunyaev-Zeldovich. Neste fenômeno, os fótons da radiação cósmica de fundo (CMB), a radiação remanescente após o Big Bang, interage com os elétrons no gás quente que permeia o aglomerado de galáxias. Os fótons adquirem energia a partir desta interação, o que distorce o sinal do CMB na direção do aglomerado.

O que está impedindo um grande número de estrelas de se formar no RX J1532?

A imagem no topo do observatório de raios X Chandra e do Karl G. Jansky Very Large Array (VLA) do NSF têm fornecido uma resposta para esta pergunta. A imagem de raios X mostra duas grandes cavidades no gás quente em ambos os lados da galáxia central. A imagem do Chandra foi especialmente processada para enfatizar as cavidades. Ambas estão alinhadas com jatos observados em imagens de rádio do VLA. A localização do buraco negro supermassivo entre as cavidades é muito evidente devido aos jatos supersônicos gerados por ele penetrando no gás quente, formando as cavidades.

Frentes de choque semelhante aos estrondos sônicos provocadas pelas cavidades em expansão e liberação de energia por ondas sonoras que reverberam através do gás quente fornecem uma fonte de calor que impede que a maior parte do gás se resfrie e forme novas estrelas.

As cavidades possuem cerca de 100.000 anos-luz de diâmetro, aproximadamente igual à largura da galáxia Via Láctea. A energia necessária para gerá-los está entre as maiores conhecidas em aglomerados de galáxias. Por exemplo, a energia é quase 10 vezes maior do que o necessário para criar as cavidades bem conhecidas em Perseu.

aglomerado Perseu

© Chandra (aglomerado Perseu)

Embora a energia para alimentar os jatos podem ter sido gerada pela matéria que cai em direção ao buraco negro, nenhuma emissão de raios X foi detectada. Este resultado pode ser explicado se o buraco negro é ultramassivo ao invés de supermassivo com uma massa mais de 10 bilhões de vezes a do Sol. Este buraco negro deve ser capaz de produzir poderosos jatos sem consumir grandes quantidades de massa, o que resulta em muito pouca radiação do material que cai para o interior.

Outra explicação possível é que o buraco negro tem uma massa apenas cerca de um bilhão de vezes a do Sol, mas está girando muito rapidamente. Esse buraco negro pode produzir jatos mais poderosos do que um buraco negro girando lentamente ao consumir a mesma quantidade de matéria. Em ambas as explicações o buraco negro é extremamente massivo.

A cavidade mais distante também é vista em um ângulo diferente em relação aos jatos, ao longo da direção norte-sul. Esta cavidade provavelmente tenha sido produzida por um jato de uma explosão muito mais antiga que o buraco negro. Isto levanta a questão de por que esta cavidade não está alinhada aos jatos. Existem duas explicações possíveis. Qualquer movimento em larga escala do gás no aglomerado levou-o para o lado ou o buraco negro está em precessão, ou seja, balançando como um pião.

Um artigo descrevendo o trabalho foi publicado no The Astrophysical Journal

Fonte: Space Telescope Science Institute

quinta-feira, 23 de janeiro de 2014

Detectado vapor de água no planeta anão Ceres

O observatório espacial Herschel descobriu vapor de água em torno do planeta anão Ceres.

ilustração do planeta anão Ceres 

© ESA (ilustração do planeta anão Ceres)

Pesquisadores acreditam há mais de 30 anos na existência de água em Ceres, mas é a primeira vez que a substância é registrada diretamente.

Ceres tem um diâmetro de 950 km e é o maior corpo do Cinturão de Asteroides, situado entre Marte e Júpiter, era considerado também como um asteroide, tornando-o o maior deles conhecido. A nova pesquisa indica que ele tem uma quantidade abundante de água; o planeta anão jorra seis quilos de vapor por segundo de sua superfície. A descoberta influencia diversas áreas de pesquisa, da origem da água e da vida na Terra, à formação e possível migração dos planetas gigantes gasosos.

Uma das questões afetadas é a de por que Ceres e outro asteroide gigante, chamado de Vesta, são tão próximos, mas tão diferentes?

Eles são grandes corpos que ficam no Cinturão de Asteroides, com distância similar do Sol, respectivamente, a 2,8 e 2,4 UA (unidades astronômicas). Contudo, a composição e aparência são bem diferentes. Vesta teve grande atividade vulcânica que cobriu sua superfície. Por outro lado, a superfície e o interior de Ceres não atingiram temperatura alta o suficiente para derreter rocha.

A água encontrada em Ceres, em uma quantidade muito maior do que pode existir em Vesta, pode ajudar a compor a resposta. O vapor tem grande capacidade de transportar calor. Os cientistas imaginam que a superfície seria coberta de gelo e este derreteria, acabaria no subterrâneo, e seria aquecido e jogado no espaço pelo calor do interior do planeta anão, dissipando o calor.

E por que Ceres tem tanta água e Vesta não?

A abundância indica que o primeiro se formou mais afastado do Sol, além da chamada "linha de neve", onde as temperaturas são suficientemente baixas para o líquido congelar. Essa hipótese levanta mais uma questão: por que, agora, os dois estão tão próximos?

A resposta pode estar na teoria da migração de planetas. Modelos indicam que Júpiter, muito antes de se estabelecer na posição atual, rumou pelo Sistema Solar diversas vezes. Ele já esteve mais longe do que está agora, mas também esteve mais perto do Sol do que hoje está Marte.

Essa migração do gigante gasoso influenciou diversos aspectos do nosso Sistema Solar, como a composição dos objetos do Cinturão de Asteroides. Essa migração teria arrastado junto outros objetos que compõem o Cinturão e explicaria o motivo de Ceres e Vesta serem tão parecidos, e tão diferentes. Além disso, esse movimento teria levado corpos menores, como asteroides e cometas, a colidir contra a Terra, e com eles teriam chegado água e moléculas por aqui, permitindo o surgimento de vida.

Outra possível conclusão com a descoberta é a de que cometas e asteroides são mais parecidos do que imaginávamos. Enquanto os cometas são pedras cobertas por uma grande quantidade de gelo, os asteroides são rochas secas. A observação de que Ceres tem uma superfície de água congelada pode mudar nossa visão sobre esses objetos.

Os cientistas afirmam que é necessária uma investigação mais completa do planeta anão, o que pode ser feito pela sonda Dawn da NASA que se aproxima de Ceres.

Fonte: Terra e Nature

Uma nova imagem da Nebulosa da Lagoa

O telescópio de rastreio do VLT (VST), situado no observatório do Paranal do ESO, no Chile, captou esta nova imagem detalhada da Nebulosa da Lagoa.

Nebulosa da Lagoa

© ESO (Nebulosa da Lagoa)

Esta nuvem gigante de gás e poeira, além de estar formando estrelas jovens intensamente brilhantes, alberga no seu interior enxames estelares jovens. A imagem é apenas uma pequeníssima fração de um dos onze rastreios públicos que estão sendo realizados pelos telescópios do ESO. No seu conjunto, estes telescópios estão obtendob uma vasta quantidade de dados, que vão sendo postos à disposição da comunidade astronômica do mundo inteiro.

A Nebulosa da Lagoa é um objeto intrigante que se situa a cerca de 5.000 anos-luz de distância na constelação do Sagitário. Também conhecida por Messier 8 (M8), trata-se de uma nuvem gigante com 100 anos-luz de dimensão, onde jovens estrelas estão se formando no âmbito de plumas de gás e poeira. Esta nova imagem com 16.000 pixels de largura obtida pelo VST, um dos dois telescópios dedicados a rastreios instalados no Observatório do Paranal. Uma versão com zoom da imagem permite explorar todos os pormenores deste objeto fascinante.
O VST não foi utilizado para observar a nebulosa da Lagoa de modo particular, no entanto este objeto fazia parte de um enorme rastreio para fotografar o céu chamado VPHAS+, que cobriu uma região muito maior da Via Láctea. O VPHAS+ é apenas um dos três rastreios para fotografar o céu no visível com o VST, trabalho que é complementado por seis rastreios efetuados no infravermelho pelo telescópio de rastreio VISTA.
Os ratreios pretendem abordar muitas questões importantes da astronomia moderna, incluindo a natureza da energia escura,  a procura de quasares brilhantes no Universo primordial, o estudo da estrutura da Via Láctea e busca de objetos invulgares e escondidos, o estudo das vizinhas Nuvens de Magalhães com grande pormenor, entre muitos outros assuntos. A história tem-nos mostrado que os rastreios descobrem normalmente objetos e/ou fenômenos inesperados e estas surpresas têm-se revelado fundamentais no progresso da investigação astronômica.
Além destes nove rastreios para fotografar o céu com o VISTA e o VST, estão igualmente em progresso dois outros levantamentos adicionais, que estão sendo executados com outros telescópios do ESO: o rastreio Gaia-ESO, que usa o Very Large Telescope no Paranal, para mapear as propriedades de mais de 100.000 estrelas da Via Láctea, e o PESSTO, que segue objetos transitórios, tais como supernovas, com o New Technology Telescope em La Silla.
Alguns destes rastreios começaram em 2010, enquanto outros são mais recentes, mas os dados de todos eles são agora de domínio público, encontrando-se acessíveis aos astrônomos do mundo inteiro através do arquivo do ESO.
Embora alguns destes rastreios ainda estejam decorrerendo, os dados recolhidos até agora estão permitindo aos astrônomos fazer muitas descobertas. Apenas alguns destes resultados incluem novos enxames estelares descobertos pelo rastreio VVV (eso1128, eso1141), o melhor mapa de sempre das regiões centrais da nossa Via Láctea (eso1242, eso1339), uma imagem muito profunda do céu no infravermelho (eso1213) e, muito recentemente, alguns dos mais distantes quasares descobertos até agora (rastreio VIKING do VISTA).
Os Rastreios Públicos do ESO continuarão ainda por muito anos e o seu legado astronômico perdurará por muitas e longas décadas.

Fonte: ESO

Supernova é descoberta na Galáxia do Charuto

Uma estrela que explodiu apareceu de maneira repentina no céu noturno, maravilhando os astrônomos que nunca haviam visto uma supernova tão perto do nosso Sistema Solar nos últimos 20 anos.

aparição da supernova na M82

© UCL (aparição da supernova na M82)

Nos últimos dias, uma supernova emergiu como uma luz brilhante na Messier 82 (M82), também conhecida como Galáxia do Charuto, localizada a aproximadamente 12 milhões de anos-luz de distância da Terra na direção da constelação de Ursa Maior. A supernova, que os astrônomos descreveram como um potencial Santo Graal para os cientistas, foi descoberta pela primeira vez, por estudantes no University College London.

Posicionada entre os asterismo Big Dipper e Little Dipper, a nova supernova é um alvo fácil para os observadores do Hemisfério Norte, ela é brilhante o suficiente para ser observada com um pequeno par de binóculos, disse o astrônomo Brad Tucker, da Australian National University e da Universidade da Califórnia, Berkeley.

Mas, além de criar um espetáculo observável, o evento cósmico também dá aos astrônomos uma rara oportunidade para estudar um objeto que pode ajudar a entender a energia escura.

A supernova, catalogada como SN 2014J, foi observada pela primeira vez no dia 21 de Janeiro de 2014 às 7:20 p.m. hora local, por um grupo de estudantes liderado por Steve Fossey no University College de Londres. O objeto pode ser a supernova mais próxima observada desde a intensa Supernova 1987A que foi registrada em Fevereiro de 1987 na Grande Nuvem de Magalhães, uma galáxia anã companheira da Via Láctea localizada a aproximadamente 168.000 anos-luz de distância da Terra.

Os astrônomos do Caltech confirmaram a supernova e classificaram como uma jovem e avermelhada supernova do Tipo Ia. Acredita-se que esses objetos se originem em sistemas binários próximos onde no mínimo, uma das estrelas é uma anã branca, ou seja, o pequeno e denso núcleo de uma estrela que parou de realizar suas reações nucleares. Se a anã branca arrancar muita massa de sua estrela companheira, uma reação nuclear começa dentro da estrela morta, levando à geração de uma brilhante supernova.

Pelo fato de se acreditar que as supernovas do Tipo Ia brilharem com a mesma intensidade nos seus picos, elas são usadas como “velas padrões” para medir as distâncias através do Universo. De fato, medidas cuidadosas das supernovas do Tipo conduziram à outorga do prêmio Nobel com a descoberta de que a expansão do Universo está na verdade acelerando.

Mas, para se aprender mais sobre a causa da aceleração, referente à energia escura há a necessidade de medidas mais precisas.

“Os dois grandes problemas em usar as supernovas do Tipo Ia como medidores de distância, são as progenitoras, o que a estrela que explodiu realmente é, e como a poeira afeta essas medidas”, explica Tucker. “Assim o fato dessa supernova ser do Tipo Ia, e jovem, significa que nós temos uma boa chance de encontrar pistas da sua explosão”.

O telescópio espacial Hubble também captou imagens detalhadas da Galáxia do Charuto antes da estrela ter explodido, o que significa que é possível ver diretamente a estrela em observações passadas. Além disso, essa é uma supernova avermelhada, significando que ocorreu num ambiente empoeirado, propiciando analisar como a poeira está impactando nas cores da supernova e assim medir a distância, servindo de parãmetro para calibrar outras supernovas.

O Central Bureau for Astronomical Telegrams da União Astronômica Internacional tem listado alguns dos sinais de supernova sob a designação temporária de PSN J09554214+6940260, começando com uma observação de 22 de Janeiro de 2014 feita por um grupo de astrônomos amadores na Rússia.

Imagens da supernova feitas com o telescópio robótico KAIT no Observatório Lick da Califórnia confirmam que o objeto não estava presente nas imagens recentes de 15 de Janeiro de 2014, significando que a supernova é muito recente.

Fonte: Space

quarta-feira, 22 de janeiro de 2014

Anã marrom fornece dados para o estudo de exoplanetas

Uma equipe de pesquisadores liderada por Justin R. Crepp da Universidade de Notre Dame em South Bend, Indiana, imageou diretamente um raro tipo de anã marrom que pode servir como base para estudar objetos com massa entre as estrelas e os planetas.

detecção de uma rara anã marrom

© J. R. Crepp (detecção de uma rara anã marrom)

Os dados iniciais foram obtidos do TaRgetting bENchmark-objects with Doppler Spectroscopy (TRENDS), instalado no Observatório W.M. Keck, em Mauna Kea, no Havaí. Uma pesquisa de alto contraste que usa óptica adaptativa e tecnologias relacionadas para observar objetos apagados e mais velhos orbitando estrelas próximas, e fazer medidas precisas. As anãs marrons emitem pouca luz, pois não queimam hidrogênio e esfriam rapidamente. Elas poderiam fornecer a integração entre o nosso entendimento das estrelas de pouca massa e os objetos menores como os planetas.

A HD 19467 B, uma anã-T, é a companheira apagada de uma estrela próxima, parecida com o Sol, que é mais de 100.000 vezes mais apagada do que sua companheira. Sua distância é conhecida com precisão, e a descoberta também permite estabelecer as fortes restrições para fatores importantes como a sua massa, órbita, idade e composição química sem a referência ao espectro de luz recebido da sua superfície.

As medidas precisas de velocidade radial foram obtidas usando o instrumento HIRES instalado no telescópio Keck I de 10 metros do Observatório Keck. As observações, duraram 17 anos, começando em 1996, e mostram a aceleração de longo prazo, indicando que a companheira de pouca massa estava sendo puxada pela estrela progenitora. Observações de acompanhamento com imageamento de alto contraste foram feitas então em 2012 usando o instrumento NIRC2 no telescópio Keck II com o sistema de óptica adaptativa revelando a estrela companheira como mostrado acima. As observações foram concedidas por cada um dos membros do consórcio do Observatório Keck, incluindo a NASA, o Instituto de Tecnologia da Califórnia e a Universidade da Califórnia.

Enquanto os cientistas entendem a luz recebida de estrelas relativamente bem, o espectro de planetas é complicado com pouca compreensão. Entender as anãs marrons, como a HD 19467 B, poderia ser um passo em direção ao completo entendimento dos exoplanetas.

A equipe de pesquisadores foi liderada por Justin R. Crepp, professor assistente de física na Universidade de Notre Dame (EUA), cuja descoberta foi publicada recentemente no Astrophysical Journal.

Fonte: Astronomy

terça-feira, 21 de janeiro de 2014

Os filamentos da teia cósmica são revelados por quasar

Astrônomos descobriram um quasar distante iluminando uma grande nebulosa de gás difuso, revelando, pela primeira vez, parte da rede de filamentos que pode conectar galáxias em uma teia cósmica.

quasar UM287

© UCSC/S. Cantalupo (quasar UM287)

As galáxias como a Via Láctea são formadas nos nós dessa rede, onde o gás frio e denso, o combustível para a formação das estrelas, afunila ao longo das intersecções dos filamentos. Mas testes diretos desse modelo anteriormente não tiveram sucesso, mesmo porque nos nós mais densos, o gás da teia cósmica é tão rarefeito que ele emite pouca luz, fazendo com que seja impossível imageá-lo mesmo com os maiores telescópios da Terra.

Agora, usando o telescópio Keck I de 10 metros do Observatório W. M. Keck, no Havaí, os pesquisadores detectaram uma grande nebulosa luminosa de gás que se estende cerca de 2 milhões de anos-luz através do espaço intergaláctico.

"Este é um objeto muito excepcional: é enorme, pelo menos duas vezes maior que qualquer nebulosa detectada antes, e se estende bem além do ambiente galáctico do quasar", disse o primeiro autor Sebastiano Cantalupo, um pós-doutorado na Universidade da Califórnia em Santa Cruz.

A imagem profunda acima mostra a nebulosa (em ciano) que foi descoberta em torno do quasar brilhante UM287 (no centro da nebulosa). A radiação energética do quasar faz com que gás intergaláctico circundante brilhe, revelando a morfologia e propriedades físicas de um filamento de teia cósmica. As simulações de computador sugerem que a matéria do Universo é distribuída em uma teia cósmica de filamentos, a partir de uma simulação em grande escala da matéria escura (a simulação Bolshoi, de Anatoly Klypin e Joel Primack). A imagem é de alta resolução com aumento de uma pequena parte da teia cósmica, com 10 milhões de anos-luz de diâmetro, de uma simulação que inclui gás e também matéria escura.

A intensa radiação de um quasar pode iluminar parte da teia cósmica circundante (em destaque na imagem abaixo) e fazer um filamento de gás brilhar, como foi observado no caso do quasar UM287.

teia cósmica

© A. Klypin e J. Primack (teia cósmica)

O modelo cosmológico padrão de formação de estruturas no Universo prevê que galáxias são incorporadas em uma teia cósmica de matéria, a maioria das quais, cerca de 84%, é a matéria escura invisível.

Esta rede é vista nos resultados de simulações de computador da evolução da estrutura do Universo, que mostram a distribuição da matéria escura em grandes escalas, incluindo os halos de matéria escura em que as galáxias se formam e a teia cósmica de filamentos que os conectam. A gravidade faz com que a matéria comum siga a distribuição da matéria escura, assim filamentos difusos e gás ionizado são esperados para esboçar um padrão semelhante ao observado em simulações de matéria escura.
Até agora, no entanto, esses filamentos nunca foram vistos. O gás intergaláctico foi detectado pela sua absorção de luz a partir de fontes luminosas ao fundo, mas os resultados não revelaram a forma como o gás é distribuído. Neste estudo, os pesquisadores detectaram o brilho fluorescente de gás hidrogênio resultante da sua iluminação por intensa radiação do quasar.

"Este quasar fornece uma visão fantástica para a estrutura global do nosso Universo", disse o co-autor J. Xavier Prochaska, professor de astronomia e astrofísica da Universidade da Califórnia em Santa Cruz.

O gás hidrogênio iluminado pelo quasar emite luz ultravioleta conhecida como radiação Lyman alfa. A distância do quasar é tão grande, cerca de 10 bilhões de anos-luz, que a luz emitida é "esticada" pela expansão do Universo a partir de um comprimento de onda ultravioleta invisível para um tom de violeta visível no momento em que chega ao telescópio Keck.

Sabendo a distância do quasar, os pesquisadores calcularam o comprimento de onda da radiação Lyman alfa daquela distância, com base na mudança de frequência doppler, e construiram um filtro especial para o espectrômetro Lris do telescópio para obter uma imagem deste comprimento de onda.

Um quasar é um tipo de núcleo galáctico ativo que emite intensa radiação alimentada por um buraco negro supermassivo no centro da galáxia. Em uma pesquisa anterior de quasares distantes usando a mesma técnica para procurar gás brilhante, Cantalupo e outros detectaram "galáxias escuras", os nós mais densos de gás na rede cósmica. Estas galáxias escuras são provavelmente muito pequenas ou muito jovens para ter estrelas formadas.

"As galáxias escuras são peças muito mais densas e menores da teia cósmica. Nesta nova imagem, vemos também galáxias escuras, além da nebulosa muito mais difusa e prolongada. Parte desse gás vai ser absorvidos pelas galáxias, mas a maior parte dele permanecerá difuso e nunca formarão estrelas", disse Cantalupo.

Os pesquisadores estimaram a quantidade de gás na nebulosa de ser pelo menos dez vezes mais do que o esperado a partir dos resultados de simulações de computador. "Achamos que pode haver mais gás contido em pequenos grupos densos dentro da teia cósmica do que é visto em nossos modelos. Estas observações estão desafiando nossa compreensão de gás intergaláctico e nos dando um novo laboratório para testar e refinar nossos modelos", disse Cantalupo.

Além de Cantalupo e Prochaska, os co-autores da pesquisa incluem Piero Madau, professor de astronomia e astrofísica da Universidade da Califórnia Santa Cruz, e Fabrizio Arrigoni-Battaia e Joseph Hennawi do Instituto Max Planck de Astronomia em Heidelberg, na Alemanha.

Fonte: Nature

Olhando através de uma lente gravitacional

Nessa nova imagem do Hubble, dois objetos são claramente visíveis, brilhando intensamente.

quasar QSO 0957+561

© Hubble (quasar QSO 0957+561)

Quando eles foram descobertos em 1979, acreditava-se que eles eram objetos separados, contudo, os astrônomos rapidamente perceberam que esses objetos gêmeos são muito idênticos. Eles estavam muito próximos, estavam localizados à mesma distância de nós e tinham surpreendentemente propriedades similares. A razão para eles serem tão similares não era uma bizarra coincidência, eles eram de fato o mesmo objeto.

Esses sósias cósmicos na verdade representam um objeto conhecido como um quasar duplo, denominado de QSO 0957+561, também conhecido popularmente como o Quasar Gêmeo, que localiza-se a cerca de 14 bilhões de anos-luz da Terra. Os quasares são os centros intensamente poderosos das galáxias distantes. Assim, por que nós observamos esse quasar em dupla?

Localizada a aproximadamente 4 bilhões de anos-luz da Terra, e diretamente em frente à nossa linha de visão está a imensa galáxia YGKOW G1. Essa galáxia foi a primeira lente gravitacional observada na história, um objeto com uma massa tão grande que pode distorcer a luz de objetos localizados atrás dela. Esse fenômeno não só permite que possamos ver objetos muito distantes, mas também em casos como esse que observamos tais objetos duas vezes.

Juntamente com o aglomerado de galáxias onde reside, a YGKOW G1 exerce uma enorme força gravitacional. Isso não afeta a forma da galáxia, as estrelas que formam e os objetos ao seu redor, isso afeta o espaço em que ela se localiza, dobrando e distorcendo o ambiente e produzindo efeitos bizarros como essa imagem dupla de um quasar.

Essa observação de uma lente gravitacional, a primeira desse tipo, significou mais do que apenas a descoberta de uma impressionante ilusão de óptica que permitiu que os telescópios como o Hubble pudessem efetivamente ver além da galáxia. Isso representou a evidência da Teoria da Relatividade Geral de Einstein. A teoria tinha identificado as lentes gravitacionais somente pelos seus efeitos observáveis, mas até essa observação nenhuma lente havia sido observada desde que a ideia havia sido proposta em 1936.

Fonte: ESA

segunda-feira, 20 de janeiro de 2014

Revelando uma bolha espacial na madrugada cósmica

A bolha gigante Himiko, em homenagem a uma lendária rainha do Japão antigo, é uma enorme galáxia com um halo gasoso brilhante e quente que se estende por 55 mil anos-luz.

ilustração de Himiko

© NAOJ (ilustração de Himiko)

Himiko está muito distante, vista em um momento cerca de 800 milhões de anos após o Big Bang, quando o Universo tinha apenas 6% do seu tamanho e as estrelas e as galáxias presentes estavam apenas começando a se formar. Himiko foi descoberta em 2009 por Masami Ouchi, professor associado  do Institute of Cosmic Ray Research da Universidade de Tóquio, usando o telescópio Subaru, no Mauna Kea, no Havaí.

Como poderia uma galáxia tão precoce possuir energia suficiente para alimentar uma vasta nuvem de gás brilhante?

Em busca de resposta, Richard Ellis, professor de astronomia do Instituto de Tecnologia da Califórnia, juntamente com colegas da Universidade de Tóquio e do Centro de Astrofísica Harvard-Smithsonian, empreendeu uma exploração de Himiko utilizando os recursos combinados do telescópio espacial Hubble e do Atacama Large Millimeter/submillimeter Array (ALMA) no deserto do Atacama, no Chile. Os dados recolhidos através destas observações respondeu à pergunta inicial sobre a fonte de energia que impulsiona Himiko, mas revelou alguns dados intrigantes também.
As imagens do Hubble, recebendo luz óptica e ultravioleta, revelaram três aglomerados estelares, cobrindo um espaço de 20.000 anos-luz. Cada amontoado é do tamanho de uma galáxia luminosa típica à época de Himiko. Juntos, os aglomerados atingem uma taxa prodigiosa de formação de estrelas, o equivalente a cerca de cem massas solares por ano. Isto é mais do que suficiente para explicar a existência de Himiko e seu halo gasoso. A observação dos três aglomerados estelares é extraordinária, pois significa que Himiko é uma "fusão tripla ", sendo um evento extremamente raro.

Mas uma anomalia surpreendente surgiu quando Himiko foi observada pelo ALMA. Embora a nuvem de gás gigante era agitada com energia nas frequências ultravioletas e ópticas, era comparativamente lenta na região do submilímetro e do rádio. Normalmente, intensa formação de estrelas cria nuvens de poeira que são compostas de elementos como carbono, oxigênio e silício, que são pesados ​​em comparação com o hidrogênio e hélio da fase inicial do Universo. Quando essas nuvens de poeira são aquecidas pela luz ultravioleta emitida pelas estrelas em desenvolvimento, a poeira reemite a luz ultravioleta para o Universo em comprimentos de onda de rádio. Mas o ALMA não recebeu sinais de rádio significativos de Himiko, sugerindo que elementos mais pesados ​​não estão presentes. Também faltou a assinatura espectral associada à emissão de carbono gasoso, algo também comum em galáxias com formação estelar intensa. A intensidade da emissão de rádio de gases de carbono é mais de 30 vezes mais fraca do que as galáxias atuais, com atividades de formação de estrelas comparáveis.

Ambas não detecções, de ondas de rádio e de gases de carbono, são desconcertantes, uma vez que o carbono é normalmente rapidamente sintetizado em estrelas jovens. De fato, a emissão de carbono tem sido até então recomendada como um marcador de formação de estrelas em galáxias distantes. Mas, como Ellis e seus colegas astrônomos descobriram, a Himiko não contém as nuvens de poeira de elementos mais pesados ​​encontradas em galáxias energéticas típicas. Em vez disso, seu gás interestelar é composta de hidrogênio e hélio, materiais primitivos formados no próprio Big Bang.

A equipe de pesquisadores não chegou a essa conclusão rapidamente. Eles primeiro cuidadosamente descartaram várias outras explicações possíveis para Himiko, incluindo que a bolha gigante está sendo criada pela ampliação de um objeto em primeiro plano por um fenômeno conhecido como lente gravitacional, ou está sendo alimentada por um buraco negro maciço em seu centro. Em última análise, a equipe concluiu que Himiko é provavelmente uma galáxia primordial capturada no momento de sua formação entre 400 a 1.000 milhões anos após o Big Bang.

imagem composta de Himiko

© Hubble/Subaru/Spitzer (imagem composta de Himiko)

Na imagem acima o painel esquerdo mostra o campo em torno de Himiko como visto pelo Hubble: a posição de Himiko é marcada com um quadrado. Os painéis da direita mostram a imagem do Hubble (em cima) e uma combinação de imagens do Hubble, Subaru, e do Spitzer (em baixo). Na imagem do Hubble, a luz infravermelha captada pela Wide Field Camera 3 em 0,98, 1,25 e 1,6 microns é mostrado em azul, verde e vermelho, respectivamente. Na imagem do Hubble, Subaru e Spitzer, é uma combinação de três bandas no infravermelho do Hubble, em verde, a emissão Lyman alfa capturada pela Suprime-Cam do Subaru, em azul,  e no infravermelho em 3,6 mícron feita pela Infrared Array Camera do Spitzer, em vermelho.

As imagens do Hubble revelaram três aglomerados estelares alinhados ao longo de 20 mil anos-luz. A nuvem gigantesca de hidrogênio engloba os três aglomerados. Nenhum núcleo brilhante é encontrado, descartando a possibilidade de que Himiko é alimentada por um buraco negro supermassivo. Ao combinar os dados do Hubble e do telescópio espacial Spitzer, os astrônomos revelaram a formação estelar intensa na Himiko.

Como resultado, os astrônomos especulam que Himiko poderia ser composta de gás primordial, uma mistura de elementos leves de hidrogênio e hélio criados no Big Bang. Se estiver correta, isto seria uma descoberta marcante da detecção de uma galáxia primordial vista durante a sua formação, quando o Universo era banhado pela primeira vez pela luz das estrelas.

O artigo que apresenta os resultados desta pesquisa, intitulado "An Intensely Star-Forming Galaxy at Z~7 with Low Dust and Metal Content Revealed by Deep ALMA and HST Observations," foi publicado no Astrophysical Journal.

Fonte: Universidade de Tóquio

domingo, 19 de janeiro de 2014

Galáxias espirais em colisão

Daqui a bilhões de anos, apenas uma dessas duas galáxias permanecerá.

galáxias NGC 2207 e IC 2163

© Debra Meloy Elmegreen/Hubble (galáxias NGC 2207 e IC 2163)

Até lá, as galáxias espirais NGC 2207 e IC 2163 estarão sendo mutuamente atraídas gravitacionalmente, criando ondas de matéria, camadas de gás aquecido, faixas de poeira escura, explosões na formação de estrelas e fluxos estelares.

Astrônomos preveem que a NGC 2207, a galáxia maior, à esquerda, acabará por incorporar a IC 2163, a galáxia menor à direita. No encontro mais recente, que aconteceu a cerca de 40 milhões de anos atrás, a galáxia menor está oscilando em sentido anti-horário, e está agora um pouco atrás da galáxia maior. O espaço entre as estrelas é tão vasto que, quando as galáxias se aproximarem, as estrelas normalmente não se colidirão.

Fonte: NASA