terça-feira, 5 de junho de 2018

Fluxo de gás dos núcleos de buracos negros supermassivos de galáxia

Os buracos negros supermassivos nos núcleos da maioria das galáxias, incluindo a Via Láctea, se desenvolvem gradualmente à medida que o material se acumula no buraco negro primordial.

Markarian 348

© NASA/GALEX (Markarian 348)

Os processos físicos que impulsionam este crescimento (alimentação e feedback) ocorrem nas proximidades do núcleo da galáxia. Quando a acreção se torna ativa, é emitida radiação que ilumina e ioniza o gás na vizinhança do núcleo. Os ventos no disco de acreção podem interagir com o gás para produzir gás de saída que é observado atingindo velocidades de centenas de km/s. Os jatos relativísticos de partículas que emanam do buraco negro também podem interagir com seu material. Estes vários tipos de feedback são essenciais para evitar a produção de galáxias excessivamente massivas.

Evidências claras para todos estes processos foram detectadas em suas linhas de emissão óptica de átomos ionizados, cujas velocidades podem ser medidas. No entanto, tem sido muito difícil obter informações espaciais sobre a geometria do gás excitado. O astrônomo da Harvard-Smithsonian Center for Astrophysics (CfA), Martin Elvis, e nove colegas usaram o telescópio Gemini de oito metros e um novo instrumento poderoso que registra informações espaciais de alta resolução (tão pequenas quanto algumas centenas de anos-luz) e velocidade.

A equipe estudou cinco galáxias relativamente próximas, conhecidas por possuírem núcleos de buracos negros ativos com emissão atômica brilhante. Eles descobriram que, em todos os casos, o gás tem dois componentes principais, um girando e outro em fluxo. Mas, de outro modo, as galáxias são um pouco diferentes: em uma delas o gás gira em direção oposta às suas estrelas, em outro apenas um lobo da vazão pode ser visto, e existem outras diferenças também. Este estudo é apenas o primeiro de uma série que deve analisar e modelar em detalhes como os buracos negros nucleares crescem.

Fonte: Harvard-Smithsonian Center for Astrophysics

segunda-feira, 4 de junho de 2018

Descoberto excesso de estrelas massivas em galáxias

Com o auxílio do ALMA e do VLT do ESO, astrônomos descobriram que, tanto galáxias com formação estelar explosiva do Universo primordial, como uma região de formação estelar situada numa galáxia próxima, contêm uma proporção de estrelas massivas muito maior do que a encontrada em galáxias mais calmas.

ilustração de uma galáxia empoeirada com formação estelar explosiva

© ESO/M. Kornmesser (ilustração de uma galáxia empoeirada com formação estelar explosiva)

Esta descoberta desafia as atuais teorias de evolução galática, alterando o nosso conhecimento da história da formação estelar cósmica e da formação contínua de elementos químicos.

No intuito de estudar o Universo longínquo, uma equipe de cientistas liderada pelo astrônomo Zhi-Yu Zhang, da Universidade de Edimburgo, utilizou o Atacama Large Millimeter/submillimeter Array (ALMA) para analisar a proporção de estrelas massivas em quatro galáxias distantes ricas em gás com formação estelar explosiva. Observamos estas galáxias quando o Universo era muito mais jovem do que atualmente, o que significa que, muito provavelmente, estes objetos muito jovens ainda não sofreram muitos episódios de formação estelar anteriores. Se não fosse este o caso, os resultados poderiam estar comprometidos.

Zhang e a sua equipe desenvolveram uma nova técnica, semelhante à datação por carbono radioativo (14C), para medir as abundâncias de diferentes tipos de monóxido de carbono em quatro galáxias muito distantes envoltas em poeira e com formação estelar explosiva. A equipe observou a razão entre dois tipos de monóxido de carbono que contêm diferentes isótopos.

O método de datação por carbono radioativo é usado para determinar a idade de um objeto que contém matéria orgânica. Ao medirmos a quantidade de carbono 14C, um isótopo radioativo cuja abundância decresce continuamente, podemos calcular quando o respectivo animal ou planta morreram. Os isótopos usados no estudo efetuado com dados obtidos pelo ALMA, 13C e 18O, são estáveis e as suas abundâncias aumentam de forma contínua durante o tempo de vida de uma galáxia, uma vez que estes isótopos são sintetizados pelas reações de fusão termonuclear que ocorrem no interior das estrelas.

Os isótopos de carbono e de oxigênio têm origens diferentes. O 18O é produzido predominantemente em estrelas massivas, enquanto o 13C é mais produzido em estrelas de massa pequena ou intermediária. Graças à nova técnica, a equipe foi capaz de observar por trás da poeira destas galáxias e determinar pela primeira vez a massa das suas estrelas.

A massa de uma estrela é o fator mais importante para determinar a sua evolução. As estrelas massivas brilham intensamente e têm vidas curtas, enquanto que as estrelas menos massivas, como o Sol, brilham de forma mais modesta durante bilhões de anos. Assim, ao sabermos as proporções de estrelas com massas diferentes que se formam nas galáxias, podemos compreender melhor a formação e evolução das galáxias ao longo da história do Universo, o que, por sua vez, nos dá informação valiosa sobre os elementos químicos disponíveis para formar novas estrelas e planetas e, por fim, o número de “sementes” de buracos negros que podem coalescer para formar os buracos negros supermassivos que vemos no centro de muitas galáxias.

A razão de 18O para 13C medida foi cerca de 10 vezes maior nestas galáxias com formação estelar explosiva existentes no Universo primordial do que em galáxias como a Via Láctea, o que significa que existe uma proporção muito maior de estrelas massivas no interior destas galáxias.

Estes resultados obtidos com o ALMA são consistentes com outra descoberta no Universo local. Com o auxílio do Very Large Telescope  (VLT) e com o intuito de investigar a distribuição geral de idades estelares e massas iniciais, uma equipe liderada por Fabian Schneider, da Universidade de Oxford, obteve medições espectroscópicas de 800 estrelas situadas na enorme região de formação estelar 30 Doradus, na Grande Nuvem de Magalhães.

Schneider explica: “Descobrimos cerca de 30% mais estrelas com massas superiores a 30 vezes a do Sol do que o esperado e cerca de 70% mais do que as esperadas com massas superiores a 60 massas solares. Os nossos resultados desafiam o limite anteriormente previsto de 150 massas solares para a massa inicial máxima das estrelas e sugerem ainda que as estrelas se podem formar com massas superiores a 300 massas solares!”

Rob Ivison, co-autor do novo artigo científico baseado nos dados ALMA, conclui: “Os nossos resultados levam-nos a questionar a nossa compreensão da história cósmica. Os astrônomos que constroem modelos do Universo têm que voltar ao ponto de partida e usar modelos ainda mais sofisticados.”

Os resultados do ALMA foram descritos no artigo científico intitulado “Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time” de Zhang et al., que foi publicado hoje na revista Nature. Os resultados do VLT foram descritos no artigo científico intitulado “An excess of massive stars in the local 30 Doradus starburst” de Schneider et al., que foi publicado na revista Science em 5 de Janeiro de 2018.

Fonte: ESO

Ondulação de filamentos azuis brilhantes

Uma ondulação de filamentos azuis brilhantes fluem através desta galáxia como um lago disforme.

Threads of blue

© Hubble (IC 4870)

O primeiro plano desta imagem está repleto de estrelas próximas com seus picos de difração reluzentes. Um olho aguçado também pode detectar algumas outras galáxias que, embora disfarçadas de estrelas à primeira vista, revelam sua verdadeira natureza em uma inspeção mais próxima.

A galáxia central com listras coloridas, a IC 4870, foi descoberta por DeLisle Stewart em 1900 e está localizada a aproximadamente 28 milhões de anos-luz de distância da Terra. Ela contém um núcleo galáctico ativo (AGN): uma região central extremamente luminosa que pode ofuscar o resto da galáxia. Os AGNs emitem radiação em todo o espectro eletromagnético, desde as ondas de rádio até os raios gama, produzidos pela ação de um buraco negro supermassivo central que devora o material se aproximando demais dele. A IC 4870 também é uma galáxia Seyfert, um tipo particular de AGN com linhas de emissão características.

A IC 4870 foi projetada pelo telescópio espacial Hubble para vários estudos de galáxias ativas próximas. Usando o Hubble para explorar as estruturas em pequena escala do AGN em galáxias próximas, os astrônomos podem observar os traços de colisões e fusões, barras galácticas centrais, explosões nucleares, jatos ou vazões, e outras interações entre um núcleo galáctico e seu ambiente circundante. Imagens como esta podem ajudar os astrônomos a entender mais sobre a verdadeira natureza das galáxias que vemos em todo o cosmos.

Fonte: ESA

Evento de ondas gravitacionais sinalizou a criação de um buraco negro

A espetacular fusão de duas estrelas de nêutrons que geraram ondas gravitacionais anunciadas no ano passado provavelmente fez outra coisa: o nascimento de um buraco negro.

ilustração da fusão de duas estrelas de nêutrons

© NASA/CXC/M.Weiss (ilustração da fusão de duas estrelas de nêutrons)

Este buraco negro recém-gerado seria o buraco negro de menor massa já encontrado.

Um novo estudo analisou dados do observatório de raios X Chandra da NASA realizados após a detecção de ondas gravitacionais pelo Laser Interferometer Gravitational Wave Observatory (LIGO) e raios gama pela missão Fermi da NASA em 17 de agosto de 2017.

Enquanto quase todos os telescópios à disposição dos astrônomos profissionais observaram esta fonte, conhecida oficialmente como GW170817, os raios X do Chandra são críticos para entender o que aconteceu depois que as duas estrelas de nêutrons colidiram.

A partir dos dados do LIGO, os astrônomos têm uma boa estimativa de que a massa do objeto resultante da fusão de estrelas de nêutrons é cerca de 2,7 vezes a massa do Sol. Isto coloca-o numa corda bamba de identidade, implicando que seja a estrela de nêutrons mais massiva ou o buraco negro de massa mais baixo nunca encontrados. Os detentores anteriores de recordes para este último não são menos que quatro ou cinco vezes a massa do Sol.

Se as estrelas de nêutrons se fundissem e formassem uma estrela de nêutrons mais pesada, então seria esperado que ela girasse rapidamente e gerasse um campo magnético muito forte. Isso, por sua vez, teria criado uma bolha expansiva de partículas de alta energia que resultaria em emissão de raios X brilhante. Em vez disso, os dados do Chandra mostram níveis de raios X que são um fator de algumas centenas de vezes menor do que o esperado para uma estrela de nêutrons fundida e girando rapidamente e a bolha associada de partículas de alta energia, sugerindo um buraco negro.

Se confirmado, este resultado mostra que uma receita para fazer um buraco negro às vezes pode ser complicada. No caso de GW170817, seriam necessárias duas explosões de supernovas que deixassem para trás duas estrelas de nêutrons em uma órbita suficientemente rígida para a radiação de ondas gravitacionais unir as estrelas de nêutrons.

"Podemos ter respondido a uma das perguntas mais básicas sobre esse evento deslumbrante: o que ele fez?", Disse o co-autor Pawan Kumar, da Universidade do Texas, em Austin. "Há muito tempo os astrônomos suspeitavam que as fusões de estrelas de nêutrons formariam um buraco negro e produziriam explosões de radiação, mas não tínhamos uma forte razão para isso até agora."

Uma observação dois a três dias após o evento pelo Chandra não conseguiu detectar uma fonte, mas as observações subsequentes 9, 15 e 16 dias após o evento, resultaram em detecções. A fonte foi bloqueada pelo Sol logo depois, mas mais brilho foi visto nas observações do Chandra cerca de 110 dias após o evento, seguido por uma intensidade de raios X comparável após cerca de 160 dias.

Ao comparar as observações do Chandra com as do Very Large Array (VLA) Karl G. Jansky, astrônomos explicam que a emissão de raios X observada é devida inteiramente à onda de choque, semelhante a um estrondo sônico de um avião supersônico, da fusão esmagando o gás circundante. Não há sinal de raios X resultante de uma estrela de nêutrons.

As observações poderão ser testadas por futuras observações de rádio. Se o remanescente for uma estrela de nêutrons com um forte campo magnético, então a fonte deve ficar muito mais brilhante em comprimentos de onda de raios X e rádio em cerca de dois anos, quando a bolha de partículas de alta energia alcançar a desaceleração da onda de choque. Se é realmente um buraco negro, os astrônomos esperam que ele continue se tornando mais fraco, o que foi recentemente observado à medida que a onda de choque enfraquece.

Se as observações subsequentes descobrirem que uma estrela de nêutrons pesada sobreviveu, tal descoberta desafiaria as teorias para a estrutura das estrelas de nêutrons e quão massivas elas podem chegar.

Um artigo descrevendo este resultado aparece na última edição do The Astrophysical Journal Letters.

Fonte: Harvard-Smithsonian Center for Astrophysics

sexta-feira, 1 de junho de 2018

Descoberta uma das mais massivas estrelas de nêutrons

Usando um método pioneiro, pesquisadores do Grupo de Astronomia e Astrofísica da Universidade Politécnica da Catalunha e do Instituto de Astrofísica das Ilhas Canárias encontraram uma estrela de nêutrons mais massiva já detectada.

ilustração do sistema binário PSR J2215 5135

© IAC/G. Pérez-Díaz (ilustração do sistema binário PSR J2215+5135)

O estudo abre um novo caminho de conhecimento em muitos campos da astrofísica e da física nuclear.

As estrelas de nêutrons (frequentemente chamadas pulsares) são remanescentes estelares que atingiram o final da sua vida evolutiva: resultam da morte de uma estrela com 10 a 30 vezes a massa do Sol. Apesar do seu pequeno tamanho (cerca de 20 km em diâmetro), as estrelas de nêutrons têm mais massa do que o Sol, por isso são extremamente densas.

Os pesquisadores usaram um método inovador para medir a massa de uma das mais pesadas estrelas de nêutrons conhecidas até ao momento. Descoberta em 2011 e com o nome PSR J2215+5135, tem mais ou menos 2,3 massas solares e é uma das mais massivas das mais de 2.000 estrelas de nêutrons conhecidas até à data. Embora um estudo publicado em 2011 tenha relatado evidências de uma estrela de nêutrons com 2,4 massas solares, as estrelas de nêutrons mais massivas que anteriormente haviam alcançado um consenso entre os cientistas, relatadas em 2010 e 2013, têm duas vezes a massa do Sol.

O estudo foi liderado por Manuel Linares, pesquisador do Grupo de Astronomia e Astrofísica, ligado ao Departamento de Física da Universidade Politécnica da Catalunha, em colaboração com os astrônomos Tariq Shahbaz e Jorge Casares do Instituto de Astrofísica da Ilhas Canárias. Os cientistas usaram dados obtidos pelo GTC (Gran Telescopio Canarias), o maior telescópio ótico e infravermelho do mundo, o WHT (William Herschel Telescope), o ING (Isaac Newton Telescope Group) e o telescópio IAC-80, em combinação com modelos dinâmicos de estrelas binárias com irradiação.

A equipe desenvolveu um método mais preciso do que os usados até agora para medir a massa de estrelas de nêutrons em binários compactos. O PSR J2215+5135 faz parte de um sistema binário. A estrela secundária ou companheira é fortemente irradiada pela estrela de nêutrons.

Quanto mais massiva é a estrela de nêutrons, mais rápida a estrela companheira se move na sua órbita. O novo método utiliza linhas espectrais de hidrogênio e magnésio para medir a velocidade com que a estrela companheira se move. Isso permitiu que a equipe liderada por Manuel Linares medisse, pela primeira vez, a velocidade de ambos os lados da estrela companheira (o lado irradiado e o lado sombreado) e mostrasse que a estrela de nêutrons pode ter mais do dobro da massa do Sol.

Este novo método também pode ser aplicado ao resto desta crescente população de estrelas de nêutrons: ao longo dos últimos 10 anos, o telescópio de raios gama Fermi-LAT da NASA revelou dúzias de pulsares parecidos com o PSR J2215+5135. Em princípio, o método também pode ser usado para medir a massa de buracos negros e anãs brancas (remanescentes de estrelas que morrem com mais de 30 ou menos de 10 massas solares, respetivamente) quando localizados em sistemas binários similares nos quais a irradiação é importante.

Ser capaz de determinar a massa máxima de uma estrela de nêutrons tem consequências muito importantes para bastantes campos da astrofísica, bem como para a física nuclear. As interações entre os núcleos (nêutrons e os prótons) a altas densidades são dos maiores mistérios da física atual. As estrelas de nêutrons são um laboratório natural para estudar os estados de matéria mais densos e exóticos que podem ser imaginados.

Os resultados do projeto também sugerem que, para suportar a massa de 2,3 sóis, a repulsão entre as partículas no núcleo da estrela de nêutrons deve ser suficientemente forte. Isto indicaria que é improvável que encontremos quarks livres ou outras formas exóticas de matéria no centro da estrela de nêutrons.

O estudo foi publicado na revista The Astrophysical Journal.

Fonte: Instituto de Astrofísica de Canarias

Luas distantes podem abrigar vida

Pesquisadores da Universidade da Califórnia em Riverside e da Universidade do Sul de Queensland (Austrália) identificaram mais de 100 planetas gigantes que potencialmente hospedam luas capazes de suportar vida.

ilustração de um planeta e sua lua

© J. Friedlander/B. Griswold (ilustração de um planeta e sua lua)

Este trabalho guiará o projeto de futuros telescópios capazes de detectar estas potenciais luas e procurar sinais de vida nas suas atmosferas.

Desde o lançamento do telescópio Kepler da NASA, em 2009, os cientistas identificaram milhares de planetas localizados além do nosso Sistema Solar, chamados exoplanetas. Um dos principais objetivos da missão Kepler era o de identificar os planetas que estão nas zonas habitáveis das suas estrelas, o que significa que não são muito quentes nem muito frios para a existência de água líquida, e potencialmente a vida.

Os planetas terrestres (rochosos) são os principais alvos na busca da vida, porque alguns deles podem ser geologicamente ou atmosfericamente semelhantes à Terra. Outro lugar para procurar são os muitos gigantes gasosos identificados durante a missão Kepler. Embora não sejam candidatos a abrigar vida, os planetas parecidos com Júpiter, situados na zona habitável, podem acolher luas rochosas, ou exoluas, que podem sustentar vida.

Atualmente, existem 175 luas conhecidas em órbita dos oito planetas do nosso Sistema Solar. Embora a maioria destas luas orbitem Júpiter e Saturno, que estão fora da zona habitável do Sol, tal pode não ser o caso em outros sistemas solares.

"A inclusão de exoluas rochosas na nossa procura por vida no espaço expandirá muito os lugares que podemos examinar," comenta Stephen Kane, professor associado de astrofísica planetária e membro do Centro de Astrobiologia de Terras Alternativas da Universidade da Califórnia em Riverside.

Os cientistas identificaram 121 planetas gigantes que têm órbitas situadas nas zonas habitáveis das suas estrelas. Com mais de três vezes o raio da Terra, estes planetas gasosos são menos comuns do que os planetas terrestres, mas espera-se que cada um deles abrigue várias luas grandes.

Os cientistas especularam que as exoluas possam proporcionar um ambiente favorável à vida, talvez até melhor do que a Terra. Isto porque recebem energia não só da sua estrela, mas também da radiação refletida pelo seu planeta. Até agora, nenhuma exolua foi confirmada.

"Agora que criamos uma base de dados dos planetas gigantes conhecidos na zona habitável da sua estrela, serão feitas observações dos melhores candidatos a hospedar potenciais exoluas a fim de ajudar a refinar as propriedades esperadas das exoluas. Os nossos estudos de seguimento vão ajudar a informar os futuros projetos de telescópios, para que possamos detectar estas luas, estudar as suas propriedades e procurar sinais de vida," comenta Michelle Hill, estudante da Universidade do Sul de Queensland.

Um artigo foi publicado na revista The Astrophysical Journal.

Fonte: University of California

quarta-feira, 30 de maio de 2018

Uma vizinhança superlotada em torno da Nebulosa da Tarântula

Brilhando intensamente a cerca de 160.000 anos-luz de distância da Terra, a Nebulosa da Tarântula é a estrutura mais impressionante da Grande Nuvem de Magalhães, uma galáxia satélite da nossa Via Láctea.

região em torno da Nebulosa da Tarântula

© ESO/VST (região em torno da Nebulosa da Tarântula)

O telescópio de rastreio VLT Survey Telescope (VST), instalado no Observatório do Paranal do ESO, no Chile, observou esta região e os seus arredores ricos com extremo detalhe, revelando uma paisagem cósmica de aglomerados de estrelas, nuvens de gás brilhante e restos espalhados de explosões de supernovas. Trata-se da imagem mais nítida obtida até hoje de toda a região.

Aproveitando as capacidades do VST, astrônomos captaram esta nova imagem muito detalhada da Nebulosa da Tarântula e dos seus numerosos aglomerados estelares e nebulosas vizinhas. A Tarântula, também conhecida por 30 Doradus, é a região de formação estelar mais brilhante e energética do Grupo Local de galáxias.

A Nebulosa da Tarântula, no alto da imagem, tem uma dimensão de mais de 1.000 anos-luz e situa-se na direção da constelação do Dourado, no céu austral. Esta bela nebulosa faz parte da Grande Nuvem de Magalhães, uma galáxia anã com 14.000 anos-luz de dimensão. A Grande Nuvem de Magalhães é a terceira galáxia mais próxima da Via Láctea, depois da Galáxia Elíptica Anã de Sagitário e da Galáxia Anã de Cão Maior.

No núcleo da Nebulosa da Tarântula situa-se um jovem aglomerado estelar gigante chamado NGC 2070, uma região com formação explosiva de estrelas cujo núcleo denso, R136, contém algumas das estrelas mais massivas e luminosas que se conhecem. O intenso brilho da Nebulosa da Tarântula foi inicialmente observado e anotado pelo astrônomo francês Nicolas-Louis de Lacaille em 1751.

Outro aglomerado estelar na Nebulosa da Tarântula é o muito mais antigo Hodge 301, no qual se estima que pelo menos 40 estrelas tenham explodido sob a forma de supernovas, liberando gás para a região. Outro exemplo de um resto de supernova é a superbolha SNR N157B, que envolve o aglomerado estelar aberto NGC 2060. Este aglomerado foi inicialmente observado pelo astrônomo britânico John Herschel em 1836, usando um telescópio refletor de 18,6 polegadas no Cabo da Boa Esperança, África do Sul. Na periferia da Nebulosa da Tarântula, embaixo à direita, podemos ver a localização da famosa supernova SN 1987A. A SN 1987A foi a primeira supernova a ser observada com telescópios modernos desde a Estrela de Kepler de 1604. A SN 1987A brilhou intensamente com o poder de 100 milhões de sóis durante vários meses após a sua descoberta em 23 de Fevereiro de 1987.

Deslocando-nos para o lado esquerda da Nebulosa da Tarântula, podemos ver ainda o brilhante aglomerado estelar aberto chamado NGC 2100, que mostra uma concentração brilhante de estrelas azuis rodeadas por estrelas vermelhas. Este aglomerado foi descoberto pelo astrônomo escocês James Dunlop em 1826, quando trabalhava na Austrália, usando um telescópio refletor de 23 cm construído por ele próprio.

No centro da imagem encontra-se o aglomerado estelar e nebulosa de emissão NGC 2074, outra região de formação de estrelas massivas descoberta por John Herschel. Olhando com mais atenção, podemos observar uma estrutura escura de poeira com uma forma semelhante a um cavalo marinho, o “Cavalo Marinho da Grande Nuvem de Magalhães”. Esta gigantesca estrutura em forma de pilar tem cerca de 20 anos-luz de dimensão, quase cinco vezes a distância entre o Sol e a sua estrela mais próxima, Alfa Centauri. Esta estrutura está condenada a desaparecer nos próximos milhões de anos, já que, à medida que mais estrelas se formam no aglomerado, a sua luz e ventos vão varrendo lentamente os pilares de poeira.

A obtenção desta imagem foi possível graças à câmera especial de 256 milhões de pixels do VST, a OmegaCAM. A imagem foi criada a partir de dados obtidos por esta câmera através de quatro filtros de cor diferentes, incluindo um concebido para isolar o brilho vermelho do hidrogênio ionizado.

A linha de emissão de H-alfa é uma linha espectral vermelha que se forma quando o elétron no interior do átomo de hidrogênio perde energia. Este fenômeno ocorre no hidrogênio ao redor de estrelas quentes jovens, quando este gás se ioniza por efeito da intensa radiação ultravioleta e subsequentemente os elétrons se recombinam com os prótons para formar novamente átomos. A capacidade da OmegaCAM em detectar esta linha espectral permite aos astrônomos caracterizar a física de nuvens moleculares gigantes onde se formam novas estrelas e planetas.

Fonte: ESO

terça-feira, 29 de maio de 2018

Uma lupa para um pulsar

Em um sistema a 6.500 anos-luz de distância, um pulsar e uma anã marrom dançam chicoteando um ao outro a cada nove horas.

ilustração do pulsar e anã marrom

© Mark A. Garlick (ilustração do pulsar e anã marrom)

A dança deles não vai durar, além de seu feixe de ondas de rádio como um farol, o pulsar PSR B1957+20 está emitindo um vento feroz de partículas que lentamente explodem seu companheiro. Por essa razão, o pulsar ganhou o nome de “viúva negra”, ou seja, espécies de aranha que comem seu parceiro.

Mas antes que a refeição esteja completa, a anã marrom tem algo a nos oferecer: uma lupa que expõe o pulsar em detalhes incríveis.

O sistema inteiro é minúsculo: a anã marrom é do tamanho de Júpiter e o pulsar é apenas do tamanho de uma cidade pequena; a distância que os separa é aproximadamente cinco vezes a distância entre a Terra e a Lua. Do ponto de vista da Terra, a anã marrom é grande o suficiente para eclipsar o pulsar por 40 minutos toda vez que eles circulam um ao outro.

É esta geometria afortunada que dá à anã marrom seu poder de ampliação. O casulo de plasma ao redor da anã marrom tem um efeito de concentrar o feixe do farol do pulsar, quando tudo está alinhado, nota-se o pulso de ondas de rádio passando pelo plasma, que concentra a radiação.

Não era óbvio que isso deveria acontecer. Mas, em 2014, Robert Main (Universidade de Toronto) e seus colegas observaram uma órbita completa de 9,2 horas usando o telescópio de 305 metros William E. Gordon no Observatório de Arecibo. Pouco antes e logo após cada eclipse do pulsar, eles notaram a emissão dos pulsos de rádio. Além disso, os pulsos se iluminaram de maneiras diferentes em frequências diferentes, exatamente como esperado para um evento de lente.

  A emissão dos dois polos do pulsar não é amplificada igualmente. Há momentos em que a emissão de um polo é grandemente aumentada, enquanto o outro não é afetado. Em outras palavras, a "lente" gasosa ao redor da anã marrom às vezes aumentava a emissão do polo norte do pulsar e às vezes do seu polo sul, resolvendo duas áreas de emissão a apenas 10 km além de 6.500 anos-luz de distância. Isso equivale a decifrar uma pulga na superfície de Plutão usando telescópios baseados na Terra.

Esta não é a primeira vez que os astrônomos viram as lentes de plasma. Outros exemplos incluem quasares distantes e o pulsar da Nebulosa do Caranguejo. No entanto, levou 30 anos entre a descoberta do PSR B1957+20 e a detecção de suas lentes. Tudo se resume ao aumento do poder de computação que permitiu aos astrônomos examinar as mudanças nas escalas de microssegundos em várias frequências de rádio.

Os pulsares são usados para iluminar o Universo invisível!

Os resultados foram divulgados na revista Nature.

Fonte: Sky & Telescope

segunda-feira, 28 de maio de 2018

Hubble mostra o Universo local em ultravioleta

Usando a nitidez incomparável e as capacidades de observação ultravioleta do telescópio espacial Hubble, uma equipe internacional de astrônomos criou o mais abrangente levantamento de luz ultravioleta de alta resolução de galáxias em formação de estrelas no Universo local.

NGC 6744

© Hubble/LEGUS (NGC 6744)

A luz ultravioleta é um dos principais marcadores das estrelas mais jovens e mais quentes. Estas estrelas são de curta duração e intensamente brilhantes. Os astrônomos concluíram agora um inquérito chamado LEGUS (Legacy ExtraGalactic UV Survey) que captou os detalhes de 50 galáxias locais num raio de 60 milhões de anos-luz da Terra, tanto na luz visível como na ultravioleta.

A equipe da LEGUS selecionou cuidadosamente seus alvos dentre as 500 galáxias candidatas compiladas a partir de levantamentos em terra. Eles escolheram as galáxias com base em sua massa, taxa de formação de estrelas e sua abundância de elementos mais pesados ​​que o hidrogênio e o hélio. Devido à proximidade das galáxias selecionadas, o Hubble conseguiu obter resolução em seus principais componentes: estrelas e aglomerados estelares. Com os dados da LEGUS, a equipe criou um catálogo com cerca de 8.000 aglomerados jovens e também criou um catálogo de estrelas com cerca de 39 milhões de estrelas azuis quentes que são pelo menos cinco vezes mais massivas que o nosso Sol.

M96

© Hubble/LEGUS (M96)

Os dados, reunidos com a Wide Field Camera 3 e a Advanced Camera for Surveys do Hubble, forneceram informações detalhadas sobre estrelas jovens e massivas e aglomerados estelares, e como o ambiente afeta o seu desenvolvimento. Como tal, o catálogo oferece um extenso recurso para compreender as complexidades da formação de estrelas e evolução das galáxias.

Uma das principais questões que a pesquisa pode ajudar os astrônomos a responder é a conexão entre a formação de estrelas e as principais estruturas, como os braços espirais, que formam uma galáxia. Estas distribuições estruturadas são particularmente visíveis nas populações estelares mais jovens.

Ao resolver os detalhes das galáxias estudadas, ao mesmo tempo em que estuda a conexão com estruturas galácticas maiores, a equipe busca identificar os mecanismos físicos por trás da distribuição observada das populações estelares dentro das galáxias.

Descobrir o elo final entre a formação de gases e estrelas é a chave para entender completamente a evolução das galáxias. Os astrônomos estão estudando este elo observando os efeitos do ambiente nos aglomerados estelares e como sua sobrevivência está ligada ao seu entorno.

O LEGUS não apenas permitirá que os astrônomos entendam o Universo local, mas também ajudará a interpretar pontos de vista de galáxias distantes, onde a luz ultravioleta de estrelas jovens é esticada para comprimentos de onda infravermelhos devido à expansão do espaço. O telescópio espacial James Webb e sua capacidade de observação no infravermelho distante complementarão as visões da LEGUS.

Fonte: Space Telescope Science Institute

Um arco cósmico verde

Esta imagem efetuada pelo telescópio espacial Hubble mostra um aglomerado com centenas de galáxias localizado a aproximadamente 7,5 bilhões de anos-luz de distância da Terra.

SDSS J1156 1911

© Hubble (SDSS J1156+1911)

A galáxia mais brilhante do aglomerado é a SDSS J1156+1911 e é conhecida como Brightest Cluster Galaxy (BCG), e pode ser visível na parte central inferior da imagem. Ela foi descoberta pelo Sloan Giant Arc Survey, que estuda dados dos mapas que cobrem imensas partes do céu do Sloan Digital Sky Survey. E o resultado é que este projeto encontrou mais de 70 galáxias que são fortemente afetadas pelo fenômeno cósmico conhecido como lente gravitacional.

A lente gravitacional é das previsões da Teoria Geral da Relatividade de Albert Einstein. A massa contida dentro de uma galáxia é tão grande que ela pode contorcer o chamado tecido do espaço-tempo, fazendo com que a luz viaje então por trajetórias curvas. Como resultado, a imagem das galáxias mais distantes aparecem distorcidas e ampliadas para um observador, já que a luz está sendo desviada ao redor da galáxia mais massiva na frente. Este efeito pode ser muito útil na astronomia, permitindo a visualização de galáxias que até então eram muito distantes para serem observadas com os instrumentos astronômicos convencionais.

Os aglomerados de galáxias são gigantescas estruturas que possuem centenas ou milhares de galáxias com massa equivalente a trilhões de vezes a massa do Sol. O SDSS J1156+1911 tem uma massa aproximada de 600 bilhões de vezes a massa do Sol, fazendo dele um aglomerado menos massivo do que a média. Contudo, ele ainda é massivo o suficiente para produzir o arco esverdeado logo abaixo da galáxia mais brilhante, este arco nada mais é que a imagem de uma galáxia distante sofrendo os efeitos da lente gravitacional.

Fonte: ESA

Uma galáxia Seyfert na constelação do Lobo

Esta imagem mostra o centro da galáxia NGC 5643, situada a 55 milhões de anos-luz de distância, na constelação do Lobo, também conhecida como uma galáxia Seyfert.

Hidden from view

© ESO/ALMA (NGC 5643)

Estas galáxias possuem centros muito luminosos, que se pensa serem alimentados por matéria que está sendo acretada por um buraco negro supermassivo que se encontra no seu interior, que podem também estar envolvidos ou obscurecidos por nuvens de poeira e material intergalático.

O resultado disto é que pode ser difícil observar o centro ativo de uma galáxia Seyfert. A NGC 5643 apresenta um desafio suplementar: quando observada a partir da Terra apresenta-se com uma inclinação elevada, o que faz com que seja ainda mais difícil observar o seu interior. No entanto, os cientistas utilizaram o Atacama Large Millimeter/submillimeter Array (ALMA) juntamente com dados de arquivo do instrumento MUSE (Multi Unit Spectroscopic Explorer), instalado no Very Large Telescope (VLT) do ESO, para revelar esta imagem da NGC 5643, com correntes de gás ionizado muito energético sendo lançadas para o espaço.

Estas correntes impressionantes estendem-se ao longo de cada um dos lados da galáxia e têm origem na matéria que está sendo ejetada pelo disco de acreção do buraco negro supermassivo situado no núcleo da NGC 5643. Os dados combinados do ALMA e do VLT mostram que a região central desta galáxia possui duas componentes distintas: um disco em rotação espiral (em vermelho), constituído por gás molecular frio, localizado através do monóxido de carbono; e gás deslocando-se para o exterior, localizado através do oxigênio e hidrogênio ionizados (em tons azul/verde), perpendicular ao disco nuclear interior.

Fonte: ESO

Segredos ocultos de uma região de formação estelar massiva

Os berçários estelares são locais nebulosos e poeirentos que brilham intensamente na luz infravermelha.

G305

© ESA/Herschel (G305)

O complexo de formação de estrelas G305 não é uma exceção. Este apresenta um número de nuvens de gás brilhantes e intrincadas, aquecidas por estrelas jovens no meio delas. Nesta espetacular imagem do observatório espacial Herschel da ESA, estes pontos quentes de formação estelar destacam-se num tom azul, que contrasta com o vermelho-acastanhado das regiões mais frias.

Embora existam vários locais de formação de estrelas espalhados por esta imagem, os mais impressionantes cercam a área escura em forma de coração, no canto superior direito da imagem. Escondido no centro da região escura, encontra-se a enorme estrela WR48a e os seus dois vizinhos, os aglomerados estelares Danks 1 e 2. Os três desempenham um papel importante no desencadeamento da formação de novas estrelas, mesmo que eles próprios sejam objetos relativamente jovens, alguns milhões de anos (para comparação, o Sol tem cerca de 4,6 bilhões de anos).

Fortes ventos e radiação da WR48a, juntamente com as estrelas de alta massa nos dois aglomerados, afastaram os restos de gás da nuvem de onde se originaram. O gás arrastado, reunido na borda da bolha em forma de coração, está agora formando novas estrelas.

Através do Herschel, os astrônomos identificaram 16 locais onde estrelas de alta massa estão se formando neste berçário estelar. A região é um dos mais brilhantes e abundantes complexos de formação estelar da Via Láctea, e uma região ideal para observar e estudar estrelas massivas em diferentes estágios de formação e evolução.

O complexo G305 fica a cerca de 12.000 anos-luz de distância e recebe o nome da sua localização, em torno de 305º de longitude no plano da nossa galáxia. No céu noturno, aparece perto da Nebulosa Saco de Carvão, uma grande nuvem interestelar de poeira, visível a olho nu, e localizada na constelação de Crux, a Cruz do Sul. Uma nebulosa escura muito proeminente, o Saco de Carvão aparece nos céus do sul como uma mancha preta contra o pano de fundo brilhante e estrelado da Via Láctea.

Esta imagem, obtida como parte do Herschel Infrared Galactic Plane Survey (Hi-GAL), combina observações em três diferentes comprimentos de onda: 70 mícrons (azul), 160 mícrons (verde) e 250 mícrons (vermelho).

Lançado em 2009, o Herschel operou durante quatro anos, observando os comprimentos de onda do infravermelho distante e do submilímetro. Esta faixa espectral permitiu observar o brilho da poeira em nuvens de gás onde as estrelas nascem, para investigar este processo e observar a sua evolução inicial.

Fonte: ESA

domingo, 27 de maio de 2018

Uma estrela de nêutrons distante e solitária

Foi descoberto um tipo especial de estrela de nêutrons pela primeira vez fora da Via Láctea, através de dados do observatório de raios X Chandra da NASA e do Very Large Telescope (VLT) do ESO no Chile.

composição de E0101, no óptico e em raios X

© Chandra/VLT/Hubble (composição de E0101, no óptico e em raios X)

As estrelas de nêutrons são os núcleos ultradensos de estrelas massivas que colapsam e explodem como supernovas. Esta estrela de nêutrons recém-identificada é de uma variedade rara pois tem um campo magnético fraco e não tem uma companheira estelar.

A estrela de nêutrons está localizada no remanescente de uma supernova, conhecida como 1E 0102.2-7219 (abreviada como E0102) na Pequena Nuvem de Magalhães, a 200.000 anos-luz da Terra.

A nova composição da E0102 permite que os astrônomos aprendam novos detalhes sobre este objeto que foi descoberto há mais de três décadas atrás. Nesta imagem, os raios X do Chandra têm tons azuis e roxos, enquanto os dados ópticos do instrumento MUSE (Multi Unit Spectroscopic Explorer) do VLT têm um tom vermelho brilhante. Os dados adicionais do telescópio espacial Hubble têm tons vermelhos escuros e verdes.

Remanescentes de supernova ricos em oxigênio, como E0102, são importantes para compreender como as estrelas massivas fundem os elementos mais leves nos mais pesados antes de explodirem. Vistos até alguns milhares de anos após a explosão original, os remanescentes ricos em oxigênio contêm os detritos expelidos do interior da estrela moribunda. Estes detritos (visíveis como a estrutura filamentar verde na imagem combinada) são observados hoje passando pelo espaço depois de expulsos a milhões de quilômetros por hora.

As observações de E0102 pelo Chandra mostram que o remanescente de supernova é dominado por uma grande estrutura em forma de anel em raios X, associada à onda de choque da supernova. Os novos dados MUSE revelaram um anel menor de gás (em vermelho brilhante) que está se expandindo mais lentamente do que a onda de choque. No centro deste anel está uma fonte de raios X semelhante a um ponto azul. Juntos, o pequeno anel e a fonte pontual agem como um alvo celeste.

Os dados combinados do Chandra e do MUSE sugerem que esta fonte é uma estrela de nêutrons isolada, criada na explosão de supernova há cerca de dois milênios. O espectro de energia de raios X desta fonte é muito semelhante à das estrelas de nêutrons localizadas no centro de outros dois famosos remanescentes de supernova: Cassiopeia A (Cas A) e Puppis A. Estas duas estrelas de nêutrons também não têm estrelas companheiras.

A ausência de evidências de emissão de rádio estendida ou de radiação de raios X pulsada, tipicamente associadas com estrelas de nêutrons altamente magnetizadas e de rotação veloz, indica que os astrônomos detectaram os raios X da superfície quente de uma estrela de nêutrons isolada com campos magnéticos fracos. Foram detectados, na Via Láctea, cerca de 10 objetos deste tipo, mas este é o primeiro detectado fora da nossa Galáxia.

Mas como é que esta estrela de nêutrons acabou na sua posição atual, aparentemente deslocada do centro da chamada concha circular de emissão de raios X produzida pela onda de choque da supernova? Uma possibilidade é que a explosão de supernova ocorreu perto do meio do remanescente, mas a estrela de nêutrons foi expulsa do local por uma explosão assimétrica, a uma velocidade alta de aproximadamente 3,2 milhões de quilômetros por hora. No entanto, neste cenário, é difícil explicar por que a estrela de nêutrons está hoje tão bem cercada pelo recém-descoberto anel de gás visto nos comprimentos de onda visíveis.

Outra explicação possível é que a estrela de nêutrons está se movendo lentamente e a sua posição atual é aproximadamente onde a explosão de supernova teve lugar. Neste caso, o material no anel óptico pode ter sido expelido ou durante a explosão de supernova, ou pela progenitora condenada até alguns milhares de anos antes.

Um desafio deste segundo cenário é que o local da explosão estaria localizado bem longe do centro do remanescente, conforme determinado pela emissão prolongada de raios X. Isto implicaria um conjunto especial de circunstâncias para os arredores de E0102: por exemplo, uma cavidade esculpida pelos ventos da estrela progenitora antes da explosão de supernova e variações na densidade do gás e poeira interestelar em torno do remanescente.

As futuras observações de E0102 em comprimentos de onda de raios X, ópticos e de rádio devem ajudar os astrônomos a resolver este novo e empolgante mistério apresentado pela solitária estrela de nêutrons.

O artigo que descreve estes resultados foi publicado na revista Nature Astronomy.

Fonte: Harvard-Smithsonian Center for Astrophysics

sábado, 26 de maio de 2018

Estudo examina a história das pequenas luas de Saturno

As pequenas luas interiores de Saturno parecem-se com ravioli e spaetzle gigantes.

formato das luas de Saturno

© Cassini (formato das luas de Saturno)

A sua forma espetacular foi revelada pela sonda Cassini. Pela primeira vez, pesquisadores da Universidade de Berna mostram como estas luas foram formadas. As formas peculiares são um resultado natural das colisões e fusões entre pequenas luas de tamanho semelhante, como demonstram simulações em computador.

Dado que Saturno tem 95 vezes mais massa do que a Terra e as luas interiores orbitam o planeta a uma distância menos de metade da distância Terra-Lua, as marés são enormes e separam quase tudo. Portanto, as luas interiores de Saturno não poderiam ter-se formado com estas formas peculiares através da acreção gradual de material em torno de um único núcleo. Um modelo alternativo chamado regime piramidal sugere que estas luas foram formadas por uma série de fusões de pequenas luas de tamanho similar.

Os pesquisadores puderam verificar o regime piramidal, e ainda mostraram que as colisões das pequenas luas resultaram, exatamente, nas formas fotografadas pela sonda Cassini. Fusões de frente (ou quase de frente) levaram a objetos achatados com grandes cristas equatoriais, como observado em Atlas e Pã. Com ângulos de impacto um pouco mais oblíquos, as colisões resultaram em formas mais alongadas parecidas com massa alemã (spaetzle), como na lua Prometeu, de 90 km de comprimento, fotografada pela Cassini.

Com base na órbita atual das luas e no seu ambiente orbital, os cientistas foram capazes de estimar que as velocidades de impacto foram da ordem das dezenas de metros por segundo. Simulando colisões para vários ângulos de impacto, obtiveram várias formas estáveis parecidas, mas apenas para ângulos de impacto baixos. Se o ângulo de impacto for maior do que dez graus, as formas resultantes já não são estáveis. Qualquer objeto em forma de "patinho de borracha", como o cometa 67P/Churyumov-Gerasimenko, desmoronaria por causa das marés de Saturno. É por isso que as pequenas luas de Saturno parecem muito diferentes dos cometas que geralmente têm formas bilobadas.

Curiosamente, as colisões frontais não são tão raras quanto se poderia achar. Pensa-se que as pequenas luas interiores tenham origem nos anéis de Saturno, um disco fino localizado no plano equatorial do planeta. Como Saturno não é uma esfera perfeita, mas sim oblata, torna difícil que qualquer objeto deixe este plano estreito. Assim, colisões quase de frente são frequentes e o ângulo de impacto tende a diminuir ainda mais em encontros subsequentes.

Embora os pesquisadores se tivessem concentrado principalmente nas pequenas luas interiores de Saturno, também descobriram uma possível explicação para um mistério de longa data a respeito da terceira maior lua de Saturno, Jápeto. Porque é que Jápeto tem uma forma oblata e uma crista equatorial distinta? Os resultados de modelagem sugerem que estas características podem ser o resultado de uma fusão entre luas de tamanho idêntico que ocorrem a um ângulo próximo do frontal, semelhante às luas menores.

Um artigo foi publicado na revista Nature Astronomy.

Fonte: University of Bern

quarta-feira, 23 de maio de 2018

Uma galáxia espiral em colisão

Esta galáxia está tendo um mau milênio.

galáxias Antennae

© Hublle/Domingo Pestana (asteroide 2015 BZ509)

De fato, os últimos 100 milhões de anos não foram tão bons, e provavelmente o próximo bilhão será bastante tumultuado. Esta imagem foi tirada pelo telescópio espacial Hubble para entender melhor as colisões de galáxias. Visível no canto inferior direito, a NGC 4038 costumava ser uma galáxia espiral normal, até que a NGC 4039, em seu canto superior esquerdo, colidiu com ela.

Os destroços em evolução vistos aqui são conhecidos como galáxias Antennae, também denominado Arp 244. À medida que a gravidade reestrutura cada galáxia, nuvens de gás se chocam umas contra as outras, nós azuis brilhantes de estrelas se formando, estrelas massivas se formam e explodem, e filamentos marrons de poeira estão espalhados.

Eventualmente, as duas galáxias irão convergir para uma galáxia espiral maior. Tais colisões não são incomuns, e até mesmo a nossa galáxia, a Via Láctea, passou por várias no passado e está prevista colidir com a nossa vizinha galáxia de Andrômeda em alguns bilhões de anos.

Fonte: NASA