Os buracos negros supermassivos nos núcleos da maioria das galáxias, incluindo a Via Láctea, se desenvolvem gradualmente à medida que o material se acumula no buraco negro primordial.
© NASA/GALEX (Markarian 348)
Os processos físicos que impulsionam este crescimento (alimentação e feedback) ocorrem nas proximidades do núcleo da galáxia. Quando a acreção se torna ativa, é emitida radiação que ilumina e ioniza o gás na vizinhança do núcleo. Os ventos no disco de acreção podem interagir com o gás para produzir gás de saída que é observado atingindo velocidades de centenas de km/s. Os jatos relativísticos de partículas que emanam do buraco negro também podem interagir com seu material. Estes vários tipos de feedback são essenciais para evitar a produção de galáxias excessivamente massivas.
Evidências claras para todos estes processos foram detectadas em suas linhas de emissão óptica de átomos ionizados, cujas velocidades podem ser medidas. No entanto, tem sido muito difícil obter informações espaciais sobre a geometria do gás excitado. O astrônomo da Harvard-Smithsonian Center for Astrophysics (CfA), Martin Elvis, e nove colegas usaram o telescópio Gemini de oito metros e um novo instrumento poderoso que registra informações espaciais de alta resolução (tão pequenas quanto algumas centenas de anos-luz) e velocidade.
A equipe estudou cinco galáxias relativamente próximas, conhecidas por possuírem núcleos de buracos negros ativos com emissão atômica brilhante. Eles descobriram que, em todos os casos, o gás tem dois componentes principais, um girando e outro em fluxo. Mas, de outro modo, as galáxias são um pouco diferentes: em uma delas o gás gira em direção oposta às suas estrelas, em outro apenas um lobo da vazão pode ser visto, e existem outras diferenças também. Este estudo é apenas o primeiro de uma série que deve analisar e modelar em detalhes como os buracos negros nucleares crescem.
Fonte: Harvard-Smithsonian Center for Astrophysics
Nenhum comentário:
Postar um comentário