Usando o VLBA (Very Long Baseline Array), astrônomos fizeram a primeira medição geométrica direta da distância até um magnetar dentro da Via Láctea.
© NRAO/Sophia Dagnello (ilustração de um magnetar)
Esta medição pode ajudar a determinar se os magnetares são as fontes FRBs (Fast Radio Bursts) há muito misteriosas.
Os magnetares são uma variedade de estrelas de nêutrons, os remanescentes superdensos de estrelas massivas que explodiram como supernovas, com campos magnéticos extremamente fortes. Um campo magnético típico de um magnetar é um trilhão de vezes mais forte do que o campo magnético da Terra, tornando os magnetares os objetos mais magnéticos do Universo. Podem emitir fortes rajadas de raios X e raios gama, e recentemente tornaram-se candidatos principais para as fontes de FRBs.
Um magnetar chamado XTE J1810-197, descoberto em 2003, foi o primeiro de apenas seis destes objetos encontrados emitindo pulsos de rádio. Fê-lo de 2003 a 2008, depois cessou por uma década. Em dezembro de 2018, retomou a emissão de brilhantes pulsos de rádio.
Uma equipe de astrônomos usou o VLBA para observar regularmente XTE J1810-197 de janeiro a novembro de 2019, e novamente durante março e abril de 2020. Ao visualizarem o magnetar de lados opostos da órbita da Terra em torno do Sol, foram capazes de detectar uma ligeira mudança na sua posição aparente em relação a objetos de fundo muito mais distantes. Este efeito, chamado de paralaxe, permite que os astrônomos usem a geometria para calcular diretamente a distância ao objeto.
"Esta é a primeira medição de paralaxe para um magnetar, e mostra que está entre os magnetares mais próximos conhecidos, cerca de 8.100 anos-luz, tornando-o um alvo principal para estudos futuros," disse Hao Ding, estudante da Universidade Swinburne de Tecnologia na Austrália.
No dia 28 de abril, um magnetar diferente, chamado SGR 1935+2154, emitiu um breve surto de rádio que foi o mais forte já registado na Via Láctea. Embora não seja tão forte quanto as FRBs vindas de outras galáxias, esta explosão sugeriu aos astrônomos que os magnetares podiam gerar FRBs.
As rajadas rápidas de rádio foram descobertas pela primeira vez em 2007. São muito energéticas e duram no máximo alguns milissegundos. A maioria veio de fora da Via Láctea. A sua origem permanece desconhecida, mas as suas características indicam que o ambiente extremo de um magnetar pode gerá-las.
"Ter uma distância precisa até este magnetar significa que podemos calcular com precisão a força dos seus pulsos de rádio. Se emitir algo semelhante a uma FRB, saberemos quão forte é este pulso," disse Adam Deller, também da Universidade Swinburne. "As FRBs variam na sua força, de modo que gostaríamos de saber se um pulso magnetar chega perto ou se sobrepõe à força das FRBs conhecidas," acrescentou.
"A chave para responder a esta questão será obter mais medições de distâncias para outros magnetares, para que possamos expandir a nossa amostra e obter mais dados. O VLBA é a ferramenta ideal para fazer isto," disse Walter Brisken, do NRAO (National Radio Astronomy Observatory).
Além disso, "sabemos que os pulsares, como o da famosa Nebulosa do Caranguejo, emitem 'pulsos gigantes', muito mais fortes do que os normais. A determinação das distâncias destes magnetares vai ajudar-nos a entender este fenômeno, e a aprender se talvez as FRBs sejam o exemplo mais extremo de pulsos gigantes," disse Ding.
O objetivo final é determinar o mecanismo exato que produz as rajadas rápidas de rádio.
Os resultados foram relatados no periódico Monthly Notices of the Royal Astronomical Society.
Fonte: National Radio Astronomy Observatory