quinta-feira, 18 de maio de 2023

A inflação de raio estelar em Anãs M do Aglomerado das Híades

Com o objetivo de compreender melhor o fenômeno conhecido como "inflação de raio", pesquisadores liderados pelo doutorando do Observatório Nacional (ON/MCTI), Fábio Wanderley, analisaram um grupo de estrelas anãs M no aglomerado aberto das Híades.

© J. Mtanous (aglomerado aberto das Híades)

Inflação de raio é quando o raio de uma estrela é maior do que o previsto pelos modelos estelares que não consideram campos magnéticos. Os raios são inflados por efeito do campo magnético, por isso, modelos que não o consideram tendem a subestimá-los. 

O aglomerado das Híades é um aglomerado estelar aberto relativamente próximo, localizado a cerca de 43 parsecs de distância do Sol (1,33 quatrilhões de quilômetros ou cerca de 140 anos-luz), com aproximadamente 625 milhões de anos de idade. Por ser relativamente jovem, espera-se que as estrelas anãs M do aglomerado ainda mantenham seus campos magnéticos. 

De acordo com Wanderley, isso as torna uma escolha ideal para investigar o fenômeno de inflação do raio estelar, pois elas possuem uma maior probabilidade de apresentar as chamadas assinaturas de inflação. 

Ao analisar um conjunto de 48 estrelas anãs M do aglomerado, os pesquisadores descobriram que a inflação dos raios das estrelas anãs M tem relação com as manchas estelares, ou seja, com as áreas mais escuras e relativamente frias da superfície de estrelas que são geradas pelo campo magnético estelar. Alguns modelos indicam que estrelas como as anãs M, com uma maior cobertura de manchas, apresentam níveis mais altos de inflação de raio. 

Segundo Wanderley, este trabalho e seus resultados são úteis para aprimorar o conhecimento acerca da física de estrelas anãs M. Além disso, podem ajudar a estudar planetas que orbitam essas estrelas. Em conjunto com trabalhos que estudam campos magnéticos dessas estrelas anãs M, é possível também estudar a habitabilidade de sistemas planetários que orbitam estas estrelas. 

As chamadas estrelas anãs M são estrelas frias que pertencem à classe espectral M na sequência principal (faixa de estrelas no diagrama de Hertzsprung-Russell, que relaciona luminosidade e temperatura superficial das estrelas). Essas estrelas são consideravelmente menores e menos massivas que o Sol e são as mais comuns na nossa Galáxia.


© Como Novas (diagrama de Hertzsprung-Russell)

O diagrama de Hertzsprung-Russell (HR) é essencial para estudar a evolução estelar. Estrelas iniciam sua evolução na sequência principal, tornam-se gigantes ou supergigantes e se extinguem como anãs brancas ou, em casos mais raros, como estrelas de nêutrons e buracos negros. # 

Apesar de cerca de 75% das estrelas da nossa galáxia serem anãs M, a modelagem destas estrelas apresenta desafios dada a complexidade de seus espectros observados e o fato de elas serem pouco brilhantes, o que demanda um maior tempo para obtenção de espectros com maior sinal-ruído. Os espectros são uma espécie de “impressão digital" das estrelas e quanto maior o seu sinal-ruído, melhor a qualidade das observações e mais fácil é obter informações de qualidade sobre as características físicas das estrelas.

Segundo os pesquisadores, espera-se que estrelas do mesmo aglomerado aberto, como é o caso das estrelas anãs M deste estudo, tenham aproximadamente a mesma idade, tornando-as ideais para comparação com modelos físicos. Além disso, é esperado que essas estrelas tenham composições químicas semelhantes. Afinal, elas se originaram da mesma nuvem molecular, o que permite aos pesquisadores comparar parâmetros como a metalicidade com estrelas mais massivas já estudadas no aglomerado.

O estudo em questão fez a modelização das atmosferas das estrelas usando o método chamado “síntese espectral”, usando espectros no infravermelho do levantamento astronômico APOGEE (Apache Point Observatory Galactic Evolution Experiment), parte do SDSS IV (Sloan Digital Sky Survey IV), um projeto de grande escala que mapeou o céu e coletou dados de milhões de objetos astronômicos, incluindo estrelas, galáxias e quasares.

Foram determinados os parâmetros atmosféricos de 48 estrelas anãs M do aglomerado, como temperaturas efetivas, gravidades superficiais e metalicidades, além de outros parâmetros como luminosidades e raios estelares. Os raios obtidos foram comparados a diferentes modelos físicos de isócronas para analisar a inflação de raio. Isócronas são modelos que estimam características físicas estelares para uma determinada idade. 

O resultado encontrado foi que a inflação de raio de estrelas anãs M não é muito significativa e representa na média cerca de 2% de aumento do raio. Entretanto, a definição de inflação de raio é muito dependente do modelo estelar utilizado, já que os modelos diferem consideravelmente, sobretudo para estrelas anãs M menos massivas, que possuem interior totalmente convectivo, ou seja, aquelas em que a transferência de energia ocorre por convecção, inclusive no núcleo. 

Um dos resultados importantes foi que os raios obtidos para as anãs M das Híades podem ser explicados por modelos que consideram a presença de manchas estelares, indicando que estrelas com maior cobertura de manchas apresentam níveis mais altos de inflação de raio. Usando esses modelos, descobriu-se que a inflação observada em 76% da amostra pode ser explicada por uma cobertura de manchas de até 20%, enquanto as estrelas mais infladas podem ser explicadas por uma cobertura de manchas de até cerca de 40% da fotosfera estelar, a região visível da atmosfera de uma estrela. Também foi observado que estrelas com maior cobertura de manchas são, em média, mais ativas, exibindo maiores proporções entre a luminosidade de altas energias e a luminosidade bolométrica, ou seja, a medida da quantidade total de energia emitida por uma estrela. 

O estudo em questão resultou no artigo “Stellar characterization and radius inflation of Hyades M Dwarf Stars from the APOGEE Survey” aceito para publicação no periódico The Astrophysical Journal

Fonte: Observatório Nacional

Revelada a maior explosão cósmica jamais vista

Uma equipe de astrônomos liderada por pesquisadores da Universidade de Southampton descobriu a maior explosão cósmica jamais testemunhada.

© John Paice (ilustração da acreção de um buraco negro)

A explosão é mais de 10 vezes mais brilhante do que qualquer supernova conhecida. A explosão, conhecida como AT2021lwx, durou até agora mais de três anos, em comparação com a maioria das supernovas que só permanecem visivelmente brilhantes durante alguns meses. Ocorreu há quase 8 bilhões de anos, quando o Universo tinha cerca de 6 bilhões de anos, e está localizada na direção da constelação de Raposa. 

A AT2021lwx foi detectada pela primeira vez em 2020 pelo ZTF (Zwicky Transient Facility) na Califórnia e foi subsequentemente detectado pelo ATLAS (Asteroid Terrestrial-impact Last Alert System), sediado no Havaí. Estas instalações observam o céu noturno para detectar objetos transientes que mudam rapidamente de brilho, indicando eventos cósmicos como supernovas, bem como encontrando asteroides e cometas. 

Até agora, a escala da explosão era desconhecida. A equipe investigou o objeto com vários telescópios diferentes: o Observatório Neil Gehrels Swift, o NTT (New Technology Telescope) no Chile e o GTC (Gran Telescopio Canarias) em La Palma, Espanha. Os pesquisadores pensam que a explosão é o resultado de uma vasta nuvem de gás, possivelmente milhares de vezes maior do que o nosso Sol, que foi violentamente perturbada por um buraco negro supermassivo. Fragmentos da nuvem teriam sido engolidos, enviando ondas de choque através dos seus remanescentes, bem como para uma grande fração poeirenta em forma de rosquinha que rodeia o buraco negro. 

Estes eventos são muito raros e nunca antes se tinha visto nada a esta escala. No ano passado, os astrônomos testemunharam a explosão mais brilhante de que há registo, uma explosão de raios gama denominada GRB 221009A. Embora esta tenha sido mais brilhante do que AT2021lwx, durou apenas uma fração do tempo, o que significa que a energia total liberada pela explosão de AT2021lwx é muito maior. A dimensão física da explosão é cerca de 100 vezes maior do que todo o Sistema Solar e, no seu máximo brilho, foi cerca de 2 trilhões de vezes mais brilhante do que o Sol. 

As únicas coisas no Universo que são tão brilhantes como AT2021lwx são os quasares, ou seja, buracos negros supermassivos com um fluxo constante de gás caindo sobre eles a alta velocidade. Existem diferentes teorias sobre o que poderia ter causado tal explosão, mas considera-se que a explicação mais viável é uma nuvem extremamente grande de hidrogênio gasoso ou poeira que se desviou da sua órbita em torno do buraco negro supermassivo e que foi puxada para o centro do sistema.

A equipe está agora tentando recolher mais dados sobre a explosão, observando o objeto em diferentes comprimentos de onda, incluindo raios X, que poderão revelar a temperatura do objeto e os processos que poderão estar ocorrendo à superfície. Também vão efetuar simulações computacionais atualizadas para testar se estas correspondem à sua teoria sobre o que provocou a explosão.

Com novas instalações, como o LSST (Legacy Survey of Space and Time) do Observatório Vera Rubin entrando em funcionamento nos próximos anos, espera-se descobrir mais eventos como este e aprender mais sobre eles. É possível que estes acontecimentos, embora extremamente raros, sejam tão energéticos que são fundamentais da forma como os centros galácticos mudam ao longo do tempo. Uma vez conhecida a distância ao objeto e quão brilhante parece ser, é possível calcular o brilho do objeto na sua origem. Depois de efetuar estes cálculos, percebeu-se que este objeto é extremamente brilhante. 

Com um quasar, nota-se o brilho oscilando para cima e para baixo ao longo do tempo. Mas olhando para trás, ao longo de uma década, não foi detectado AT2021lwx e, de repente, apareceu como uma das coisas mais luminosas do Universo!

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Institute of Space Sciences

Uma vida solitária para as jovens estrelas no centro da Via Láctea

Segundo um novo estudo, as estrelas que vivem o mais perto do buraco negro no centro da Via Láctea não têm companheiras.

© GCOI (órbitas de estrelas S em torno do buraco negro supermassivo da Via Láctea)

Usando o Observatório W. M. Keck em Maunakea, Havaí, Devin Chu, astrônomo da GCOI (Galactic Center Orbits Initiative) da UCLA (Universidade da Califórnia em Los Angeles), liderou um levantamento de 10 anos que descobriu que estas "estrelas S", onde "S" significa Sagitário A*, o nome do buraco negro supermassivo no centro da nossa Galáxia, são todas individuais.

O resultado é surpreendente, uma vez que as estrelas S que a equipe observou incluem estrelas jovens e massivas de sequência principal, com apenas cerca de seis milhões de anos. Normalmente, as estrelas desta idade, que são 10 vezes mais massivas do que o nosso Sol, passam a sua infância emparelhadas com uma gêmea num sistema binário ou, por vezes, mesmo como trigêmeas. 

É provável que a poderosa influência do buraco negro supermassivo faça com que os sistemas estelares binários se fundam ou se tornem perturbados, onde uma estrela companheira é expulsa da região. Isto pode explicar porque é que não vemos nenhuma estrela com parceiras tão perto de Sagitário A*. 

Este estudo de uma década marca a primeira pesquisa sistemática de sistemas binários no aglomerado de estrelas S. Utilizando o sistema de ópticas adaptativas do observatório Keck, emparelhado com o seu instrumento OSIRIS (OH-Suppressing Infrared Imaging Spectrograph), os astrônomos seguiram os movimentos de 28 estrelas S; 16 das quais são estrelas jovens do tipo B da sequência principal e as restantes são estrelas velhas e de baixa massa do tipo M ou gigantes do tipo K. As ópticas adaptativas do Keck e o OSIRIS foram cruciais para nos darem a visão infravermelha de que precisávamos para espreitar através da poeira do Centro Galáctico e para distinguir as estrelas S individuais nesta região tão povoada. 

Os pesquisadores não só encontraram as estrelas S viajando sozinhas, como também conseguiram calcular o limite de quantas destas estrelas S poderiam existir como binários, uma métrica conhecida como fração binária. Descobriram que o limite da fração binária das estrelas S jovens é de 47%, o que significa que por cada 100 estrelas S, um máximo de 47 podem estar em sistemas binários. Este limite é dramaticamente mais baixo do que o esperado para tipos semelhantes de estrelas jovens na vizinhança solar, que têm uma fração binária de 70%. 

Esta descoberta sugere que as estrelas com companheiras têm dificuldade em manter-se juntas no ambiente extremo do buraco negro supermassivo da Via Láctea. A descoberta acrescenta ao caráter já exótico das estrelas S, cujo nascimento permanece um mistério. As forças de maré de um buraco negro perturbam normalmente a formação estelar tradicional, o que levanta questões sobre a forma como as estrelas S se conseguiram desenvolver no perigoso turbilhão cósmico que Sagitário A* cria. 

Um artigo foi publicado no periódico The Astrophysical Journal

Fonte: W. M. Keck Observatory

sábado, 13 de maio de 2023

Um bando de novas luas de Saturno

Foram descobertas novas luas de Saturno que elevará seu total para 145, e quebrará o recorde de Júpiter.


© K Ly (diagrama de 41 novas luas descobertas em Saturno)

Este diagrama mostra as órbitas atuais das 41 novas luas publicadas até agora, codificadas por cores pela direção de suas órbitas (azul para prógrada, na direção da rotação de Saturno e vermelha para retrógrada). O diagrama é mostrado em escala; o tamanho da órbita da lua da Terra é mostrado para comparação no canto inferior esquerdo. 

O planeta Saturno recuperou o recorde de mais luas no Sistema Solar com a descoberta de 62 novas luas. Todas têm apenas alguns quilômetros de tamanho e têm órbitas distantes do planeta que indicam sua origem: Saturno capturou estas rochas em algum momento do passado. 

Até o momento, o Minor Planet Center (MPC) publicou as órbitas das 41 novas luas em uma série de anúncios, chamados Minor Planet Electronic Circulars, emitidos entre 3 e 10 de maio. Brett Gladman (Universidade de British Columbia, Canadá) disse em 11 de maio que o centro liberaria órbitas para mais 21 luas em breve. Isso elevará a contagem total de luas de Saturno para 145, incluindo 24 luas “regulares”, que se formaram ao redor do planeta, e 121 luas menores e “irregulares” em órbitas largas, alongadas e inclinadas. 

Os novos relatórios mais do que dobram o número de luas irregulares de Saturno, deixando Saturno muito à frente das 95 luas de Júpiter, que colocaram Júpiter em primeiro lugar no início deste ano. A torrente de descobertas saturnianas vem de uma série de observações que Edward Ashton (agora na Academia Sinica Institute of Astronomy and Astrophysics, Taiwan) e colegas, incluindo Gladman, fizeram com o Canada France Hawaii Telescope de 2019 a 2021. Seu objetivo inicial era estudar os tamanhos das luas que orbitam Saturno e, em 2021, relataram a distribuição de tamanho das pequenas luas irregulares.

A maior quantidade de luas menores indica uma colisão recente (há 100 milhões de anos) entre dois objetos ao redor de Saturno. Para registrar luas fracas de até alguns quilômetros de tamanho, o grupo empilhou séries de imagens, um método usado anteriormente para procurar luas ao redor de Urano e Netuno, mas não anteriormente para Saturno. O próximo projeto do grupo foi calcular as órbitas dos objetos durante o período em que os pesquisadores obtiveram observações. O processo é trabalhoso, mas essencial e envolve rastrear o movimento de pequenos objetos no céu ao longo do tempo. 

O rastreamento da órbita é difícil. Estas luas estão longe do planeta, suas órbitas não são triviais e fechadas. Os arquivos do MPC remontam a muitos anos. Comparar novas descobertas com objetos arquivados é difícil porque requer órbitas retroativas ao longo de muitos anos. Ao mesmo tempo, combinar com sucesso a órbita de um novo objeto com observações mais antigas melhora a precisão de seus parâmetros orbitais. 

Quantas luas saturnianas ainda não foram descobertas? A pesquisa de 2021 cobriu apenas 2,2 graus quadrados dos 26 graus quadrados do céu em que a gravidade de Saturno domina, uma região chamada esfera de Hill. No entanto, as luas irregulares raramente ultrapassam a metade do raio da esfera de Hill de um planeta. 

Em seu artigo de 2021, Ashton e Gladman estimaram que Saturno tem cerca de 150 luas irregulares com pelo menos 3 quilômetros de diâmetro. Com cerca de 120 destas luas agora conhecidas. Existem cerca de 30 luas não descobertas nesta faixa de tamanho e provavelmente muitas centenas, senão milhares, de luas saturnianas com tamanhos menores. Descobertas fortuitas de luas remanescentes são improváveis. Um observador procurando por outra coisa provavelmente não reconheceria uma lua nova e, em vez disso, presumiria que era um asteroide comum. 

Fonte: Sky & Telescope

sexta-feira, 12 de maio de 2023

Nova descoberta: Nebulosa de Angelo

A aventura começou em outubro de 2022 a partir do desejo do astrônomo Nicolas Martino de fotografar uma nebulosa escura.

© N. Martino (Nebulosa de Angelo, Relâmpago de Thor, SRN G150.3+4.5 e LDN 1400)

A imagem mostra uma animação dos dados obtidos com filtros RGB. Nesta época do ano, a região de Cassiopeia, Cepheus e Girafa são áreas privilegiadas. Martino avistou uma nebulosa escura chamada LDN 1400 na constelação da Girafa. Seu formato atípico atraiu sua atenção à primeira vista e sua distância focal oferecia um enquadramento interessante. 

De acordo com os dados do IPHAS (INT Photometric H-Alpha Survey), existe até um sinal de Hidrogênio-Alfa (H-Alpha) por trás de LDN 1400. Ao explorar um pouco mais, ele percebeu que, de fato, o sinal H-Alpha vem do remanescente de supernova SNR G150.3+4.5. Este objeto raramente é fotografado e apenas uma foto pode ser vista em Oxygen III (OIII); tornando o projeto ainda mais interessante. 

Martino teve a colaboração do amigo Yann Sainty.  No total, foram necessárias 7 noites para coletar o máximo de dados. A lua deveria estar o menos presente possível para ter sinais OIII e H-Alpha mais "puros". Atendendo aos seus requisitos, as sessões de filmagem começaram em 27 de outubro de 2022 (em Puzieux, Mosela, França) e terminaram em 20 de janeiro de 2023 (em Moydans, Hautes-Alpes, França). O tempo total de integração foi de 46h15. 

O projeto foi apresentado aos astrônomos amadores Marcel Drechsler e Xavier Strottner, que efetuaram o processamento da imagem. Eles concordaram em processar os dados de banda estreita H-Alpha e OIII e os retoques finais, se necessário. Drechsler informou que havia notado um sinal OIII semelhante a uma bolha em torno de CI Camelopardalis. 

Um envelope de nova previamente desconhecido está em torno da estrela CI Camelopardalis, um sistema binário de raios X de massa muito alta. O objeto está muito próximo dos filamentos OIII do brilho residual da supernova G150.3+4.5, mas o envelope bipolar de CI Camelopardalis é um objeto independente e isolado que se encontra bem no fundo de G150.3+4.5.

A última erupção conhecida deste sistema ocorreu em 1998 e foi objeto de inúmeros estudos e publicações nos anos seguintes. Descobrimos um envelope muito mais antigo em torno da estrela, que, de acordo com os cálculos atuais, tem entre 1.500 e 2.200 anos. Este cálculo é baseado em dados de movimento obtidos em 1998 e 1999. Esses dados revelaram velocidades iniciais de 14.000 km/s, mas que diminuíram um terço após alguns dias. Essas velocidades foram inesperadas e até excederam as de uma supernova tipo 1A, o que explica o poder do flare em combinação com os raios X medidos pelo CI Camelopardalis. 

Como as distâncias para sistemas binários como CI Camelopardalis são muito imprecisas para calcular, os valores variam de 4,7 a 7,6 10³ Pc (parsec). Se tomarmos como base o valor médio, obtemos um diâmetro de 50 a 60 anos-luz para o envelope de nova descoberto recentemente em torno do CI Camelopardalis. O que é notável é a trajetória e orientação quase idênticas do surto de CI Camelopardalis de 1998 e de 1500 a 2200 anos atrás. 

O eixo da nebulosa é quase exatamente norte-sul, com uma ligeira inclinação para leste. A periferia norte dominante também corresponde a ambas as erupções. Durante este trabalho, foi possível identificar um OIII muito forte. O H-Alpha, no entanto, era tão fraco que era impossível separá-lo do fundo por meio de nossos filtros H-Alpha. O levantamento do IPHAS foi, no entanto, capaz de identificar um arco noroeste fraco, usamos esses dados para integrá-lo à imagem da descoberta. O envelope em torno do CI Camelopardalis que foi descoberto e que não foi mencionado em nenhuma publicação até agora é muito mais poderoso que uma nova comum e está, em termos de intensidade, entre uma nova e uma supernova. 

A descoberta foi registrada no novo catálogo MarSai Objet, sendo está a primeira descoberta: MarSai O 1, denominada Nebulosa de Angelo, em homenagem ao pai falecido de Martino. 

A foto final de LDN 1400, o Relâmpago de Thor, SNR G150.3+4.5 e MarSai O 1 é uma mistura de gelo, relâmpago e apocalipse. 

Fonte: AstroBin

quinta-feira, 11 de maio de 2023

O jogo de sombras em torno do disco de formação de planetas

A jovem estrela TW Hydrae está fazendo um jogo de sombras em torno do disco de formação de planetas que foi observado pelo telescópio espacial Hubble.

© STScI (ilustração de discos de gás e poeira ao redor da estrela TW Hydrae)

Em 2017, os astrônomos descobriram uma sombra que varre a face de um vasto disco de gás e poeira em forma de panqueca que rodeia a estrela anã vermelha. A sombra não é de um planeta, mas de um disco interior ligeiramente inclinado em relação ao disco exterior, muito maior, o que faz com que este projete uma sombra. Uma explicação é que a gravidade de um planeta invisível está puxando poeira e gás para a órbita inclinada do planeta. Agora, uma segunda sombra surgiu em apenas alguns anos nas observações armazenadas no arquivo MAST do Hubble. Poderá ser de outro disco aninhado no interior do sistema. Os dois discos são provavelmente evidências de um par de planetas em construção. 

A TW Hydrae tem menos de 10 milhões de anos e situa-se a cerca de 200 anos-luz de distância. Na sua infância, o nosso Sistema Solar pode ter-se assemelhado ao sistema de TW Hydrae, há cerca de 4,6 bilhões de anos. Como o sistema TW Hydrae está inclinado quase de face para o ponto de vista da Terra, é um alvo ótimo para obter uma visão panorâmica de um "estaleiro" de construção planetária. 

A segunda sombra foi descoberta em observações obtidas a 6 de junho de 2021, como parte de um programa plurianual concebido para seguir as sombras em discos circunstelares. A melhor solução que a equipe encontrou é que há dois discos desalinhados projetando sombras. Estavam tão próximos um do outro na observação anterior que não os conseguiam separar. Com o tempo, separaram-se e dividiram-se em duas sombras. A explicação mais simples é que os discos desalinhados são provavelmente causados pela atração gravitacional de dois planetas em planos orbitais ligeiramente diferentes. 

O Hubble está a reunir uma visão holística da arquitetura do sistema. Os discos podem ser representativos de planetas com velocidades orbitais diferentes em torno de uma estrela. É como se estivéssemos girando dois discos de vinil a velocidades ligeiramente diferentes. Por vezes os rótulos no centro coincidem, mas depois um passa à frente do outro. Isto sugere que os dois planetas têm de estar bastante próximos um do outro. Se um estivesse se movendo muito mais depressa do que o outro, teria sido captado em observações anteriores. 

Os planetas suspeitos estão localizados numa região a uma distância parecida à de Júpiter em torno do Sol. E as sombras completam uma rotação em volta da estrela a cada 15 anos; o período orbital que seria de esperar a esta distância da estrela. Além disso, estes dois discos interiores estão inclinados cerca de cinco a sete graus relativamente ao plano do disco exterior. Isto é comparável à gama de inclinações orbitais dentro do nosso Sistema Solar.

O disco exterior sobre o qual as sombras estão sendo projetadas pode estender-se até várias vezes o raio do cinturão de Kuiper do nosso Sistema Solar. Este disco maior tem uma curiosa divisão com duas vezes a distância média de Plutão ao Sol. Isto pode ser uma evidência da existência de um terceiro planeta no sistema. Quaisquer planetas interiores seriam difíceis de detectar porque a sua luz perder-se-ia no brilho da estrela. Além disso, a poeira no sistema iria escurecer a sua luz refletida. 

Os dados de TW Hydrae foram obtidos pelo instrumento STIS (Space Telescope Imaging Spectrograph) do Hubble. A visão infravermelha do Telescópio Espacial James Webb poderá também mostrar as sombras com mais pormenor.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: ESA

Imagens ocultas de vastas maternidades estelares

Com o auxílio do VISTA (Visible and Infrared Survey Telescope for Astronomy) do ESO, os astrônomos criaram um vasto atlas infravermelho de cinco maternidades estelares próximas, juntando mais de um milhão de imagens.

© ESO (imagem infravermelha do objeto HH 909 A na constelação do Camaleão)

Estes grandes mosaicos revelam estrelas jovens em formação, envoltas em espessas nuvens de poeira. Graças a estas observações, os astrônomos dispõem agora de uma ferramenta única para decifrar o complexo enigma que é a formação estelar.

Nestas imagens podemos detectar até as fontes de luz mais tênues, tais como estrelas com muito menos massa que o nosso Sol, revelando assim objetos que nunca tinham sido observados anteriormente. Isto permitirá compreender melhor os processos que levam o gás e a poeira a transformarem-se em estrelas. 

As estrelas formam-se quando nuvens de gás e poeira colapsam sob a sua própria gravidade, mas o modo como isso acontece não é totalmente compreendido. Quantas estrelas nascem a partir de uma nuvem? Qual a sua massa? Quantas estrelas verão planetas formarem-se em sua órbita? 

Para responder a estas questões, os pesquisadores analisaram cinco regiões de formação estelar próximas com o telescópio VISTA montado no Observatório do Parana, no Chile. Utilizando a câmara de infravermelhos VIRCAM do VISTA, a equipe captou a luz proveniente das profundezas das nuvens de poeira. A poeira obscurece estas estrelas jovens, tornando-as virtualmente invisíveis aos nossos olhos. Só nos comprimentos de onda do infravermelho é que conseguimos observar o interior destas nuvens e estudar as estrelas em formação. 

O rastreio, denominado VISIONS, observou regiões de formação estelar nas constelações de Órion, Ofiúco, Camaleão, Coroa Austral e Lobo. Estas regiões encontram-se a menos de 1.500 anos-luz de distância da Terra e cobrem uma enorme área no céu. 

O diâmetro do campo de visão do VIRCAM é tão grande como o de três luas cheias, o que o torna único para mapear estas regiões tão vastas. A equipa obteve mais de um milhão de imagens durante um período de cinco anos. As imagens individuais foram usadas para construir os grandes mosaicos que revelam vastas paisagens cósmicas. Estes panoramas pormenorizados apresentam manchas escuras de poeira, nuvens brilhantes, estrelas recém nascidas e as distantes estrelas de fundo da Via Láctea. Uma vez que as mesmas áreas foram observadas repetidamente, os dados do VISIONS permitirão igualmente aos astrônomos estudar o modo como as estrelas jovens se movem. 

Esta não é uma tarefa fácil, uma vez que o deslocamento aparente destas estrelas observado a partir da Terra é tão pequeno como a espessura de um cabelo humano visto a 10 quilômetros de distância. Estas medições dos movimentos estelares complementam as medições obtidas pela missão Gaia da ESA (Agência Espacial Europeia) nos comprimentos de onda do visível, onde as estrelas jovens se encontram escondidas por espessos véus de poeira. 

Adicionalmente, o VISIONS estabelecerá as bases para futuras observações com outros telescópios, tais como o Extremely Large Telescope (ELT) do ESO, atualmente em construção no Chile e que deverá começar a funcionar no final desta década. O ELT permitirá que observamos mais de perto regiões específicas com um detalhe sem precedentes, fornecendo-nos uma visão nunca antes vista das estrelas individuais que estão atualmente se formando nessas regiões. 

Este trabalho foi descrito num artigo científico intitulado “VISIONS: The VISTA Star Formation Atlas”, publicado na revista da especialidade Astronomy & Astrophysics

Fonte: ESO

Um novo estudo das grandes luas de Urano mostra que podem conter água

Uma reanálise de dados da nave espacial Voyager da NASA, juntamente com novos modelos computacionais, levou os cientistas a concluir que quatro das maiores luas de Urano contêm provavelmente uma camada oceânica entre os seus núcleos e as crostas geladas.

© Hubble (Urano com seus 4 anéis principais e 10 das suas luas)

O seu estudo é o primeiro a detalhar a evolução da composição e estrutura do interior das cinco grandes luas: Ariel, Umbriel, Titânia, Oberon e Miranda. O trabalho sugere que quatro das luas têm oceanos que podem ter dezenas de quilômetros de profundidade. 

No total, pelo menos 27 luas orbitam Urano, sendo que as quatro maiores vão de Ariel, com 1.160 km de diâmetro, até Titânia, com 1.580 quilômetros de diâmetro. Os cientistas há muito que pensam que Titânia, dada a sua dimensão, teria maior probabilidade de reter calor interno provocado pelo decaimento radioativo. As outras luas eram anteriormente consideradas demasiado pequenas para reter o calor necessário para evitar que um oceano interno congelasse, especialmente porque o aquecimento criado pela atração gravitacional de Urano é apenas uma pequena fonte de calor. 

O Levantamento Decenal de Ciência Planetária e Astrobiologia das Academias Nacionais de Ciência dos EUA deu prioridade à exploração de Urano. Em preparação para essa missão, os cientistas planetários estão se concentrando no gigante gelado para reforçar os seus conhecimentos sobre o misterioso sistema de Urano. O novo trabalho tem o potencial de informar como uma futura missão poderá explorar as luas. Quando se trata de corpos pequenos os cientistas planetários já encontraram evidências da existência de oceanos em vários locais improváveis, incluindo os planetas anões Ceres e Plutão, e a lua de Saturno, Mimas. 

O estudo revisitou as descobertas da Voyager 2 da NASA, que passou por Urano na década de 1980, e de observações terrestres. Os autores construíram modelos de computador com descobertas adicionais das sondas Galileo, Cassini, Dawn e New Horizons da NASA (cada uma das quais descobriu mundos oceânicos), incluindo conhecimentos sobre a química e a geologia da lua de Saturno, Encélado, de Ceres, de Plutão e da sua lua Caronte, todos corpos gelados com aproximadamente o mesmo tamanho das luas uranianas.

Os pesquisadores usaram esses modelos para avaliar o grau de porosidade das superfícies das luas uranianas, descobrindo que são provavelmente suficientemente isoladas para reter o calor interno que seria necessário para abrigar um oceano subterrâneo. Além disso, encontraram o que poderia ser uma potencial fonte de calor nos mantos rochosos das luas, que liberam líquido quente e ajudariam um oceano a manter um ambiente quente, um cenário que é especialmente provável para Titânia e Oberon, onde os oceanos podem até ser suficientemente quentes para potencialmente suportar a habitabilidade.

Ao investigar a composição dos oceanos, os cientistas podem aprender mais sobre os materiais que também podem ser encontrados nas superfícies geladas das luas, dependendo se as substâncias que se encontram por baixo foram empurradas para cima pela atividade geológica. Os telescópios mostram que pelo menos uma das luas, Ariel, tem material que fluiu para a sua superfície, talvez a partir de vulcões gelados, há relativamente pouco tempo. De fato, Miranda, a quinta maior e a mais interior das grandes luas de Urano, tem características na sua superfície que parecem ser de origem recente, sugerindo que pode ter mantido calor suficiente para sustentar um oceano em algum momento da sua história. Os recentes modelos térmicos concluíram que é pouco provável que Miranda tenha retido água durante muito tempo; perde calor demasiado depressa e provavelmente está agora gelada. 

Mas o calor interno não seria o único fator que contribuiria para o oceano subsuperficial de uma lua. Uma descoberta importante do estudo sugere que os cloretos, bem como o amoníaco, são provavelmente abundantes nos oceanos das maiores luas de Urano. Há muito que se sabe que o amoníaco atua como anticongelante. Além disso, a modelagem sugere que os sais provavelmente presentes na água seriam outra fonte de anticongelante, mantendo os oceanos internos dos corpos. 

A pesquisa sobre o que se encontra por baixo e à superfície dessas luas ajudará os cientistas a escolherem os melhores instrumentos científicos para as examinar. Por exemplo, determinar que o amoníaco e os cloretos podem estar presentes significa que os espectrômetros, que detectam os compostos através da sua luz refletida, terão de utilizar uma gama de comprimentos de onda que abranja ambos os tipos de compostos. Da mesma forma, podem usar esse conhecimento para conceber instrumentos que possam sondar o interior profundo em busca de líquido.

A procura de correntes elétricas que contribuam para o campo magnético de uma lua é geralmente a melhor forma de encontrar um oceano profundo, como fizeram os cientistas da missão Galileo na lua de Júpiter, Europa. No entanto, a água fria nos oceanos interiores de luas como Ariel e Umbriel poderia tornar esses oceanos menos capazes de transportar essas correntes elétricas e representaria um novo tipo de desafio para os cientistas que trabalham para descobrir o que está por baixo.

Um artigo foi publicado no periódico Journal of Geophysical Research

Fonte: Jet Propulsion Laboratory

domingo, 7 de maio de 2023

Descoberto o segundo anel "improvável" em torno do asteroide Quaoar

A descoberta do segundo anel ocorre apenas dois meses após o primeiro anel de Quaoar ter sido revelado, indicando que o sistema é mais complexo do que se pensava.

© ON / UTFPr (ilustração do segundo anel de Quaoar)

Uma equipe de pesquisadores, liderada pelo aluno de doutorado do Observatório Nacional (ON/MCTI), Chrystian Luciano Pereira, descobriu um segundo anel improvável mais interno em torno do asteroide Quaoar. A orientação da pesquisa é realizada pelo Dr. Felipe Braga Ribas, professor do Programa de Pós-Graduação em Astronomia do Observatório Nacional (ON). Ambas as descobertas foram feitas com o uso da técnica de ocultações estelares, quando um objeto do Sistema Solar passa em frente a uma estrela e bloqueia a sua luz por alguns instantes.

Este objeto é um dos pequenos corpos do nosso Sistema Solar e é conhecido como um objeto Transnetuniano (TNO) por orbitar a região além do planeta Netuno. Com mais de 1.000 km de diâmetro, Quaoar é candidato a planeta-anão. 

Os TNOs, como Quaoar, são fósseis praticamente intactos da formação do Sistema Solar. Dessa forma, catalogar suas características físicas é fundamental para entender como o Sistema Solar se formou e evoluiu até os dias atuais. 

Anéis ao redor de corpos do Sistema Solar têm sido alvo de pesquisas desde 1610, quando Galileu Galilei observou pela primeira vez um anel em torno ao apontar sua luneta para Saturno. Nos séculos seguintes, anéis foram descobertos ao redor dos outros três planetas gigantes: Júpiter, Urano e Netuno. 

Até 2013, não se sabia que anéis poderiam orbitar pequenos corpos do Sistema Solar. A surpresa ocorreu quando um sistema com dois anéis foi descoberto ao redor do objeto Centauro (10199) Chariklo, primeiro asteroide com anéis descoberto em trabalho liderado pelo Dr. Felipe Braga-Ribas (UTFPR-Curitiba/ON). Depois, em 2017, um anel foi descoberto ao redor do planeta-anão Haumea. Mais recentemente, em fevereiro deste ano, a mesma equipe divulgou a descoberta do terceiro sistema de anéis, agora ao redor do objeto Transnetuniano Quaoar. 

De acordo com os pesquisadores, diferentemente dos anéis observados em Chariklo, Haumea e nos quatro planetas gigantes, os anéis de Quaoar se encontram em uma região inesperada, muito além do limite de Roche para o corpo (para Quaoar, esse limite é estimado em 1.780 km do centro do corpo). O limite de Roche é uma região em que as forças de maré do corpo central estão em equilíbrio com a atração mútua das partículas que compõem um anel, impedindo então a acreção dessas partículas em satélites. Em outras palavras, trata-se de uma “linha imaginária” que define a distância mínima que um objeto pode se aproximar de outro antes de ser desintegrado pela força gravitacional. Quando um objeto está dentro do limite de Roche, espera-se que ele se desintegre e forme um anel em torno do objeto central. Por outro lado, se estiver além deste limite, como é o caso dos anéis do Quaoar – espera-se que as partes de agreguem e formem um satélite, e não um anel como é o caso.

A partir dos dados observacionais do primeiro anel (Q1R), os pesquisadores conseguiram detectar o segundo anel (Q2R) que, na verdade, está mais próximo do TNO. O Q2R possui cerca de 10 km de largura e, apesar de estar mais próximo de Quaoar, também se encontra fora do limite de Roche, orbitando 2.520 km do centro do objeto. Isso revela o quão curioso e complexo o sistema de Quaoar pode ser. O anel mais externo orbita Quaoar a uma distância muito próxima a região de estabilidade gerada pela ressonância spin-órbita 1:3. Isso significa que enquanto o Quaoar completa três rotações, as partículas do anel completam uma órbita. Já o anel mais interno se encontra próximo a região de ressonância spin-órbita 5:7, ou seja, enquanto Quaoar completa sete rotações, as partículas do anel completam cinco órbitas.

Esse comportamento dinâmico é observado nos anéis ao redor de Chariklo e Haumea, que também se encontram próximos à região de ressonância 1:3. Isso sugere que as ressonâncias podem estar intimamente relacionadas com a manutenção e localização desses anéis. Outro fator que pode causar o confinamento desses anéis é a presença de pequenos satélites "pastores" que ainda não foram descobertos. 

Outra propriedade interessante e não usual do anel Q1R de Quaoar é a variabilidade na sua largura e opacidade, sendo muito estreito e denso em uma região, tênue e extenso em outra. Afim de obter mais informações de Quaoar e seu curioso anel, a equipe organizou uma campanha observacional para uma ocultação estelar que foi observada em 9 de agosto de 2022, envolvendo telescópios amadores e profissionais, como por exemplo o Gemini Norte e Canadá-França-Hawaii Telescope (CFHT), com diâmetro de 8,1 e 3,6 metros, respectivamente. A alta performance dos instrumentos acoplados nos telescópios Gemini Norte e CFHT, as cameras 'Alopeke e WIRcam, respectivamente, aliado a sua localização no topo do Mauna Kea, no Havaí, permitiram a obtenção de curvas de luz com ótima qualidade.

A região densa e estreita do “primeiro” anel foi sondada por essa ocultação, revelando uma estrutura estreita confinada com aproximadamente 5 km de largura e com grande profundidade óptica (bastante densa). Esse núcleo estreito do anel é cercado por um envelope de material disperso com cerca de 60 km, se assemelhando em estrutura ao anel F de Saturno ou o arco observado nos anéis de Netuno. A região mais extensa e tênue desse anel também foi detectada, tendo uma largura média de 90 km e com menos de 1% da opacidade da região mais densa. A distância calculada entre Quaoar e esse anel é de 4.060 km. 

Trabalhos futuros acerca da determinação precisa da forma de Quaoar, em conjunto com novas observações desses anéis, serão importantes para um melhor entendimento do sistema dinâmico em que Quaoar e seus anéis se inserem e qual o real papel das ressonâncias na manutenção e confinamento desses anéis. 

Este trabalho foi realizado como parte do projeto "Lucky Star", sob a liderança do Dr. Bruno Sicardy do Observatório de Paris (França) e foi viabilizado através de uma colaboração mundial envolvendo astrônomos profissionais e amadores. Este estudo contou com a participação de pesquisadores de diversos institutos internacionais, como: Observatório Nacional (Rio de Janeiro, Brasil), Instituto de Astrofísica de Andalucía (Granada, Espanha), Universidade Tecnológica Federal do Paraná (Curitiba, Brasil), Instituto Espacial da Flórida (Orlando, Flórida), entre outros. 

Um artigo sobre a descoberta do segundo anel de Quaoar, sob o título “The two rings of (50000) Quaoar”, foi publicado no periódico Astronomy & Astrophysics Letters

Fonte: Observatório Nacional

O vapor de água encontrado é de um planeta rochoso ou da sua estrela?

As anãs vermelhas são as estrelas mais comuns no Universo, o que significa que é mais provável encontrar exoplanetas rochosos em órbita de estrelas deste tipo.


© STScI (ilustração de estrela devorando seu planeta)

As estrelas anãs vermelhas são frias, pelo que um planeta deve possuir uma órbita apertada para se manter suficientemente quente para, potencialmente, abrigar água líquida (o que significa que se encontra na zona habitável). Estas estrelas são também ativas, particularmente quando são jovens, liberando radiação ultravioleta e raios X que podem destruir atmosferas planetárias. Consequentemente, uma questão importante em aberto na astronomia é saber se um planeta rochoso poderia manter, ou restabelecer, uma atmosfera num ambiente tão hostil. 

Para ajudar a responder a esta questão, os astrônomos utilizaram o telescópio espacial James Webb para estudar um exoplaneta rochoso conhecido como GJ 486 b. Está demasiado perto da sua estrela para estar dentro da zona habitável, com uma temperatura à superfície de cerca de 430 graus Celsius. E, no entanto, as suas observações usando o NIRSpec (Near-Infrared Spectrograph) do Webb mostram indícios de vapor de água.

Se o vapor de água estiver associado ao planeta, isso indicaria que este tem uma atmosfera, apesar da sua temperatura escaldante e da proximidade à estrela. O vapor de água já foi observado em exoplanetas gasosos, mas até à data não foi definitivamente detectada qualquer atmosfera em torno de um exoplaneta rochoso. No entanto, a equipe adverte que o vapor de água pode estar na própria estrela, especificamente, em manchas estelares frias, e não no planeta.

O vapor de água numa atmosfera de um planeta quente e rochoso representaria um grande avanço para a ciência exoplanetária. O GJ 486 b é cerca de 30% maior do que a Terra e três vezes mais massivo, o que significa que é um mundo rochoso com uma gravidade mais forte do que a do nosso planeta. Orbita uma estrela anã vermelha em pouco menos de 1,5 dias terrestres. Espera-se que sofra acoplamento de maré, com um lado diurno permanente e um lado noturno permanente. 

O GJ 486 b transita a sua estrela, passando à sua frente a partir do nosso ponto de vista. Se tiver uma atmosfera, quando transita, a luz estelar filtra-se através desses gases, imprimindo impressões digitais na luz que permitem aos astrônomos decodificar a sua composição através de uma técnica chamada espectroscopia de transmissão. A equipe observou dois trânsitos, cada um com a duração de cerca de uma hora. Depois utilizaram três métodos diferentes para analisar os dados resultantes. Os resultados dos três métodos são consistentes, na medida em que mostram um espectro praticamente plano, com um aumento intrigante nos comprimentos de onda infravermelhos mais curtos.

A equipe utilizou modelos computacionais considerando uma série de moléculas diferentes e concluiu que a fonte mais provável do sinal era o vapor de água. Embora o vapor de água possa indicar, potencialmente, a presença de uma atmosfera em GJ 486 b, uma explicação igualmente plausível é vapor de água na estrela. Surpreendentemente, mesmo no nosso próprio Sol, o vapor de água pode por vezes existir nas manchas solares, porque estas manchas solares são muito frias em comparação com a superfície estelar circundante.

A estrela progenitora de GJ 486 b é muito mais fria do que o Sol, pelo que ainda mais vapor de água se concentraria nas suas manchas estelares. Como resultado, poderia criar um sinal que imitasse uma atmosfera planetária. Não foi observado indícios de que o planeta tenha atravessado quaisquer manchas estelares durante os trânsitos. Mas isso não significa que não existam manchas estelares em outros locais na estrela. E esse é exatamente o cenário físico que imprimiria este sinal de água nos dados e poderia acabar por se assemelhar a uma atmosfera planetária. 

Seria de esperar que uma atmosfera de vapor de água sofresse uma erosão gradual devido ao aquecimento e irradiação. Consequentemente, existindo uma atmosfera, é provável que tenha de ser constantemente reabastecida por vulcões que ejetam vapor do interior do planeta. Se a água estiver na atmosfera do planeta, são necessárias observações adicionais para determinar a quantidade de água presente. 

Futuras observações com o telescópio espacial James Webb poderão fornecer informações sobre este sistema. Um programa vindouro irá usar o MIRI (Mid-Infrared Instrument) para observar o lado diurno do planeta. Se o planeta não tiver atmosfera, ou se tiver apenas uma fina atmosfera, então espera-se que a parte mais quente do lado diurno esteja diretamente debaixo da estrela. No entanto, se o ponto mais quente estiver deslocado, isso indicaria uma atmosfera que pode fazer circular o calor. E

Em última análise, serão necessárias observações em comprimentos de onda infravermelhos mais curtos por outro instrumento do Webb, o NIRISS (Near-Infrared Imager and Slitless Spectrograph), para diferenciar entre a atmosfera planetária e os cenários de manchas estelares. É a junção de vários instrumentos que vai realmente determinar se este planeta tem ou não uma atmosfera.

O estudo foi aceito para publicação no periódico The Astrphysical Journal Letters

Fonte: Space Telescope Science Institute

Descoberta uma estrela devorando um planeta

Os astrônomos que utilizam o telescópio Gemini South no Chile, operado pelo NOIRLab, observaram a primeira evidência de uma estrela moribunda, semelhante ao Sol, engolindo um exoplaneta.

© NOIRLab (ilustração de estrela devorando seu planeta)

Este processo nunca antes visto pode anunciar o destino final da Terra, quando o nosso próprio Sol se aproximar do fim da sua vida, dentro de cerca de cinco bilhões de anos. Esta pesquisa confirma que, quando uma estrela semelhante ao Sol se aproxima do fim da sua vida, expande-se entre 100 e 1000 vezes o seu tamanho original, acabando por engolir os planetas interiores do sistema. 

Os primeiros indícios deste evento foram descobertos em imagens ópticas do ZTF (Zwicky Transient Facility). A cobertura infravermelha de arquivo pelo NEOWISE (Near-Earth Object Wide-field Infrared Survey Explorer) da NASA, que é capaz de perscrutar ambientes poeirentos em busca de explosões e outros eventos transientes, confirmou então o evento de engolfamento, denominado ZTF SLRN-2020. 

A distinção entre um surto de engolfamento planetário e outros tipos de atividades violentas, como proeminências ou ejeções de massa coronal, é difícil e requer observações de alta resolução para identificar a localização de um surto e medições a longo prazo do seu brilho sem contaminação de estrelas próximas. O Gemini South forneceu estes dados essenciais graças às suas capacidades de ópticas adaptativas. 

O surto de engolfamento durou cerca de 100 dias e as características da sua curva de luz, bem como o material ejetado, deram aos astrônomos uma ideia da massa da estrela e do planeta consumido. O material ejetado consistia em cerca de 33 massas terrestres de hidrogênio e cerca de 0,33 massas terrestres de poeira. A partir desta análise, a equipe estimou que a estrela progenitora tem cerca de 0,8 a 1,5 vezes a massa do nosso Sol e que o planeta engolido tem 1 a 10 vezes a massa de Júpiter.

A interpretação deste evento também fornece evidências de um elo em falta na nossa compreensão da evolução e do destino final dos sistemas planetários, incluindo o nosso. 

Um artigo foi publicado na revista Nature

Fonte: Gemini Observatory