segunda-feira, 1 de agosto de 2016

Hubble contempla uma estrela morta

Esta bela imagem realizada pelo telescópio espacial Hubble registra a parte remanescente de uma estrela morta.

DEM L316A

© Hubble (DEM L316A)

Estes filamentos ondulados de gás ionizado, denominados DEM L316A, estão localizados a cerca de 160.000 anos-luz de distância da Terra, dentro de uma das vizinhas galácticas mais próximas da Terra, a Grande Nuvem de Magalhães.

A explosão que formou a DEM L316A foi um exemplo de uma supernova especialmente energética e brilhante conhecida como Tipo Ia. Acredita-se que estes eventos de supernovas ocorram quando uma estrela do tipo anã branca, rouba mais material do que ela pode lidar de uma companheira estelar próxima e fica desequilibrada. O resultado é um lançamento espetacular de energia na forma de uma brilhante e violenta explosão, que ejeta as camadas externas da estrela no espaço ao redor a uma imensa velocidade. À medida que esse gás viaja através do material interestelar, ele se aquece e ioniza, produzindo o brilho que a Wide Field Câmera 3 do Hubble registra.

A Grande Nuvem de Magalhães orbita a Via Láctea como uma galáxia satélite e é a quarta maior galáxia no nosso grupo de galáxias, o chamado Grupo Local. A DEM L316A não é a única remanescente de supernova na Grande Nuvem de Magalhães, o Hubble já registrou uma em 2010, a SNR 0509, e uma em 2013, a SNR 0519.

Fonte: ESA

sábado, 30 de julho de 2016

A estrela jovem mais solitária vista pelos telescópios Sptizer e WISE

Sozinha na estrada cósmica, longe de qualquer outro objeto celeste conhecido, uma jovem estrela independente está passando por um tremendo surto de crescimento.

  ilustração de objeto celeste emitindo raios X

© NASA/JPL-Caltech (ilustração de objeto celeste emitindo raios X)

O objeto invulgar, de nome CX330, foi detectado pela primeira vez como uma fonte de raios X em 2009 pelo observatório de raios X Chandra da NASA enquanto examinava o bojo na região central da Via Láctea. Outras observações indicaram que este objeto estava também emitindo luz no visível. Com apenas estas pistas, os cientistas não faziam ideia que objeto era.

Mas quando Chris Britt, pesquisador pós-doutorado da Texas Tech University em Lubbock, e colegas examinaram imagens infravermelhas da mesma área obtidas com o WISE (Wide-field Infrared Survey Explorer) da NASA, aperceberam-se que este objeto tinha em seu redor quantidades enormes de poeira, que deverá ter sido aquecida por uma explosão.

Ao compararem os dados de 2010 do WISE com dados do Spitzer obtidos em 2007, os pesquisadores determinaram que a CX330 é provavelmente uma estrela jovem que passa por um surto de atividade há já vários anos. Na verdade, nesse período de três anos o seu brilho aumentou algumas centenas de vezes.

Os astrônomos analisaram dados do objeto obtidos por vários outros observatórios, incluindo os terrestres SOAR, Magalhães e Gemini. Também usaram os grandes levantamentos telescópicos VVV e o OGLE-IV para medir a intensidade da luz emitida por CX330. Ao combinarem todas estas diferentes perspetivas sobre o objeto, surgiu uma imagem mais clara.

"Tentamos várias interpretações e a única que faz sentido é que esta jovem estrela em rápido crescimento está se formando no meio do nada," afirma Britt, autor principal de um estudo sobre a CX330.

O comportamento da estrela solitária tem semelhanças com FU Orionis, uma estrela jovem que teve um surto de atividade inicial em 1936-7, durante três meses. Mas a CX330 é mais compacta, mais quente e provavelmente mais massiva do que objetos conhecidos e parecidos com FU Orionis. A estrela mais isolada lança "jatos" mais rápidos, fluxos de material que batem no gás e poeira em seu redor.

"O disco provavelmente aqueceu até ao ponto em que o gás no disco ficou ionizado, levando a um rápido aumento na velocidade com que o material cai para a estrela," explica Thomas Maccarone, professor associado da Texas Tech University.

O mais intrigante para os astrônomos, é que FU Orionis e objetos raros do mesmo gênero, que são conhecidos apenas cerca de 10, estão localizados em regiões de formação estelar. As estrelas jovens geralmente formam-se e alimentam-se das regiões ricas em gás e poeira em seu redor, em nuvens de formação estelar. Em contraste, a região de formação estelar mais próxima de CX330 está a mais de mil anos-luz de distância.

"A CX330 é mais intensa e mais isolada do que qualquer um desses objetos ativos que já observamos," comenta Joel Green, pesquisador do STScI (Space Telescope Science Institute) em Baltimore, EUA. "Esta pode ser a ponta do iceberg, estes objetos podem estar em toda a parte."

De fato, é possível que todas as estrelas passem por esta fase dramática de desenvolvimento durante a juventude, mas que o surto de explosões seja demasiado curto, numa perspetiva de tempo cosmológico, para que podemos observar muitas delas.

Como é que a CX330 se tornou tão isolada? Uma ideia é que poderá ter nascido numa região de formação estelar, mas foi expulsa para a sua posição atual na Galáxia. Dado que a CX330 está numa fase juvenil do seu desenvolvimento, tem provavelmente menos de um milhão de anos, e ainda está devorando o seu disco envolvente, deve ter-se formado perto da sua localização atual no céu.

"Se tivesse migrado a partir de uma região de formação estelar, não podia ter aqui chegado durante a sua vida sem perder completamente o seu disco," afirma Britt.

A CX330 também pode ajudar os cientistas a estudar o modo como as estrelas se formam em circunstâncias diferentes. Um cenário é que as estrelas se formam através de turbulência. Neste modelo "hierárquico", uma densidade crítica de gás numa nuvem faz com que a nuvem colapse gravitacionalmente numa estrela. Um modelo diferente, chamado "acreção competitiva", sugere que as estrelas começam como núcleos de baixa massa que lutam pela massa do material restante da nuvem. A CX330 encaixa mais naturalmente no primeiro cenário pois as circunstâncias turbulentas podem, teoricamente, permitir a formação de uma estrela solitária.

É ainda possível que outras estrelas, de massa intermédia a baixa, estejam presentes nas imediações da CX330, mas ainda não tenham sido detectadas.

Quando a CX330 foi observada pela última vez em agosto de 2015, ainda estava em surto de atividade. Os astrônomos planejam continuar estudando o objeto, inclusive com telescópios futuros que a poderão estudar em outros comprimentos de onda.

As explosões de atividade numa estrela jovem mudam a química no disco estelar, a partir do qual os planetas podem, eventualmente, formar-se. Caso o fenômeno seja comum, isso significa que os planetas, incluindo o nosso, podem transportar as assinaturas químicas de um antigo disco de gás e poeira marcado por explosões estelares.

Mas, considerando que a CX330 continua devorando o seu disco com uma voracidade cada vez maior, os astrônomos não contam encontrar planetas em formação neste sistema.

"Se for realmente uma estrela massiva, o seu tempo de vida será curto e violento", conclui Green.

Este estudo foi publicado recentemente na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Jet Propulsion Laboratory

sexta-feira, 29 de julho de 2016

Anã branca castiga anã vermelha com raio misterioso

Astrônomos utilizaram o Very Large Telescope (VLT) do ESO, e mais outros telescópios tanto no solo como no espaço, e descobriram um novo tipo de estrela binária bastante exótica.

  ilustração do exótico sistema binário de estrelas AR Scorpii

  © M. Garlick/U. Warwick/ESO (ilustração do exótico sistema binário de estrelas AR Scorpii)

No sistema AR Scorpii, uma anã branca em rotação rápida acelera elétrons até quase à velocidade da luz. Estas partículas de alta energia liberam quantidades de radiação que fuzilam a estrela companheira, uma anã vermelha, fazendo com que todo o sistema pulse drasticamente a cada 1,97 minutos e libere radiação que vai do ultravioleta até as ondas de rádio.

Em maio de 2015, um grupo de astrônomos amadores da Alemanha, Bélgica e Reino Unido encontrou um sistema estelar que se comportava de um modo nunca antes observado. Observações feitas em seguida, lideradas pela Universidade de Warwick e fazendo uso de vários telescópios, colocados tanto no solo como no espaço, revelaram a verdadeira natureza deste sistema até então mal identificado.

O sistema estelar AR Scorpii, ou AR Sco, situa-se na constelação do Escorpião e está a 380 anos-luz de distância da Terra. É composto por uma anã branca em rotação rápida, do tamanho da Terra mas com cerca de 200 mil vezes mais massa, e por uma anã vermelha fria, de tipo espectral M, com um terço da massa do Sol, que se orbitam mutuamente com um período de 3,6 horas, executando uma dança cósmica tão regular como um relógio.

As anãs brancas correspondem à fase final da vida de estrelas com massas até cerca de 8 vezes a massa solar. Quando a fusão do hidrogênio no núcleo da estrela termina, as variações internas levam a uma drástica expansão da estrela, dando origem a uma gigante vermelha, seguida de uma contração acompanhada pelo lançamento das camadas exteriores da estrela para o espaço interestelar em grandes nuvens de gás e poeira. O que resta é uma anã branca, de cerca do tamanho da Terra mas 200 mil vezes mais densa. O equivalente a uma única colher de matéria de uma anã branca pesa tanto como um elefante na Terra.

Este sistema binário de estrelas exibe um comportamento muito violento. Altamente magnetizada e girando muito depressa, a anã branca acelera elétrons até quase à velocidade da luz. À medida que estas partículas de alta energia se deslocam no espaço, liberam radiação num raio semelhante a um farol, que atinge a anã vermelha fria, fazendo com que todo o sistema brilhe e apague a cada 1,97 minutos. Estes pulsos poderosos incluem radiação nas frequências de rádio, algo que nunca tinha sido antes detectado num sistema com uma anã branca.

O pesquisador principal Tom Marsh, do Grupo de Astrofísica da Universidade de Warwick, comenta: “AR Scorpii foi descoberta há mais de 40 anos, mas não suspeitamos da sua verdadeira natureza até começarmos a observá-la em 2015. Percebemos que estávamos vendo algo extraordinário poucos minutos depois de começarmos as observações.”

As propriedades observadas de AR Sco são únicas e misteriosas. A radiação emitida ao longo de uma grande gama de frequências indica emissão de elétrons acelerados em campos magnéticos, o que pode ser explicado pela anã branca em rotação. A fonte de elétrons propriamente dita permanece, no entanto, um mistério; não é claro se estará associada à própria anã branca ou à sua companheira mais fria.

AR Scorpii foi inicialmente observada no início da década de 1970 e as suas flutuações de brilho regulares a cada 3,6 horas fizeram com que fosse erroneamente classificada como uma estrela variável isolada. Uma estrela variável mostra uma flutuação no seu brilho quando vista a partir da Terra. Estas flutuações podem ser devidas a variações de propriedades intrínsecas à própria estrela. Por exemplo, algumas estrelas expandem-se e contraem-se de forma notória. As flutuações podem também ter origem num outro objeto que regularmente eclipsa a estrela. AR Scorpii foi confundida com uma única estrela variável, uma vez que a órbita de duas estrelas em torno uma da outra resulta também em flutuações regulares no brilho observado.

A verdadeira natureza da variação em luminosidade da AR Scorpii foi revelada graças aos esforços conjuntos de astrônomos profissionais e amadores. Uma pulsação semelhante tinha sido já observada anteriormente, mas vinda de estrelas de nêutrons, alguns dos objetos celestes mais densos conhecidos no Universo, e não de anãs brancas.

Boris Gänsicke, também da Universidade de Warwick, conclui: “Conhecemos estrelas de nêutrons pulsando há quase 50 anos e algumas teorias previam que as anãs brancas poderiam também apresentar um comportamento semelhante. É muito excitante termos descoberto um tal sistema e é também um exemplo fantástico de colaboração entre astrônomos amadores e profissionais.”

Este trabalho foi publicado ontem na revista Nature.

Fonte: ESO

quinta-feira, 28 de julho de 2016

Olho ancião no céu

Em uma descoberta rara, o Observatório Astronômico Nacional do Japão (NAOJ), juntamente com uma equipe internacional de pesquisadores da Universidade de Tóquio e do Instituto Kavli para a Física e Matemática do Universo (Kavli IPMU) obtiveram conhecimentos avançados de como a luz de uma galáxia distante pode ser dobrada pelo efeito gravitacional de uma galáxia em primeiro plano. O efeito é conhecido como lente gravitacional.

Olho de Hórus

© NAOJ (Olho de Hórus)

Normalmente, várias imagens com lentes de um único fundo da galáxia são vistas. Em teoria, o primeiro plano de galáxias podem focar várias galáxias de fundo ao mesmo tempo. Os dados mostraram um efeito de lente gravitacional raro, sugerindo o efeito de lente pela galáxia em primeiro plano de duas galáxias de fundo a distâncias diferentes. Tais sistemas, chamados de lentes "Double Source Plane (DSP)", oferecem oportunidades únicas para examinar a física fundamental de galáxias ao estender o nosso conhecimento da cosmologia.

Com base em dados do Sloan Digital Sky Survey (SDSS), a galáxia lente tem um redshift espectroscópico de z = 0,79 (ou 7,0 bilhões de anos-luz de distância). Outras observações dos objetos focados usando o espectrômetro FIRE sensível ao infravermelho no telescópio Magellan confirmou a existência de duas galáxias atrás da lente e co z = 1,30 e o outro em z = 1,99 (9,0 e 10,5 bilhões de anos-luz de distância, respectivamente ). Esta é a primeira lente de DSP para o qual as distâncias para as três galáxias são conhecidas com precisão, o que permite a compreensão mais precisa da distribuição da massa da galáxia em primeiro plano.

Pesquisadores e estudantes fizeram a descoberta ao inspecionar visualmente imagens na sede do NAOJ em Tóquio, como parte de um convite ao telescópio Subaru para estudantes em setembro de 2015. As imagens foram recolhidas a partir da Hiper Suprime-Cam (HSC) do telescópio Subaru, que está montado no Havaí. O Japão está realizando uma pesquisa difundida com a HSC de grandes áreas do céu a uma profundidade sem precedentes como parte do Programa Estratégico Subaru.

O achado raro foi apelidado de "Olho de Hórus" por causa de sua aparência e olho (incluindo nós brilhantes, um arco, e um anel de Einstein), o que é devido a um alinhamento da galáxia central da lente e ambas as fontes, e assemelha-se ao olho de Hórus, o antigo deus do céu egípcio. A pesquisa espera encontrar mais 10 sistemas do mesmo tipo.

Esta descoberta fornece novas perpectivas na física de galáxias e na expansão do Universo ao longo dos últimos bilhões de anos.

A descoberta foi descrita no periódico The Astrophysical Journal Letters.

Fonte: Kavli Institute & University of Tokyo

terça-feira, 26 de julho de 2016

Descoberta rotação vertiginosa do halo da Via Láctea

Astrônomos da Faculdade de Literatura, Ciência e Artes da Universidade de Michigan, EUA, descobriram pela primeira vez que o gás quente no halo da Via Láctea gira na mesma direção e a velocidades comparáveis à do disco da Galáxia, que contém as nossas estrelas, planetas, gases e poeiras.

Via Láctea rodeada por um halo gigante

© NASA/CXC/M. Weiss/Ohio State/A. Gupta (Via Láctea rodeada por um halo gigante)

A nossa Via Láctea e as suas pequenas companheiras estão rodeadas por um halo gigante com mais de um milhão de graus Celsius (visto aqui em azul) que é apenas visível com telescópios de raios X no espaço.

Esta nova pesquisa usou dados de arquivo do XMM-Newton da ESA, e esclarece como os átomos individuais se reuniram para formar estrelas, planetas e galáxias como a nossa, e o que o futuro reserva para estas galáxias.

Foi estabelecido que o disco da Via Láctea girava enquanto o gás quente era estacionário, mas isso está errado. Este reservatório de gás quente também gira, apenas não tão rapidamente quanto o disco.

O estudo foca-se no halo quente e gasoso da nossa Galáxia, que é várias vezes maior do que o disco da Via Láctea e composto por plasma ionizado.

Dado que o movimento produz uma mudança no comprimento de onda da luz, os cientistas mediram estes desvios no céu usando linhas do oxigênio muito quente. O que descobriram foi surpreendente: os desvios medidos pelos pesquisadores mostram que o halo da Galáxia gira na mesma direção que o disco da Via Láctea e a uma velocidade semelhante, 644.000 km/h para o halo vs. 869.000 km/h no disco.

"A rotação do halo quente é uma pista incrível da formação da Via Láctea," comenta Edmund Hodges-Kluck, cientista assistente da pesquisa. "Diz-nos que esta atmosfera quente é a fonte original de uma grande quantidade de matéria no disco."

Os cientistas há muito que se interrogavam do porquê de quase todas as galáxias, incluindo a Via Láctea, parecerem ter matéria em falta, matéria esta que seria de outra forma previsível de encontrar. Os astrônomos acreditam que 80% da matéria no Universo é a misteriosa matéria escura que, até agora, só pode ser detectada graças à sua força gravitacional. Mas até mesmo a maioria dos restantes 20% da matéria comum parece estar ausente dos discos galácticos. Mais recentemente, alguma da matéria faltante foi descoberta no halo. Os pesquisadores dizem que o conhecimento da direção e da velocidade de rotação do halo pode ajudar a aprender tanto como o material aí chegou em primeiro lugar, como a velocidade que podemos esperar para a matéria assentar na Galáxia.

"Agora que sabemos a rotação, os teóricos podem começar a usar estes dados para aprender como a nossa Via Láctea se formou, e o seu eventual destino final," afirma Joel Bregman, professor de astronomia da mesma faculdade.

"Nós podemos usar esta descoberta para aprender muito mais, a rotação deste halo quente será um grande tema para os espectrógrafos de raios X do futuro," conclui Bregman.

A pesquisa foi publicada recentemente na revista The Astrophysical Journal.

Fonte: NASA

segunda-feira, 25 de julho de 2016

Imagem profunda da Grande e Pequena Nuvens de Magalhães

Será que as duas galáxias satélites mais famosas da nossa Via Láctea podem se colidir no futuro?

imagem profunda da Grande e Pequena Nuvens de Magalhães

© ESO/Yuri Beletsky (imagem profunda da Grande e Pequena Nuvens de Magalhães)

Ninguém sabe ao certo, mas uma inspeção detalhada de imagens profundas como a caracterizada aqui pode indicar tal perspectiva de colisão.

Cada um dos milhares de pontos desta nova imagem representa uma estrela distante e os buracos azuis brilhantes mostram partes das nossas galáxias vizinhas, a Grande e a Pequena Nuvens de Magalhães.

Na foto, a Grande Nuvem de Magalhães (LMC) está no canto superior esquerdo e a Pequena Nuvem de Magalhães (SMC) está no canto inferior direito. O campo circundante é monocromático para destacar filamentos tênues, mostrados em cinza. Uma leve corrente de estrelas parece estar se estendendo desde a SMC para a LMC. Além disso, estrelas à volta da LMC estão distribuídas assimetricamente, indicando em simulações que poderia muito bem ter sido puxadas para fora gravitacionalmente por causa de uma ou mais colisões.

Embora esta imagem pareça ter sido obtida por um telescópio de grande porte, na realidade foi captada a partir do Observatório de La Silla com uma montagem portátil constituída por uma câmera CCD SBIG STL-11000M e uma lente Canon com distância focal fixa. Esta montagem foi descrita num artigo científico em paralelo com simulações de ponta, num exemplo de como uma pequena câmera, uma lente rápida, um longo tempo de exposição e um dos melhores locais para a observação astronômica podem revelar enormes estruturas tênues melhor do que um telescópio grande.
Esta imagem profunda foi captada utilizando o método LRGB e mostra-nos o processo real da criação de belas astrofotografias. As pessoas que tentam fotografar o céu noturno deparam-se com muitos desafios, incluindo a interferência de outras fontes de luz e a necessidade de captar objetos astronômicos com profundidade suficiente.
Tentar maximizar o sinal recebido do alvo, ao mesmo tempo que se minimiza a emissão de outras fontes, o chamado ruído, é um aspecto crucial da astrofotografia. A otimização da razão sinal/ruído consegue-se mais facilmente em preto e branco do que a cores. Por isso, um dos truques normalmente utilizados para captar imagens de alta qualidade consiste numa exposição que produz imagens monocromáticas muito detalhadas como a que aqui apresentamos. Os detalhes coloridos de imagens obtidas através de filtros coloridos podem depois ser sobrepostos ou incorporados, como é o caso das Nuvens de Magalhães da imagem.

Tanto a LMC como a SMC são visíveis a olho nu no céu do sul. Observações telescópicas futuras e simulações de computador são a certeza de continuar o esforço contínuo para entender melhor a história da nossa Via Láctea e seus arredores.

Fonte: NASA & ESO

sexta-feira, 22 de julho de 2016

O primeiro estudo atmosférico de exoplanetas do tamanho da Terra

Usando o telescópio espacial Hubble da NASA/ESA, astrônomos concluíram a primeira pesquisa por atmosferas em planetas temperados do tamanho da Terra localizados além do nosso Sistema Solar e encontraram indícios que aumentam as hipóteses de habitabilidade em dois exoplanetas.

animação do trânsito dos dois exoplanetas

© NASA/ESA/STScI (animação do trânsito dos dois exoplanetas)

Especificamente, descobriram ser improvável que os exoplanetas TRAPPIST-1b e TRAPPIST-1c, a aproximadamente 40 anos-luz de distância, tenham atmosferas inchadas e dominadas por hidrogênio, como é comum nos mundos gasosos.

"A falta de uma concha sufocante de hidrogênio-hélio aumenta as chances de habitabilidade nesses planetas," afirma Nikole Lewis, do STScI (Space Telescope Science Institute) em Baltimore, EUA. "Se tivessem um invólucro significativo de hidrogênio-hélio, não haveria hipótese de qualquer um, potencialmente, suportar vida porque a densa atmosfera agiria como uma estufa."

Julien de Wit do Instituto de Tecnologia de Massachusetts (MIT) em Cambridge, liderou uma equipe de cientistas para observar os planetas no infravermelho próximo usando o instrumento WFC3 (Wide Field Camera 3) do Hubble. Usaram espectroscopia para descodificar a luz e revelar pistas sobre a composição química da atmosfera. Embora o conteúdo atmosférico seja desconhecido e tenhamos que aguardar novas observações, a baixa concentração de hidrogênio e hélio animou os cientistas devido às implicações.

"Estas observações iniciais do Hubble são um promissor primeiro passo para aprender mais sobre estes mundos vizinhos, se são rochosos como a Terra e se podem abrigar vida," explica Geoff Yoder, administrador associado do Diretorado de Missões Científicas da NASA em Washington. "Este é um momento emocionante para a NASA e para a pesquisa exoplanetária."

Os planetas orbitam uma estrela anã vermelha com pelo menos 500 milhões de anos, na direção da constelação de Aquário. Foram descobertos no final de 2015 através de uma série de observações pelo TRAPPIST (TRAnsiting Planets and PlanetesImals Small Telescope), um telescópio robótico belga localizado no Observatório La Silla do ESO no Chile.

O TRAPPIST-1b completa uma órbita em torno da anã vermelha a cada 1,5 dias e TRAPPIST-1c em 2,4 dias. Os planetas estão entre 20 e 100 vezes mais perto da sua estrela do que a Terra está do Sol. Considerando que a estrela hospedeira é muito mais tênue que o nosso Sol, os pesquisadores pensam que pelo menos um dos planetas, TRAPPIST-1c, poderá estar na zona habitável da estrela, onde as temperaturas moderadas podem permitir a existência de água líquida à superfície.

No dia 4 de maio, os astrônomos aproveitaram um raro trânsito simultâneo, em que os dois planetas passaram em frente da estrela a apenas minutos um do outro, para medir a luz estelar à medida que era filtrada pela atmosfera existente. Este duplo trânsito, que ocorre apenas a cada dois anos, forneceu um sinal combinado de indicadores simultâneos das características atmosféricas dos planetas.

Os pesquisadores esperam usar o Hubble para realizar observações de acompanhamento e procurar atmosferas mais finas, compostas de elementos mais pesados do que o hidrogênio, como as atmosferas da Terra e Vênus.

"Com mais dados, talvez pudéssemos detectar metano ou ver as características da água nas atmosferas, o que nos daria estimativas da profundidade das atmosferas," comenta Hannah Wakeford, do Goddard Space Flight Center da NASA.

As observações com telescópios futuros, incluindo o telescópio espacial James Webb da NASA, vão ajudar a determinar a composição completa destas atmosferas e caçar potenciais bioassinaturas, como o dióxido de carbono e o ozônio, além de vapor de água e metano. O Webb também poderá analisar a temperatura e a pressão à superfície de um planeta, fatores primordiais para avaliar a sua habitabilidade.

"Estes planetas do tamanho da Terra são os primeiros mundos que os astrônomos podem estudar em detalhe com telescópios atuais e planejados, a fim de determinar se são adequados para a vida," salienta de Wit. "O Hubble tem a capacidade para desempenhar o papel de pré-triagem atmosférica que indica quais destes planetas parecidos com a Terra são os principais candidatos para um estudo mais detalhado com o telescópio Webb."

Os resultados do estudo foram publicados na revista Nature.

Fonte: Massachusetts Institute of Technology

Espaço… a fronteira final

Cinquenta anos atrás o Capitão Kirk e a tripulação da nave estelar Enterprise começaram sua jornada para o espaço: a fronteira final. Agora, como o mais novo filme de Star Trek, o telescópio espacial da Hubble está igualmente explorarando novas fronteiras, observando galáxias distantes através do programa Frontier Fields.

aglomerado de galáxias Abell S1063

© Hubble/J. Lotz (aglomerado de galáxias Abell S1063)

O último alvo da missão do Hubble é o distante aglomerado de galáxias Abell S1063, potencialmente o lar de bilhões de novos mundos.

O aglomerado pode ser visto no centro da imagem e mostra como ele era há quatro bilhões de anos. Mas o aglomerado de galáxias Abell S1063 permite-nos explorar um tempo ainda mais cedo do que isso, onde nenhum telescópio tem realmente olhado antes. A enorme massa do aglomerado distorce e amplia a luz de galáxias que estão por trás devido a um efeito chamado efeito de lente gravitacional. Isso permite que o Hubble veja galáxias que de outra forma seriam muito fracas para serem observadas e torna possível procurar e estudar a primeira geração de galáxias no Universo.

Os primeiros resultados a partir dos dados sobre o Abell S1063 prometem algumas notáveis ​​descobertas. Uma galáxia já foi encontrada como era apenas um bilhão de anos após o Big Bang.

Os astrônomos também identificaram dezesseis galáxias de fundo, cuja luz foi distorcida pelo aglomerado, fazendo imagens múltiplas delas aparecendo no céu. Isto irá ajudar os astrônomos a melhorar seus modelos de distribuição da matéria comum e escura no aglomerado de galáxias, como a gravidade destes influenciam nos efeitos de distorção. Estes modelos são a chave para a compreensão da natureza misteriosa da matéria escura.

O Abell S1063 não está sozinho em sua capacidade de curvar a luz de galáxias de fundo, nem é o único destas enormes lentes cósmicas a ser estudado utilizando Hubble. Três outros aglomerados já foram observados como parte do programa Frontier Fields, e mais dois serão observados ao longo dos próximos anos, fornecendo uma imagem notável de como eles funcionam e o que está dentro e fora deles.

Os dados recolhidos dos aglomerados de galáxias anteriores foram estudados por equipes de todo o mundo, permitindo-lhes fazer descobertas importantes, tais como: as galáxias que existiam apenas centenas de milhões de anos após o Big Bang e a primeira aparição prevista de uma supernova através de lente gravitacional.

O roteirista e produtor de televisão norte-americano Eugene Roddenberry, o criador de Star Trek, ficaria orgulhoso com tal extensa colaboração internacional.

Fonte: ESA

quinta-feira, 21 de julho de 2016

Uma matriosca no meio interestelar

A descoberta desta bolha tripla, feita de 3 conchas de supernova, permite compreender melhor os mecanismos ocorridos nos discos galácticos.

ilustração de bolha tripla num aglomerado estelar

© IAC (ilustração de bolha tripla num aglomerado estelar)

Como se fosse uma matriosca (boneca russa) espacial, um grupo de astrônomos, liderada por pesquisadores do Instituto de Astrofísica das Canárias (IAC) descobriu o primeiro caso conhecido de três remanescentes de supernova um dentro do outro. Usando o programa BUBBLY, um método desenvolvido dentro do grupo para a detecção de grandes bolhas de expansão do gás no espaço interestelar, os pesquisadores estavam observando a galáxia M33 em nosso grupo local de galáxias e encontraram esta bolha tripla. Os resultados obtidos ajudam a compreender o processo fundamental de formação de estrelas e a disseminação de metais produzidos em estrelas massivas.

O grupo vem construindo uma base de dados destas super bolhas com observações de algumas galáxias e, usando a resolução muito elevada do espectrógrafo 2D, GHaFaS (Galaxy Halpha Fabry-Perot System), no William Herschel Telescope (WHT) de 4,2m do Isaac Newton Group of Telescopes(Observatório Roque de los Muchachos, La Palma), tem sido capaz de detectar e medir estas super bolhas, que variam em tamanho de alguns anos-luz para tão grande como mil anos-luz de diâmetro.

As super bolhas em torno de grandes aglomerados de estrelas jovens são conhecidas por terem uma estrutura complexa devido aos efeitos dos ventos estelares fortes e explosões de supernovas de estrelas individuais, cujas bolhas separadas pode acabar se fundindo em uma super bolha, mas esta é a primeira vez que são encontradas três conchas concêntricas de supernova em expansão.

Este fenômeno permite explorar o meio interestelar de uma forma única, possibilitando medir a quantidade matéria existente em uma concha, e quantas centenas de vezes é da massa do Sol. No entanto, se uma supernova expele apenas cerca de dez vezes a massa do Sol, onde é que os segundo e terceiro reservatórios obterão o seu gás se o primeiro reservatório da supernova varre todo o gás?

A resposta para isso deve vir do gás ao redor e no meio interestelar não homogêneo. O meio interestelar não é totalmente uniforme, deve haver aglomerações densas de gás, rodeado por espaço com gás a uma densidade muito menor. A supernova não apenas varre o gás, ela evapora as laterais dos aglomerados, deixando um pouco de gás denso por trás da qual pode fazer a segunda e a terceira concha.

A presença das bolhas explica porque a formação de estrelas tem sido muito mais lenta do que os modelos simples previstos de evolução da galáxia. Estas bolhas são parte de um processo feedback generalizado no disco da galáxia, se não fosse pelo feedback as galáxias espirais teriam vidas muito curtas, e nossa própria existência seria improvável. A ideia de um meio interestelar não homogêneo não é nova, mas a bolha tripla dá uma visão muito mais clara e quantitativa da estrutura e do processo de feedback. Os resultados ajudarão os teóricos que trabalham com feedback uma melhor compreensão de como este processo funciona em todos os discos de galáxias.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Instituto de Astrofísica de Canarias

terça-feira, 19 de julho de 2016

Missão K2 do Kepler confirma mais de 100 novos exoplanetas

Uma equipe internacional de astrônomos descobriu e confirmou novos mundos usando a missão K2 do telescópio Kepler da NASA.

 ilustração de exoplanetas orbitando uma estrela anã

© NASA/JPL (ilustração de exoplanetas orbitando uma estrela anã)

Entre as descobertas, que totalizaram 197 candidatos iniciais a planeta, cientistas confirmaram 104 exoplanetas. Entre os confirmados está um sistema planetário composto por quatro planetas, planetas estes que poderão ser rochosos.

Os planetas, todos entre 20% e 50% maiores do que a Terra em diâmetro, orbitam a anã M K2-72, a 181 anos-luz de distância na direção da constelação de Aquário. A estrela hospedeira tem menos de metade do tamanho do Sol e é menos brilhante. Os períodos orbitais dos planetas variam entre 5,5 e 24 dias, e dois deles podem ter níveis de irradiação comparáveis aos da Terra. Apesar das suas órbitas íntimas, mais perto da estrela do que Mercúrio está do Sol, de acordo com Ian Crossfield, do Laboratório Lunar e Planetário da Universidade do Arizona, a possibilidade de que a vida possa surgir num planeta em torno de uma estrela deste gênero não pode ser descartada.

Os pesquisadores atingiram este grupo extraordinário de exoplanetas através da combinação de dados com observações de acompanhamento por telescópios terrestres, incluindo o telescópio Gemini Norte e o observatório W. M. Keck no Havaí, o APF (Automated Planet Finder) dos observatórios da Universidade da Califórnia e o LBT (Large Binocular Telescope) operado pela Universidade do Arizona. 

Tanto o Kepler como a sua missão K2 descobrem novos planetas através da medição da queda sutil no brilho de uma estrela, que provocada pela passagem de um planeta em frente da sua estrela. Na sua missão inicial, o Kepler investigou apenas uma zona do céu no hemisfério norte, determinando a frequência de planetas cujo tamanho e temperatura podem ser semelhantes à da Terra em órbita de estrelas parecidas com o nosso Sol. Durante a missão prolongada, em 2013, perdeu a sua capacidade de olhar permanentemente para a sua área de estudo original, mas uma brilhante solução deu nova vida ao telescópio, que está provando ser cientificamente frutífera.

Depois da correção, o Kepler começou a sua missão K2, que tem proporcionado um campo de visão eclíptico com maiores oportunidades para observatórios terrestres tanto no hemisfério norte como no sul. Adicionalmente, a missão K2 é inteiramente conduzida pela comunidade, ou seja, todos os alvos são propostos pela comunidade científica.

Dado que abrange mais do céu, a missão K2 é capaz de observar uma maior fração de estrelas mais frias e pequenas. Considerando que as anãs vermelhas são muito mais comuns na Via Láctea do que as estrelas parecidas com o Sol, as estrelas nas proximidades são predominantemente anãs vermelhas.

"Uma analogia seria dizer que o Kepler realizou um estudo demográfico, ao passo que a missão K2 foca-se nas estrelas brilhantes e próximas com tipos diferentes de planetas," afirma Crossfield. "A missão K2 permite-nos aumentar o número de estrelas pequenas e vermelhas por um fator de 20, que perfazem os melhores sistemas para um estudo mais aprofundado."

Para validar os candidatos a planeta identificados pela missão K2, os pesquisadores obtiveram imagens espectroscopia óptica de alta resolução das estrelas hospedeiras. Ao dispersar a luz estelar como um prisma, os espectrógrafos permitem aos cientistas inferirem as propriedades física de uma estrela - como massa, raio e temperatura - a partir das quais as propriedades de quaisquer planetas em órbita podem ser inferidas.

Estas observações representam um salto natural da missão K2 para as outras missões exoplanetárias no futuro da agência espacial norte-americana, como o TESS (Transiting Exoplanet Survey Satellite) e o telescópio espacial James Webb.

As descobertas foram publicadas online na Série de Suplementos da revista The Astrophysical Journal.

Fonte: University of California

Superfície de Vênus revelada através das nuvens

Usando observações do satélite Venus Express da ESA, cientistas demonstraram pela primeira vez como os padrões climáticos observados nas espessas camadas de nuvens de Vênus estão diretamente ligados com a topografia da superfície por baixo. Ao invés de agir como uma barreira às observações, as nuvens de Vênus fornecem uma visão sobre o que está por baixo.

ondas de gravidade em Vênus

© ESA (ondas de gravidade em Vênus)

Vênus é notoriamente quente, devido a um extremo efeito de estufa que aquece a sua superfície até temperaturas tão elevadas quanto 450ºC. O clima à superfície é opressivo; além de ser quente, o ambiente superficial é pouco iluminado, devido a uma espessa camada de nuvens que envolve completamente o planeta. Os ventos ao nível do solo são lentos, movendo-se pelo planeta a velocidades de aproximadamente 1 metro por segundo.

No entanto, não é o que vemos quando observamos o "gêmeo da Terra" de cima. Em vez disso, espiamos um revestimento liso e brilhante de nuvens. Vemos uma camada que mede 20 km de espessura situada entre os 50 e os 70 km acima da superfície que é, portanto, muito mais fria do que mais abaixo, com temperaturas que rondam os –70ºC, idênticas às temperaturas encontradas no topo das nuvens aqui na Terra. A camada superior das nuvens também abriga um clima extremo, com ventos que sopram centenas de vezes mais depressa do que aqueles na superfície (e mais rápidos que a própria rotação de Vênus, um fenômeno apelidado de "super-rotação").

Apesar destas nuvens normalmente esconderem a superfície de Vênus da nossa observação, o que significa que só podemos espreitar por baixo usando radar ou radiação infravermelha, podem na verdade ser a chave para explorar alguns dos segredos de Vênus. Os cientistas suspeitavam que os padrões climáticos que ondulavam no topo das nuvens fossem influenciados pela topografia do terreno por baixo. Encontraram indícios disto no passado, mas não tinham uma imagem completa de como isto podia funcionar, até agora.

Os cientistas, por meio de observações com a Venus Express, melhoraram em muito o nosso mapa do clima de Vênus, explorando três aspetos do tempo nublado do planeta: a rapidez com que os ventos circulam, a quantidade de água nas nuvens e quão brilhantes são estas nuvens em todo o espectro (especificamente no ultravioleta).

"Os nossos resultados mostraram que todos estes aspetos - os ventos, o conteúdo de água e a composição das nuvens - estão de alguma forma ligados às propriedades da própria superfície de Vênus," afirma Jean-Loup Bertaux do LATMOS (Laboratoire Atmosphères, Milieux, Observations Spatiales), perto de Versalhes, França, e autor principal do novo estudo da Venus Express. "Nós usamos observações da Venus Express abrangendo um período de seis anos, de 2006 a 2012, o que nos permitiu estudar padrões climáticos de longo prazo do planeta."

Embora Vênus seja, comparativamente com a Terra, muito seco, a sua atmosfera contém um pouco de água sob a forma de vapor, particularmente por baixo da sua camada de nuvens. Bertaux e colegas estudaram o topo das nuvens de Vênus na zona infravermelha do espectro, o que permitiu com que captassem a absorção de luz solar pelo vapor de água e com que detectassem a quantidade presente em cada local do topo das nuvens, em torno de 70 km de altitude.

Eles descobriram que uma área particular de nuvens, perto do equador de Vênus, contém mais vapor de água do que os seus arredores. Esta região úmida está localizada mesmo acima de uma montanha com 4.500 metros de altitude na região chamada Aphrodite Terra. Este fenômeno parece ser provocado pelo ar, rico em água, da atmosfera interior, que é forçado para cima das montanhas em Aphrodite Terra, o que levou os pesquisadores a dar à característica a alcunha "fonte de Afrodite".

"Esta 'fonte' estava trancada dentro de um redemoinho de nuvens fluindo a jusante, deslocando-se de leste para oeste através de Vênus," afirma Wojciech Markiewicz do Max-Planck Institute for Solar System Research, em Göttingen, Alemanha. Porque é que toda esta água está neste lugar?

Em paralelo, os cientistas usaram a Venus Express para observar as nuvens no ultravioleta e para acompanhar as suas velocidades. Eles descobriram que as nuvens a jusante da "fonte" refletiam menos radiação ultravioleta do que em todos outros lugares, e que os ventos por cima da montanhosa região Aphrodite Terra eram cerca de 18% mais lentos do que em regiões vizinhas.

Todos estes três fatores podem ser explicados por um único mecanismo provocado pela espessa atmosfera de Vênus, propõem Bertaux e colegas.

"Quando os ventos se deslocam, lentamente, pelas encostas montanhosas à superfície, geram algo conhecido como ondas de gravidade," acrescenta Bertaux. "Apesar do nome, estas nada têm a ver com as ondas gravitacionais, que são ondulações no espaço-tempo; ao invés, as ondas de gravidade são um fenômeno atmosférico que vemos muitas vezes nas partes montanhosas da superfície da Terra. Grosseiramente falando, formam-se quando o ar ondula sobre superfícies acidentadas. As ondas propagam-se verticalmente para cima, com amplitudes cada vez maiores, até que se quebram logo abaixo do topo das nuvens, como as ondas do mar numa linha costeira."

À medida que as ondas se quebram, empurram os velozes ventos de alta altitude e fazem com que diminuam de velocidade, o que significa que os ventos acima das terras altas de Vênus são persistentemente mais lentos do que em outros lugares.

No entanto, estes ventos reaceleram para velocidades habituais a jusante de Aphrodite Terra, e este movimento funciona como uma bomba de ar. A circulação de vento cria um movimento para cima na atmosfera de Vênus e transporta ar rico em água e material escuro no ultravioleta de baixo até ao topo das nuvens, trazendo-a até à superfície da camada de nuvens e criando tanto a "fonte" observada como uma pluma estendida de vapor.

"Sabemos há décadas que a atmosfera de Vênus contém um misterioso absorvente ultravioleta, mas ainda não sabíamos a sua identidade," acrescenta Bertaux. "Esta descoberta ajuda-nos a entender um pouco mais sobre ele e sobre o seu comportamento, por exemplo, que é produzido por baixo do topo das nuvens e que o material escuro no ultravioleta é forçado para cima até ao topo das nuvens de Vênus pela circulação do vento."

Os cientistas já suspeitavam da existência de movimentos ascendentes na atmosfera de Vênus ao longo do equador, provocados pelos altos níveis de aquecimento solar. Esta descoberta revela que a quantidade de água e material escuro no ultravioleta, encontrados nas nuvens de Vênus, é também fortemente reforçada em determinados lugares ao redor do equador do planeta. "Isto é provocado pelas montanhas à superfície de Vênus, que desencadeiam o aumento das ondas e ventos circulatórios que desenterram material de baixo," explica Markiewicz.

Além de ajudar a compreender mais sobre Vênus, a descoberta de que a topografia da superfície pode afetar significativamente a circulação atmosférica tem consequências para a nossa compreensão da super-rotação planetária e do clima em geral.

"Isto certamente desafia os nossos modelos atuais de circulação," comenta Håkan Svedhem, cientista do projeto Venus Express. "Enquanto os nossos modelos reconhecem uma relação entre a topografia e o clima, não costumam produzir padrões climáticos persistentes ligados a características topográficas da superfície. Esta é a primeira vez que esta ligação foi demonstrada claramente em Vênus, é um grande resultado."

A Venus Express operou em Vênus desde 2006 até 2014, quando a sua missão terminou e a sonda começou a sua descida pela atmosfera de Vênus.

Fonte: ESA

segunda-feira, 18 de julho de 2016

A galáxia Frankenstein

Um local do Universo localizado a cerca de 250 milhões de anos-luz de distância era considerado calmo e normal. Mas agora, os cientistas descobriram uma enorme galáxia, possivelmente formada a partir das partes de outras galáxias.

UGC 1382

© NASA/JPL/Caltech/SDSS/NRAO/L. Hagen/M. Seibert (UGC 1382)

À esquerda, em luz visível, a UGC 1382 parece ser uma galáxia elíptica normal. Mas quando os dados da radiação ultravioleta são incluídos, são evidenciados os braços espirais da galáxia (meio). Ao combinar isso com o gás hidrogênio de baixa densidade (em verde, na direita), os astrônomos perceberam que a UGC 1382 é gigantesca.

Um novo estudo revelou o segredo da UGC 1382, uma galáxia que tinha sido originalmente considerada velha, pequena e típica. Em vez disso, os cientistas usando dados de telescópios da NASA e outros observatórios descobriram que a galáxia é 10 vezes maior do que se pensava anteriormente e, ao contrário da maioria das galáxias, o seu interior é mais jovem do que seu exterior, quase como se tivesse sido construído com peças de reposição.

"Esta rara galáxia 'Frankenstein' formada é capaz de sobreviver porque se encontra em uma pacata vizinhança suburbana do Universo, onde nenhuma das partes mais movimentadas pode incomodá-la," disse Mark Seibert da Carnegie Institution for Science, em Pasadena, Califórnia. "É tão delicada que um pequeno empurrão de uma vizinha faria com que ela se desintegrasse."

Seibert e Lea Hagen, um estudante de graduação na Universidade Estadual da Pensilvânia, University Park, encontraram esta galáxia por acidente. Eles estavam observando a formação de estrelas em galáxias elípticas, que não giram e com formato de bola de futebol.

Mas ao olhar para imagens de galáxias em luz ultravioleta através de dados a partir Galaxy Evolution Explorer (GALEX) da NASA, uma gigante começou a emergir da escuridão.

"Vimos braços espirais que se estendem muito além desta galáxia, que ninguém tinha notado antes, e que galáxias elípticas não deve ser," disse Hagen, que conduziu o estudo. "Isso nos coloca em uma expedição para descobrir o que esta galáxia é e como se formou."

Então, os pesquisadores analisaram os dados da galáxia de outros telescópios: o Sloan Digital Sky Survey, Two Micron All-Sky Survey (2MASS), Wide-field Infrared Survey Explorer (WISE), Very Large Array do National Radio Astronomy Observatory e do telescópio du Pont da Carnegie no Las Campanas Observatory. Após o GALEX revelar estruturas inéditas para os astrônomos, observações de luz ópticos e infravermelhos de outros telescópios permitiram aos pesquisadores construir um novo modelo desta misteriosa galáxia.

A galáxia UGC 1382 tem cerca de 718.000 anos-luz de diâmetro, e é mais de sete vezes maior do que a Via Láctea. Ela também é uma dos três maiores galáxias isoladas de disco já descobertas, de acordo com o estudo. Esta galáxia é um disco girando com gás de baixa densidade. As estrelas não se formam aqui muito rapidamente porque o gás está se espalhando.

Mas a maior surpresa foi como a idade relativa dos componentes da galáxia aparecem ao contrário. Na maioria das galáxias, a porção mais interna se forma primeira e contém as estrelas mais antigas. Enquanto a galáxia cresce, suas regiões exteriores mais novas têm as estrelas mais jovens. Não é assim com a UGC 1382. Ao combinar observações de muitos telescópios diferentes, os astrônomos foram capazes de juntar as peças do registro histórico de quando as estrelas se formaram nesta galáxia, e o resultado foi bizarro.

"O centro da UGC 1382 é realmente mais jovem que o disco em espiral em torno dela," disse Seibert. "É velho no exterior e jovem por dentro. Isso é como encontrar uma árvore cujos anéis de crescimento interior são mais jovens do que os anéis externos."

A estrutura galáctica única pode ter resultado de entidades separadas que se uniram, ao invés de uma única entidade que cresceu para fora. Em outras palavras, duas partes da galáxia parecem ter evoluído independentemente antes de se fundir, cada uma com sua própria história.

No início, provavelmente houve um grupo de pequenas galáxias dominadas por gás e matéria escura, que é uma substância invisível que compõe cerca de 27% de toda a matéria e energia do Universo (a matéria comum é de apenas 5%). Mais tarde, uma galáxia lenticular, um disco giratório sem braços espirais, teria se formado nas proximidades. Pelo menos 3 bilhões de anos atrás, as galáxias mais pequenas poderiam ter caído em órbita ao redor da galáxia lenticular, eventualmente, acomodando-se no amplo disco visto hoje.

Mais galáxias como esta podem existir, mas é necessária mais investigação para procurá-las.

"Ao compreender esta galáxia, podemos obter pistas sobre como as galáxias se formam em uma escala maior, e descobrir mais surpresas na vizinhança galáctica," disse Hagen.

O novo estudo será publicado no Astrophysical Journal.

Fonte: NASA

domingo, 17 de julho de 2016

Chandra encontra evidências de violenta fusão estelar

As explosões de raios gama, ou GRBs, são alguns dos eventos mais violentos e energéticos no Universo. Embora esses eventos são as explosões mais luminosas do Universo, um novo estudo usando o observatório de raios X Chandra da NASA, o satélite Swift da NASA e outros telescópios sugere que pode estar em falta a maioria dessas poderosas explosões cósmicas.

explosão de raios gama

© NASA/CXC/M.Weiss (explosão de raios gama)

Os astrônomos acreditam que algumas GRBs são o produto da colisão e fusão de duas estrelas de nêutrons ou uma estrela de nêutrons e um buraco negro. A nova pesquisa dá a melhor evidência até agora de que tais colisões irão gerar um jato muito estreito de raios gama. Se este jato não está apontado em direção à Terra, a GRB produzida pela colisão não será detectada.

Colisões entre duas estrelas de nêutrons ou uma estrela de nêutrons e buracos negros são fortes fontes de ondas gravitacionais que podem ser detectadas. Portanto, este resultado tem implicações importantes para o número de eventos que serão detectáveis ​​pelo Gravitational-Wave Observatory Laser interferometria (LIGO) e outros observatórios de ondas gravitacionais.

Em 3 de Setembro de 2014, o observatório Swift da NASA captou uma GRB, denominada GRB 140903A, designação devido à data em que foi detectada. Os cientistas usaram observações ópticas com o observatório Gemini, no Havaí, para determinar que a GRB 140903A foi localizada em uma galáxia a cerca de 3,9 bilhões de anos luz de distância.

O grande painel no gráfico é uma ilustração que mostra as consequências da fusão de uma estrela de nêutrons, incluindo a geração de um GRB. No centro está um objeto compacto, um buraco negro ou uma estrela de nêutrons massiva, e em vermelho é um disco de material que sobrou da fusão, que contém material que cai em direção ao objeto compacto. A energia emanada deste material colapsando impulsiona o jato da GRB mostrado em amarelo. Em laranja é um vento de partículas soprando longe do disco e em azul é o material ejetado do objeto compacto e expandindo com velocidades muito altas de cerca de um décimo da velocidade da luz.

A imagem à esquerda dos dois painéis menores mostra uma vista óptica do Telescópio Discovery Channel (DCT) com GRB 140903A no meio e uma imagem de raios X obtida pelo Chandra à direita. A estrela brilhante no óptico está relacionada com a GRB.

A explosão de raios gama durou menos de dois segundos. Cerca de três semanas após a descoberta pelo Swift da GRB 140903A, uma equipe de pesquisadores liderada por Eleonora Troja, da Universidade de Maryland, College Park (UMD), observou o rescaldo da GRB em raios X com Chandra. Observações do Chandra de como a emissão de raios X a partir desta GRB diminui ao longo do tempo fornecem informações importantes sobre as propriedades do jato.

Especificamente, os pesquisadores descobriram que o jato é irradiado em um ângulo de apenas cerca de cinco graus baseado nas observações de raios X, além de observações ópticas com o observatório Gemini e do DCT e observações de rádio com o Karl G. Jansky Very Large Array. Isto é aproximadamente equivalente a um círculo com o diâmetro de seus três dedos do meio realizada no comprimento dos braços. Isto significa que os astrônomos estão detectando apenas cerca de 0,4% deste tipo de GRB quando se apaga, uma vez que na maioria dos casos o jato não estará apontado diretamente para nós.

Estudos anteriores por outros astrônomos haviam sugerido que estas fusões poderiam produzir jatos estreitos. No entanto, as provas nesses casos não era tão forte porque o rápido declínio da luz não foi observada em vários comprimentos de onda, permitindo explicações que não envolvem jatos.

Várias evidências vinculam este evento para a fusão de duas estrelas de nêutrons, ou entre uma estrela de nêutrons e buracos negros. Estes incluem as propriedades de emissão de raios gama, a velhice e a baixa taxa de estrelas se formando na galáxia hospedeira da GRB e a falta de uma supernova brilhante. Em alguns casos anteriores forte evidência para esta ligação não foi encontrada.

Novos estudos têm sugerido que essas fusões poderiam ser o local de produção de elementos mais pesados ​​que o ferro, tais como o ouro. Portanto, a taxa desses eventos também é importante para estimar a quantidade total de elementos pesados ​​produzidos por estas fusões e compará-los com os valores observados na Via Láctea.

Um artigo descrevendo estes resultados foi recentemente aceito para publicação no Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

sábado, 16 de julho de 2016

Buraco negro faz o material oscilar em seu redor

O observatório de raios X XMM-Newton da ESA provou a existência de um "vórtice gravitacional" em torno de um buraco negro.

ilustração do disco de acreção de um buraco negro sofrendo precessão

© ESA/ATG medialab (ilustração do disco de acreção de um buraco negro sofrendo precessão)

A descoberta, assistida pela missão NuSTAR (Nuclear Spectroscopic Telescope Array) da NASA, resolve um mistério que iludia os astrônomos há mais de 30 anos, e permitirá mapear o comportamento da matéria muito perto dos buracos negros. Também pode abrir a porta a futuras investigações da relatividade geral de Albert Einstein.

A matéria que cai sobre um buraco negro aquece à medida que mergulha para a sua ruína. Antes de passar para o buraco negro e de se perder para sempre da vista, pode atingir milhões de graus. A essa temperatura, emite raios X para o espaço.

Na década de 1980, os astrônomos pioneiros que usavam os primeiros telescópios de raios X descobriram que os raios X provenientes de buracos negros de massa estelar, na nossa Galáxia, cintilam. As mudanças seguem um padrão definido. Quando essa oscilação começa, o escurecimento e reavivamento pode demorar até 10 segundos para completar. À medida que passam dias, semanas e meses, o período diminui até que a oscilação ocorre 10 vezes por segundo. Aí, a cintilação cessa subitamente e completamente.

O fenômeno foi apelidado de Oscilação Quasi-Periódica (OQP). "Reconheceu-se imediatamente que era algo fascinante porque vinha de uma zona muito próxima de um buraco negro," afirma Adam Ingram, da Universidade de Amsterdam, na Holanda que, em 2009, começou a trabalhar na compreensão das OQPs para a sua tese de doutoramento.

Durante a década de 1990, os astrônomos começaram a suspeitar que as OQPs estavam associadas com um efeito gravitacional previsto pela relatividade geral de Einstein: que um objeto giratório cria uma espécie de vórtice gravitacional.

"É um pouco como torcer uma colher com mel. Imagine que o mel é o espaço e tudo o que está embebido no mel será 'arrastado' em torno da colher," explica Ingram. "Na realidade, isto significa que qualquer coisa em órbita de um objeto giratório verá o seu movimento afetado." No caso de uma órbita inclinada, irá sofrer precessão. Isto significa que toda a órbita vai mudar de orientação em torno do objeto central. O tempo que demora para a órbita voltar à sua condição inicial é conhecido como ciclo de precessão.

Em 2004, a NASA lançou a Gravity Probe B para medir este chamado efeito de Lense-Thirring ao redor da Terra. Após uma análise cuidadosa, os cientistas confirmaram que a sonda iria completar um ciclo de precessão a cada 33 milhões de anos.

No entanto, em torno de um buraco negro, o efeito será muito mais perceptível devido ao muito mais forte campo gravitacional. O ciclo de precessão levaria apenas uma questão de segundos ou menos para ficar concluído. Estes valores são tão parecidos com os das OQPs.

Ingram observou o que acontecia no disco plano de matéria ao redor de um buraco negro. Conhecido como disco de acreção, é o local onde o material espirala gradualmente na direção do buraco negro. Os cientistas já suspeitavam que, perto do buraco negro, o disco de acreção plano "incha" para um plasma quente, no qual são retirados elétrons de seus átomos. Denominado fluxo interno quente, diminui de tamanho ao longo de semanas e meses à medida que é absorvido pelo buraco negro. Em conjunto com colegas, Ingram publicou um artigo, em 2009, que sugeria que a OQP é impulsionada pela precessão de Lense-Thirring deste fluxo quente. Isto porque quanto menor o fluxo interior, mais perto se aproxima do buraco negro e, portanto, mais rápido o ciclo Lense-Thirring se torna. A questão era: como provar isto?

"Passamos muito tempo tentando encontrar evidências conclusivas deste comportamento," comenta Ingram.

A resposta é que o fluxo interno libera radiação altamente energética que atinge a matéria no disco de acreção ao redor, fazendo com que os átomos de ferro no disco brilhem como um tubo de luz fluorescente. O ferro libera raios X num único comprimento de onda, a que se dá o nome "linha espectral".

Dado que o disco de acreção se encontra em rotação, a linha do ferro vê o seu comprimento de onda ser distorcido pelo efeito Doppler. A linha de emissão do lado do disco que gira na direção da Terra é comprimida, desviando-se para o azul, e a linha de emissão do lado do disco que gira na direção contrária é esticada, desviando-se para o vermelho. Se o fluxo interno está realmente em precessão, vai, por vezes, brilhar no disco de material em aproximação e por vezes no material em recuo, fazendo com que a linha oscile para a frente e para trás ao longo de um ciclo de precessão.

Foi na observação desta oscilação que o XMM-Newton entrou em ação. Ingram e colegas de Amsterdam, de Cambridge Durham, Southampton e de Tóquio, solicitaram uma observação de longa-duração que lhes permitisse ver a OQP repetidamente. Escolheram o buraco negro H 1743-322, que exibia no momento uma OQP de quatro segundos. Observaram o objeto durante 260.000 segundos. Também o observaram durante 70.000 segundos com o observatório de raios X NuSTAR.

"A capacidade de alta-energia do NuSTAR foi muito importante," realça Ingram. "O NuSTAR confirmou a oscilação na linha do ferro e, adicionalmente, vimos uma característica no espectro chamada 'protuberância de reflexão' que acrescenta mais evidências para a precessão."

Após um processo rigoroso de análise, que consistiu na aglomeração de todos os dados observacionais, viram que a linha do ferro oscilava de acordo com as previsões da relatividade geral. "Estamos medindo diretamente o movimento de matéria num forte campo gravitacional perto de um buraco negro," comenta Ingram.

É a primeira vez que se mede o efeito Lense-Thirring num campo gravitacional forte. A técnica permitirá o mapeamento da matéria nas regiões interiores dos discos de acreção em torno de buracos negros. Também sugere uma nova e poderosa ferramenta para testar a relatividade geral.

A teoria de Einstein tem permanecido praticamente não testada em campos gravitacionais tão fortes como este. Por isso, se os astrônomos puderem compreender a física da matéria que flui para o buraco negro, poderão então testar as previsões da relatividade geral como nunca antes, mas só se o movimento da matéria no disco de acreção puder ser completamente compreendido.

"Se conseguirmos esmiuçar a astrofísica, podemos testar verdadeiramente a relatividade geral," salienta Ingram. Um desvio das previsões da relatividade geral será bem-recebido por uma grande quantidade de astrônomos e físicos. Será um sinal concreto de que existe uma teoria mais profunda da gravidade.

Os maiores telescópios de raios X, no futuro, poderão ajudar na pesquisa porque são mais poderosos e podem recolher raios X de forma mais eficiente. Isto permitirá com que seja investigado o fenômeno da OQP em mais detalhe.

"Este é um grande avanço, pois o estudo combina informação acerca dos tempos e da energia dos fótons de raios X para encerrar o debate de 30 anos em torno da origem das OQPs. A capacidade de captação de fótons do XMM-Newton foi fundamental para este trabalho," conclui Norbert Schartel, cientista do projeto XMM-Newton da ESA.

Fonte: ESA

sexta-feira, 15 de julho de 2016

NGC 2736: A Nebulosa do Lápis

Movendo-se de cima para baixo na imagem perto do centro desta composição colorida acentuadamente detalhada, finos filamentos trançados são realmente longas ondulações em uma folha cósmica de gás brilhante visto quase de perfil.

NGC 2736_Howard Hedlund & Dave Jurasevich

© Howard Hedlund/Dave Jurasevich (NGC 2736)

Esta onda de choque abre caminho pelo espaço a mais de 500.000 quilômetros por hora. Movendo-se para baixo nesta composição em falsa cor lindamente detalhada, os finos filamentos trançados são na realidade longas ondulações numa lâmina de gás brilhante vistos quase de lado.

Catalogada como NGC 2736, sua aparência alongada sugere seu nome popular, a Nebulosa do Lápis. Ela possui cerca de 5 anos-luz de comprimento e situa-se a 800 anos-luz de distância, mas representa apenas uma parte pequena do remanescente de supernova Vela. O próprio remanescente Vela tem cerca de 100 anos-luz de diâmetro e é a nuvem de fragmentos em expansão de uma estrela cuja explosão foi vista cerca de 11.000 anos atrás.

Inicialmente, a onda de choque moveu-se a milhões de quilômetros por hora, mas teve sua velocidade reduzida consideravelmente, arrastando o material interestelar circundante. Na banda estreita, a imagem de campo extenso, cores vermelha e azul-esverdeada controlam o brilho característico de átomos de hidrogênio e oxigênio ionizados.

Fonte: NASA