terça-feira, 4 de abril de 2017

O planeta Saturno em infravermelho

Muitos detalhes de Saturno aparecem claramente na luz infravermelha.

Saturno

© Cassini/Maksim Kakitsev (Saturno)

Bandas de nuvens mostram grandes estruturas, incluindo tempestades ao longo delas. Também, bastante impressionante no infravermelho é o padrão incomum de nuvem hexagonal em torno do polo norte de Saturno. Cada lado do hexágono escuro tem aproximadamente o diâmetro da Terra.

A existência do hexágono não foi prevista, e sua origem e provável estabilidade constituem um tópico sendo pesquisado. Os célebres anéis de Saturno circundam o planeta e geram sombras abaixo do equador do planeta.

A imagem em destaque foi tomada pela sonda Cassini em 2014, em várias cores infravermelhas, mas foi processada apenas recentemente. Em setembro deste ano, a missão da sonda Cassini será finalizada de forma dramática, com a sonda sendo direcionada para mergulhar no interior do planeta Saturno.

Fonte: NASA

segunda-feira, 3 de abril de 2017

Auroras alienígenas em Urano

Desde que a Voyager 2 emitiu imagens espetaculares dos planetas nos anos 80, os amantes de planetas foram fisgados pelas auroras extraterrestres.

anel e auroras em Urano

© Hubble/Voyager 2 (anel e auroras em Urano)

Esta é uma imagem composta de Urano pela Voyager 2 e duas observações diferentes feitas por Hubble, uma para o anel e outra para as auroras.

As auroras são causadas por correntes de partículas carregadas como elétrons, que vêm de várias origens, como ventos solares, ionosfera planetária e vulcanismo lunar. Elas ficam estagnadas em poderosos campos magnéticos e são canalizadas para a atmosfera superior, onde suas interações com moléculas de gás, como oxigênio ou nitrogênio, desencadeiam explosões espetaculares de luz.

As auroras alienígenas em Júpiter e Saturno são bem estudadas, mas não se sabe muito sobre as auroras do gigantesco planeta gelado Urano. Em 2011, o telescópio espacial Hubble da NASA/ESA tornou-se o primeiro instrumento a captar uma imagem das auroras em Urano. Em 2012 e 2014 os astrônomos deram uma segunda olhada nas auroras usando as capacidades ultravioletas do Space Telescope Imaging Spectrograph (STIS) instalado no Hubble.

Eles acompanharam os choques interplanetários causados ​​por duas poderosas rajadas de vento solar viajando do Sol para Urano, então usaram o Hubble para captar seu efeito nas auroras de Urano, e observando as auroras mais intensas já vistas no planeta.

Ao observar as auroras ao longo do tempo, foi recolhida a primeira evidência direta de que estas poderosas regiões brilhantes giravam com o planeta. foi possível também redescobrir os polos magnéticos perdidos por Urano, que foram perdidos pouco depois de sua descoberta pela Voyager 2 em 1986 devido a incertezas nas medições e inexpressiva superfície do planeta.

Fonte: ESA

domingo, 2 de abril de 2017

Um aglomerado estelar e as galáxias mais distantes

Perto dos subúrbios da Pequena Nuvem de Magalhães, a galáxia satélite da Via Láctea, localizada a cerca de 200 mil anos-luz de distância, encontra-se o jovem aglomerado de estrelas NGC 602, de apenas 5 bilhões de anos.

NGC 602

© Chandra/Hubble/Spitzer (NGC 602)

Rodeado por gás e poeira primordial, a NGC 602 é destaque nesta imagem impressionante do Hubble, combinada com as imagens em raio X do Chandra, e em infravermelho do Spitzer. As cristas fantásticas e as formas arrastadas para trás sugerem fortemente que a radiação energética e as ondas de choque das gigantescas estrelas jovens da NGC 602 corroeram o material empoeirado e desencadearam uma progressão na formação estelar afastando-se do centro do aglomerado.

À distância estimada da Pequena Nuvem de Magalhães, cujo alcance ocupa cerca de 200 anos-luz, nota-se uma variedade tentadora de galáxias ao fundo que também é visível nesta visão nítida e multicolorida. As galáxias de fundo estão centenas de milhões de anos-luz ou mais além da NGC 602.

Fonte: NASA

sábado, 1 de abril de 2017

O remanescente de supernova N103B

Esta imagem, obtida com o telescópio espacial Hubble, mostra o remanescente da supernova SNR 0509-68.7, também conhecida como N103B, vista na parte superior da imagem.

remanescente de supernova N103B

© Hubble (remanescente de supernova N103B)

A N103B era uma supernova tipo Ia, localizada na Grande Nuvem de Magalhães, uma galáxia satélite da Via Láctea. Devido à sua relativa proximidade com a Terra, os astrônomos observam o remanescente para procurar um potencial sobrevivente estelar da explosão.

Os filamentos visíveis na imagem em tons laranjas e vermelhos mostram as frentes de choque da explosão da supernova. Estes filamentos permitem aos astrônomos calcular o centro original da explosão. Os filamentos também mostram que a explosão não está mais se expandindo como uma esfera, mas de forma elíptica. A parte do material ejetado pela explosão atingiu uma nuvem mais densa de material interestelar, o que retardou sua velocidade. A concha de material em expansão que está aberta para um lado suporta esta ideia.

NGC 1850

© Hubble/Martino Romaniello (NGC 1850)

O gás na metade inferior da imagem e a densa concentração de estrelas no canto inferior esquerdo são os arredores do aglomerado de estrelas NGC 1850, que foi observado pelo Hubble no passado.

Fonte: ESA

Como fotografar a região mais próxima do buraco negro da Via Láctea

Desde que foram mencionados pela primeira vez por John Michell numa carta à Sociedade Real de Londres em 1783, que os buracos negros têm iluminado a imaginação dos cientistas.

ilustração do horizonte de eventos de um buraco negro

© ESO/S. Brunier (ilustração do horizonte de eventos de um buraco negro)

Talvez parte do fascínio é que estes objetos enigmáticos nunca foram realmente "vistos". Mas isto pode estar agora prestes a mudar, pois uma equipe internacional de astrônomos está ligando vários telescópios na esperança de obter a primeira imagem de um buraco negro.

Os buracos negros são regiões do espaço onde a atração da gravidade é tão forte que nada, nem mesmo a luz, consegue escapar. A sua existência foi prevista matematicamente por Karl Schwarzchild em 1915, como solução para equações propostas pela teoria da relatividade geral de Albert Einstein.

Os astrônomos já têm, há décadas, evidências circunstanciais de que, nos núcleos de galáxias massivas, encontram-se buracos negros supermassivos, entre um milhão e bilhões de vezes a massa do Sol. Isto porque eles conseguem ver a atração gravitacional que exercem sobre estrelas que orbitam ao redor do centro galáctico. Quando abastecidos com material do ambiente galáctico circundante, também podem expelir jatos de plasma com velocidades próximas da luz. O ano passado, a experiência LIGO forneceu ainda mais evidências através da famosa detecção de ondulações no espaço-tempo provocadas pela fusão de dois buracos negros de massa intermediária há milhões de anos atrás.

Mas, apesar de sabermos que os buracos negros existem, ainda permanecem, na vanguarda da astronomia moderna, questões sobre sua origem, evolução e influência no Universo.

Entre os dias 5 e 14 de abril de 2017, a equipe por trás do EHT (Event Horizon Telescope) espera testar as teorias fundamentais da física dos buracos negros, tentando obter a primeira imagem do horizonte de eventos de um buraco negro. Ao ligar uma rede global de radiotelescópios para formar o equivalente a um telescópio gigante do tamanho da Terra, usando uma técnica conhecida como Interferometria de Linha de Base Muito Longa e síntese de abertura da Terra, os cientistas vão examinar o coração da Via Láctea, onde se esconde um buraco negro com 4 milhões de vezes a massa do Sol, Sagittarius A*.

Sabe-se que existe um disco de poeira e gás em órbita do buraco negro. O percurso que a luz deste material leva será distorcido no campo gravitacional do buraco negro. O seu brilho e cor também devem ser alterados de maneiras previsíveis. A assinatura que se espera observar com o EHT é uma forma crescente brilhante em vez de um disco. E podem, quem sabe, até ser vista a sombra do horizonte de eventos do buraco negro contra o plano de fundo deste material brilhante e giratório.

A rede liga nove estações espalhadas pelo planeta, alguns telescópios individuais e várias coleções de telescópio, na Antártica, Chile, Havaí, Espanha, México e EUA. O "telescópio virtual" está em desenvolvimento há muitos anos e a tecnologia já foi testada. No entanto, estes testes revelaram, inicialmente, uma sensibilidade limitada e uma resolução angular insuficiente para estudar as escalas necessárias para observar a região do buraco negro. Mas a adição de novas redes telescópicas, incluindo o ALMA (Atacama Large Millimeter Array) no Chile e o SPT (South Pole Telescope), dará à rede um impulso necessário em capacidade de resolução. É como colocar óculos e, de repente, sermos capazes de ver ambos os faróis de um carro que se dirige na nossa direção, em vez de um único borrão de luz.

O buraco negro é uma fonte compacta no céu, no visível, está completamente bloqueado por grandes quantidades de gás e poeira. No entanto, os telescópios com resolução suficiente e operando a longos comprimentos de onda, no rádio, podem atravessar este nevoeiro cósmico.

A resolução de qualquer tipo de telescópio, o mais fino detalhe que pode ser discernido e medido, é geralmente citado como um pequeno ângulo correspondente à razão entre o tamanho de um objeto e a sua distância. O tamanho angular da Lua, vista a partir da Terra, é de mais ou menos meio grau, ou 1.800 segundos de arco. Para qualquer telescópio, quanto maior a abertura, maior o detalhe que pode ser observado.

A resolução de um único radiotelescópio, por exemplo, com a abertura de 100 metros, é aproximadamente de 60 segundos de arco. Isto é comparável à resolução do olho humano, sem ajudas, e a cerca de um-sexagésimo do diâmetro aparente da Lua Cheia. Mas, ao ligarmos muitos telescópios, o EHT será capaz de atingir uma resolução de 15 a 20 microssegundos de arco, equivalente a ser capaz de discernir uma uva à distância da Lua.

Embora a prática de ligar muitos telescópios, desta maneira, seja bem conhecida, o EHT vai enfrentar desafios particulares. Os dados recolhidos em cada estação da rede serão enviados para uma instalação de processamento central onde um supercomputador vai combiná-los cuidadosamente. Diferentes condições meteorológicas, atmosféricas e telescópicas, em cada local, vão exigir uma calibração meticulosa dos dados para que os cientistas possam ter a certeza que quaisquer características que encontrem nas imagens finais não sejam artefatos.

Se funcionar, a captação de imagens do material perto da região do buraco negro, com resoluções angulares comparáveis à do seu horizonte de eventos, abrirá uma nova era no estudo dos buracos negros e resolverá uma série de grandes questões: será que os horizontes de eventos sequer existem? Será que a teoria de Einstein funciona nesta região de gravidade extrema ou precisamos de uma nova teoria para descrever a gravidade assim tão perto de um buraco negro? Além disso, como é que os buracos negros são abastecidos e como é que o material é expelido?

Poderá até mesmo ser possível captar imagens de buracos negros no centro de galáxias vizinhas.

Em última análise, a combinação de teorias matemáticas e de profundos conhecimentos físicos, impressionantes colaborações científicas internacionais, incríveis avanços tecnológicos na física experimental e na engenharia, vão revelar a natureza do espaço-tempo como uma característica definidora da ciência do início do século XXI.

Fonte: Nature

NuSTAR examina intrigante fusão galáctica

Um buraco negro supermassivo, no interior de uma galáxia minúscula, está desafiando as ideias dos cientistas acerca do que acontece quando duas galáxias se tornam uma.

imagem óptica do sistema Was 49

© DCT/NRL (imagem óptica do sistema Was 49)

Was 49 é o nome de um sistema que consiste de uma grande galáxia de disco, referida como Was 49a, em fusão com uma galáxia anã muito menor chamada Was 49b. A galáxia anã gira dentro do disco da galáxia maior, a cerca de 26.000 anos-luz do seu centro. Graças à missão NuSTAR (Nuclear Spectroscopic Telescope Array) da NASA, os cientistas descobriram que a galáxia anã é tão luminosa em raios X de alta energia, que deve hospedar um buraco negro supermassivo muito maior e mais poderoso do que o esperado.

"Este é um sistema completamente diferente e é contrário ao que entendemos das fusões galácticas," comenta Nathan Secrest, autor principal do estudo e pós-doutorado do U.S. Naval Research Laboratory, em Washington.

Os dados do NuSTAR e do SDSS (Sloan Digital Sky Survey) sugerem que a massa do buraco negro da anã é enorme, em comparação com galáxias de tamanho semelhante, tendo mais de 2% da própria massa da galáxia.

Não era esperado que as galáxias anãs hospedavam buracos negros supermassivos assim tão grandes. "Este buraco negro pode ser centenas de vezes mais massivo do que o que seria de esperar para uma galáxia deste tamanho, dependendo de como a galáxia evoluiu em relação a outras galáxias," realça Secrest.

O buraco negro da galáxia anã é o motor de um núcleo galáctico ativo (AGN), um fenômeno cósmico no qual a radiação altamente energética é expelida à medida que um buraco negro devora gás e poeira. Este AGN em particular parece estar coberto por uma estrutura gasosa e poeirenta com formato toroidal. As missões Chandra e Swift da NASA foram usadas para caracterizar mais detalhadamente a emissão de raios X.

Normalmente, quando duas galáxias começam a fundir-se, o buraco negro central da galáxia maior torna-se ativo, engolindo vorazmente gás e poeira e expelindo raios X altamente energéticos à medida que a matéria é convertida em energia. Isto ocorre porque, à medida que as galáxias se aproximam uma da outra, as suas interações gravitacionais criam um torque que encaminha gás para o buraco negro central da galáxia maior. Mas, neste caso, a galáxia menor abriga um AGN mais luminoso com um buraco negro supermassivo mais ativo e o buraco negro central da galáxia maior está relativamente silencioso.

Uma imagem óptica do sistema Was 49, compilada usando observações do Discovery Channel Telescope em Happy Jack, no estado norte-americano do Arizona, usa os mesmos filtros de cor que o SDSS. Dado que Was 49 está tão longe, estas cores estão otimizadas para separar a emissão de gás altamente ionizado, como a região cor-de-rosa em torno do faminto buraco negro supermassivo, da luz estelar "normal", vista em tons de verde. Isto permitiu com que os astrônomos determinassem com maior precisão o tamanho da galáxia anã que hospeda o buraco negro supermassivo.

A emissão rosa sobressai numa nova imagem graças à intensa radiação ionizante emanada pelo poderoso AGN. Enterrada dentro desta região de intensa ionização, está uma tênue coleção de estrelas, que se pensa fazer parte da galáxia que rodeia o enorme buraco negro. Estas características impressionantes situam-se na periferia da muito maior galáxia espiral Was 49a, que aparece esverdeada devido à distância e aos filtros ópticos usados.

Os cientistas ainda estão tentando descobrir porque é que o buraco negro supermassivo da galáxia anã Was 49b é tão grande. Podia já ser grande antes do início da fusão, ou poderá ter crescido durante uma fase muito inicial da fusão.

"Este estudo é importante porque pode fornecer novas informações sobre a formação e evolução dos buracos negros supermassivos neste tipo de sistemas," afirma Secrest. "Ao examinar sistemas como este, podemos encontrar pistas sobre como o buraco negro supermassivo da nossa própria Galáxia se formou."

Daqui a várias centenas de milhões de anos, os buracos negros da galáxia grande e da galáxia anã vão tornar-se num único monstruoso gigante.

Fonte: Astronomy

Encontrando um planeta "perdido", quase do tamanho de Netuno

Astrônomos da Universidade de Yale descobriram um planeta "perdido" que tem quase o tamanho de Netuno e que está situado num sistema solar a 3.000 anos-luz da Terra.

ilustração do exoplaneta Kepler-150 f

© Michael S. Helfenbein (ilustração do exoplaneta Kepler-150 f)

O novo planeta, Kepler-150 f, foi esquecido por vários. Os algoritmos de computador é que identificam a maioria destes exoplanetas, planetas localizados fora do Sistema Solar. Os algoritmos pesquisam dados de levantamentos de missões espaciais, à procura de trânsitos reveladores de planetas orbitando em frente de estrelas distantes.

Mas às vezes os computadores falham. Neste caso, era um planeta no sistema Kepler-150 com uma órbita longa em torno do seu sol. Kepler-150 f leva 637 dias para completar uma volta em torno da sua estrela hospedeira, uma das órbitas mais longas conhecidas para um sistema com cinco ou mais planetas.

A missão Kepler encontrou outros quatro planetas no sistema Kepler-150 - Kepler-150 b, c, d e e, há vários anos atrás. Todos têm órbitas muito mais próximas da estrela do que este novo planeta.

"Só usando a nossa nova técnica de modelagem e subtraindo os sinais dos trânsitos dos planetas conhecidos, conseguimos realmente ver o que realmente era," comenta Joseph Schmitt, estudante da Universidade Yale. "Essencialmente, estava escondido à vista de todos, numa floresta de outros trânsitos planetários."

Um artigo foi publicado na revista The Astronomical Journal.

Fonte: Yale University

Estrelas jovens e nebulosas poeirentas em Taurus

Este complexo de nebulosas empoeiradas permanece ao longo da borda da nuvem molecular Taurus, a apenas 450 anos-luz de distância.

Cederblad 30 e Barnard 7

© Lloyd L. Smith/Deep Sky West (Cederblad 30 e Barnard 7)

As estrelas estão se formando na cena cósmica. O campo de visão telescópico com 2 graus de largura, composto por quase 40 horas de dados de imagem, inclui algumas estrelas jovens da classe T-Tauri incorporadas nos restos de suas nuvens natais, à direita.

Com milhões de anos de idade e ainda atravessando a adolescência estelar, as estrelas são variáveis em brilho e estão nas fases finais de seu colapso gravitacional. Suas temperaturas centrais subirão para sustentar a fusão nuclear à medida que evoluem em estrelas da sequência principal, estáveis e de massa baixa, um estágio da evolução estelar alcançado por nosso Sol de idade mediana, com cerca de 4,5 bilhões de anos.

Outra estrela variável jovem, V1023 Tauri, pode ser observada à esquerda. Dentro de sua nuvem de poeira amarelada, fica ao lado da impressionante nebulosa de reflexão azul Cederblad 30, também conhecida como LBN 782. Logo acima da brilhante nebulosa de reflexão azulada está a nebulosa escura e empoeirada Barnard 7.

Fonte: NASA

quinta-feira, 30 de março de 2017

Detectada super bolha de gás em expansão ao redor de buracos negros

Num estudo, liderado por Sandy Morais, uma aluna de doutoramento do Instituto de Astrofísica e Ciências do Espaço (IA) e Faculdade de Ciências da Universidade do Porto (FCUP), os pesquisadores descobriram gigantescas bolhas de gás  e poeira em torno de duas radiogaláxias longínquas, a cerca de 11,5 bilhões de anos-luz de distância.

radiogaláxia e bolha de gás

© NASA/NAOJ (radiogaláxia e bolha de gás)

O quadro à esquerda da imagem composta acima mostra uma radiogaláxia e bolha de gás, no visível, infravermelho e raios X, e o quadro à direita é uma ilustração da galáxia, com emissão de jatos.

As radiogaláxias são um tipo de galáxias com núcleos ativos de galáxias (AGNs) no seu centro. Estes AGNs consomem material, como gás, a taxas extremamente elevadas, o que provoca a emissão de radiação em todo o espectro eletromagnético. Os AGNs também emitem potentes jatos de matéria, que brilha nas frequências do rádio.

“Ao estudar galáxias violentas como estas, adquirimos uma nova compreensão sobre a forma como os buracos negros supermassivos afetam a evolução das galáxias onde estes se encontram,” comentou Andrew Humphrey, do IA e Universidade do Porto.

Os pesquisadores usaram dois dos maiores telescópios da atualidade, o Keck II (Havaí) e o Gran Telescópio de Canárias (GTC), para observar TXS0211−122 e TXS 0828+193, duas potentes radiogaláxias que abrigam um dos tipos de AGNs mais energéticos que se conhece. Este tipo de galáxia tem os mais massivos buracos negros e as mais potentes emissões contínuas de energia conhecidas.

A equipe descobriu super bolhas de gás em expansão ao redor de TXS0211−122 e TXS 0828+193, muito provavelmente provocadas pela atividade de “feedback”. Esta ocorre quando o AGN injeta grandes quantidades de energia na galáxia progenitora, dando origem a fortes ventos que empurram gás e poeiras, formando uma super bolha em expansão.

O estudo desta simbiose entre os buracos negros supermassivos e a galáxia hospedeira é essencial para perceber a evolução das galáxias mais massivas do Universo. A radiação ultravioleta emitida pelo disco de acreção do buraco negro pode inibir temporariamente a formação de estrelas, ao ionizar o gás no meio interestelar, e o gás caindo para o buraco negro pode levar a uma inibição permanente de formação de estrelas.

O artigo intitulado “Ionization and feedback in Lyα haloes around two radio galaxies at z ∼ 2.5” foi publicado na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Instituto de Astrofísica e Ciências do Espaço

quarta-feira, 29 de março de 2017

Estrelas nascidas em ventos de buracos negros supermassivos

A vizinha da Via Láctea, Andrômeda, contém uma fonte predominante de emissão de raios X altamente energéticos, mas a sua identidade permanecia misteriosa até agora.

Galáxia de Andrômeda

© Jacob Bers (Galáxia de Andrômeda)

Relatado num novo estudo, a missão NuSTAR (Nuclear Spectroscopic Telescope Array) da NASA localizou um objeto responsável por esta radiação de alta energia.

Segundo os pesquisadores, o objeto Swift J0042.6+4112 é um possível pulsar, o remanescente denso, altamente magnetizado e giratório de uma estrela moribunda. Esta interpretação é baseada na sua emissão de raios X altamente energéticos, que o NuSTAR é excepcionalmente capaz de medir. O espectro do objeto é muito semelhante aos pulsares conhecidos da Via Láctea.

Está provavelmente localizado num sistema binário, onde material de uma companheira estelar é puxado para o pulsar, ejetando radiação altamente energética à medida que este material aquece.

"Nós não sabíamos o que era até que olhamos para ele com o NuSTAR," comenta Mihoko Yukita, autor principal de um estudo sobre o objeto, da Universidade Johns Hopkins em Baltimore, EUA.

Este candidato a pulsar é visto como um ponto azul na imagem da Galáxia de Andrômeda, também conhecida como M31, obtida pelo NuSTAR em raios X, onde a cor azul é escolhida para representar os raios X mais energéticos. É mais brilhante, em raios X altamente energéticos, do que qualquer outro objeto na galáxia.

O estudo reúne muitas observações diferentes do objeto obtidas por várias missões. Em 2013, o satélite Swift da NASA reportou-o como uma fonte altamente energética, mas a sua classificação era desconhecida, pois existem muitos objetos que emitem raios X de baixa energia na região. A emissão de raios X de baixa energia, do objeto, ao que parece é uma fonte identificada pela primeira vez na década de 1970 pelo Observatório Einstein da NASA. Outros observatórios, como o Chandra da NASA e o XMM-Newton da ESA, também já a haviam detectada. No entanto, foi só com este estudo mais recente do NuSTAR, auxiliado por dados do satélite Swift, que os cientistas perceberam que era o mesmo objeto, pois este provável pulsar domina a radiação altamente energética de raios X em Andrômeda.

Tradicionalmente, os astrõnomos pensam que a alimentação ativa de buracos negros, mais massivos que os pulsares, geralmente domina a radiação altamente energética de raios X das galáxias. À medida que o gás espirala para cada vez mais perto do buraco negro, numa estrutura chamada disco de acreção, este material é aquecido a temperaturas extremamente altas e emite radiação altamente energética. Este pulsar, que tem uma massa menor do que qualquer um dos buracos negros de Andrômeda, é mais brilhante em energias altas do que toda a população de buracos negros da galáxia.

Até o buraco negro supermassivo no centro de Andrômeda não tem emissão altamente energética de raios X associada. É inesperado que um único pulsar, ao invés, domine a galáxia em raios X altamente energéticos.

"O NuSTAR fez-nos perceber a importância geral dos sistemas pulsares como componentes de galáxias que emitem raios X e a possibilidade de que os raios X altamente energéticos de Andrômeda sejam dominados por um único sistema pulsar só acrescenta a esta imagem emergente," comenta Ann Hornschemeier, do Goddard Space Flight Center da NASA.

Andrômeda é uma galáxia espiral ligeiramente maior que a Via Láctea. Encontra-se a 2,5 milhões de anos-luz da nossa Galáxia, o que é considerado muito próximo, dada a escala mais ampla do Universo. Os observadores do céu podem ver Andrômeda sem telescópio em noites escuras e limpas.

"Uma vez que não podemos sair da nossa Galáxia e estudá-la de forma imparcial, Andrômeda é o mais próximo que temos parecido com olhar num espelho," conclui Hornschemeier.

O estudo foi publicado na revista The Astrophysical Journal.

Fonte: Jet Propulsion Laboratory

Astrônomos identificam anã marron mais pura e massiva

Uma equipe internacional de astrônomos identificou uma anã marron com a composição mais "pura" e a massa mais alta já conhecida.

ilustração da recém-descoberta anã marron

© John Pinfield (ilustração da recém-descoberta anã marron)

O objeto, conhecido como SDSS J0104+1535, é um membro do chamado halo da Via Láctea, composto por estrelas antigas.

As anãs marrons são objetos intermediários entre os planetas e as estrelas. A sua massa é demasiado pequena para a plena fusão nuclear de hidrogênio em hélio (com a consequente liberação de energia), mas geralmente são significativamente mais massivas que os planetas.

Localizada a 750 anos-luz de distância na direção da constelação de Peixes, SDSS J0104+1535 é composta por gás cerca de 250 vezes mais puro que o Sol, de modo que consiste de mais de 99,99% de hidrogênio e hélio. Estima-se ter sido formada há cerca de 10 bilhões de anos atrás e as medições também sugerem que tem uma massa equivalente a 90 vezes a de Júpiter, o que a torna na anã marron mais massiva já encontrada.

Anteriormente, não se sabia se as anãs marrons podiam ser formadas a partir de gás tão primordial, e a descoberta aponta o caminho para uma maior população, por descobrir, de anãs marrons extremamente puras do passado antigo da nossa Galáxia.

A equipe de pesquisa foi liderada pelo Dr. ZengHua Zhang do Instituto de Astrofísica das Ilhas Canárias. "Nós realmente não esperávamos ver anãs marrons assim tão puras. Tendo encontrado uma, isso sugere-nos uma população muito maior até agora desconhecida; ficaria muito surpreso se não existissem objetos semelhantes lá fora, à espera de serem encontrados,"  afirma Dr. Zhang.

A SDSS J0104+1535 foi classificada como uma ultra-subanã do tipo L usando o seu espectro óptico e infravermelho próximo, medido pelo Very Large Telescope (VLT) do ESO. Esta classificação baseou-se num esquema recentemente estabelecido pelo Dr. Zhang.

A descoberta foi relatada na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Royal Astronomical Society

terça-feira, 28 de março de 2017

Buraco negro supermassivo foi expulso do centro de galáxia

Uma equipe internacional de astrônomos usando o telescópio espacial Hubble descobriu um buraco negro supermassivo que foi impulsionado para fora do centro da galáxia distante 3C186.

galáxia com um buraco negro supermassivo ejetado

© STScI/ESA/M. Chiaberge (galáxia com um buraco negro supermassivo ejetado)

O buraco negro provavelmente foi ejetado pelo poder das ondas gravitacionais. Esta é a primeira vez que os astrônomos encontraram um buraco negro supermassivo a uma distância tão grande de seu centro galáctico de acolhimento.

Embora vários outros buracos negros suspeitos tenham sido vistos em outros lugares, até agora nenhum deles foi confirmado. Agora os astrônomos detectaram um buraco negro supermassivo, com uma massa de um bilhão de vezes a do Sol, sendo expulso de sua galáxia progenitora."Estimamos que a energia equivalente de 100 milhões de supernovas explodiu simultaneamente para descartar o buraco negro", descreve Stefano Bianchi, da Roma Tre University, na Itália.

As imagens tiradas pelo Hubble forneceram a primeira pista que a galáxia, nomeada 3C186, era incomun. As imagens da galáxia, localizadas a 8 bilhões de anos-luz de distância, revelaram um quasar brilhante, a assinatura energética de um buraco negro ativo, localizado longe do núcleo galáctico. "Buracos negros residem nos centros de galáxias, por isso é incomum ver um quasar não no centro", lembra o líder da equipe Marco Chiaberge, pesquisador da ESA-AURA no Space Telescope Science Institute, EUA.

A equipe calculou que o buraco negro já viajou cerca de 35.000 anos-luz do centro, que é mais do que a distância entre o Sol e o centro da Via Láctea. E continua seu voo a uma velocidade de 7,5 milhões de quilômetros por hora. A esta velocidade o buraco negro poderia viajar da Terra para a Lua em três minutos. Como o buraco negro não pode ser observado diretamente, a massa e a velocidade dos buracos negros supermassivos foram determinadas através da análise espectroscópica de seu gás circundante.

Embora outros cenários para explicar as observações não possam ser excluídos, a fonte mais plausível da energia propulsiva é que este buraco negro supermassivo foi lançado por ondas gravitacionais desencadeada pela fusão de dois buracos negros massivos no centro de sua galáxia hospedeira. Esta teoria é suportada por forças de maré em forma de arco identificadas pelos cientistas, produzidas por um rebocador gravitacional entre as duas galáxias em colisão.

Primeiramente predito por Albert Einstein, as ondas gravitacionais são ondulações no espaço que são criadas pela aceleração de objetos massivos. As ondulações são semelhantes aos círculos concêntricos produzidos quando uma pedra é jogada em uma lagoa. Em 2016, o Laser Interferometer Gravitational-wave Observatory (LIGO) ajudou os astrônomos a provar que as ondas gravitacionais existem detectando-as emanando da união de dois buracos negros de massa estelar, que são várias vezes maismassivos do que o Sol.

De acordo com a teoria apresentada pelos cientistas, 1 a 2 bilhões de anos atrás, duas galáxias, cada uma com enormes buracos negros centrais, se fundiram. Os buracos negros giraram ao redor um do outro no centro da galáxia elíptica recém-formada, criando ondas gravitacionais que foram lançadas para fora. Como os dois buracos negros não tinham a mesma massa e taxa de rotação, eles emitiram ondas gravitacionais mais fortemente ao longo de uma direção. Quando os dois buracos negros finalmente se fundiram, a emissão anisotrópica de ondas gravitacionais propiciou o disparo do buraco negro resultante para fora do centro galáctico. Os buracos negros se aproximam ao longo do tempo à medida que irradiam energia gravitacional.

"Se a nossa teoria está correta, as observações fornecem fortes evidências de que os buracos negros supermassivos podem realmente se fundir", explica Bianchi sobre a importância da descoberta. "Já há evidências de colisões entre buracos negros de massa estelar, mas o processo que regula buracos negros supermassivos é mais complexo e ainda não completamente entendido".

Os pesquisadores têm a sorte de ter captado este evento único porque nem todas as fusões de buracos negros produzem ondas gravitacionais desequilibradas que impulsionam um buraco negro para fora da galáxia. A equipe agora quer empregar o Hubble, em combinação com a Atacama Large Millimeter/submillimeter Array (ALMA) e outras instalações, para medir com mais precisão a velocidade do buraco negro e seu disco de gás circundante, o que pode trazer mais informações da natureza deste objeto raro.

Os resultados do estudo foram apresentados no artigo The puzzling case of the radio-loud QSO 3C 186: a gravitational wave recoiling black hole in a young radio source? da revista Astronomy & Astrophysics.

Fonte: ESA

segunda-feira, 27 de março de 2017

Estrelas nascidas em ventos de buracos negros supermassivos

Com o auxílio do Very Large Telescope (VLT) do ESO foram descobertas estrelas formando-se nos poderosos fluxos de matéria lançados por buracos negros supermassivos, situados nos núcleos de galáxias.

ilustração de estrelas nascidas em ventos de buracos negros supermassivos

© ESO/M. Kornmesser (ilustração de estrelas nascidas em ventos de buracos negros supermassivos)

Tratam-se das primeiras observações confirmadas de estrelas em formação neste tipo de ambiente extremo. A descoberta tem muitas consequências para a compreensão da evolução e propriedades das galáxias.

Um grupo de astrônomos europeus liderado pelo Reino Unido utilizou os instrumentos MUSE e X-shooter montados no VLT, no Observatório do Paranal no Chile, para estudar uma colisão entre duas galáxias, chamadas coletivamente IRAS F23128-5919, situadas a cerca de 600 milhões de anos-luz de distância da Terra. A equipe observou os ventos colossais de matéria que têm origem perto do buraco negro supermassivo situado no núcleo da galáxia do par mais ao sul, e descobriu evidências claras de formação de estrelas ocorrendo nestes fluxos. As estrelas formam-se nos fluxos a taxas muito elevadas; os astrônomos pensam que são formadas estrelas correspondentes a um total de 30 vezes a massa do Sol por ano, o que equivale a mais de um quarto da formação estelar em todo este sistema de galáxias em fusão.

Este tipo de fluxos galácticos tem origem na enorme liberação de energia por parte dos centros ativos e turbulentos das galáxias. Os buracos negros supermassivos “escondem-se” no coração da maioria das galáxias e ao “engolirem” matéria aquecem o gás ao seu redor, lançando-o para fora da galáxia hospedeira sob a forma de ventos densos e poderosos. A expulsão do gás sob a forma de fluxos galácticos dá origem a um meio pobre em gás no interior da galáxia, o que pode muito bem ser a razão pela qual algumas galáxias param de formar novas estrelas à medida que envelhecem. Embora estes fluxos tenham muito provavelmente a sua origem em buracos negros supermassivos centrais, também é possível que estes ventos sejam alimentados por supernovas num núcleo com formação estelar explosiva, ou seja, que está formando estrelas de forma vigorosa.

“Os astrônomos já suspeitavam há algum tempo que as condições no interior destes fluxos fossem adequadas para a ocorrência de formação estelar, no entanto ninguém tinha observado ainda o fenômeno acontecendo, já que se trata de uma observação muito difícil,” disse o líder da equipe Roberto Maiolino da Universidade de Cambridge. “Os nossos resultados são excitantes porque mostram sem ambiguidade que estrelas estão se formando no interior destes fluxos.”

A equipe resolveu estudar as estrelas que se encontram diretamente nos fluxos, assim como o gás ao redor. Os instrumentos espectroscópicos MUSE e X-shooter, ambos líderes mundiais, permitiram à equipe realizar um estudo muito detalhado das propriedades da radiação emitida, de modo a identificar a sua fonte.

Sabe-se que a radiação emitida por estrelas jovens faz as nuvens de gás próximas brilharem de um modo particular. A extrema sensibilidade do X-shooter permitiu à equipe descartar outras causas possíveis para este brilho, incluindo choques no gás ou núcleos ativos na galáxia.

A equipe detectou também, sem sombra de dúvidas e de forma direta, uma população estelar muito jovem nos fluxos. Acredita-se que estas estrelas tenham uma idade inferior a algumas dezenas de milhões de anos, e análises preliminares sugerem que estes objetos são mais quentes e brilhantes do que estrelas que se formam em meios menos extremos tais como os discos galácticos.

Como evidências adicionais, os astrônomos determinaram também o movimento e a velocidade destas estrelas. A radiação emitida pela maioria das estrelas na região indica que estas se deslocam a altas velocidades afastando-se do centro da galáxia, o que faz sentido para objetos "apanhados" numa corrente de material que se desloca a alta velocidade.

“As estrelas que se formam no vento próximo do centro galáctico podem ser freadas ou até começar a voltar, mas as estrelas que se formam mais longe apresentam menor desaceleração, podendo até deslocar-se para fora da galáxia,” explica Helen Russell  do Instituto de Astronomia da Universidade de Cambridge.

Esta descoberta nos dá novas informações que ajudarão a compreender vários fenômenos astrofísicos, por exemplo: como que certas galáxias obtêm as suas formas; como que o meio intergaláctico se enriquece de elementos pesados, e qual a origem da inexplicável radiação cósmica de fundo infravermelha.

As galáxias espirais têm uma estrutura em disco óbvia, apresentando no centro um bojo distendido de estrelas e estando rodeadas por uma nuvem difusa de estrelas chamada halo. As galáxias elípticas são essencialmente compostas por estes elementos esferoidais. As estrelas formadas nos fluxos e que são ejetadas do disco principal poderão dar origem a estas estruturas galácticas.

Como é que o espaço entre as galáxias, o meio intergaláctico, se enriquece em elementos pesados é uma questão que ainda permanece em aberto, no entanto as estrelas dos fluxos poderão fornecer uma resposta. Se forem lançadas para fora da galáxia e depois explodirem sob a forma de supernovas, os elementos pesados que contêm poderão ser liberados neste meio.

A radiação cósmica de fundo infravermelha, semelhante à mais famosa radiação cósmica de fundo de microondas, é um brilho fraco na região infravermelha do espectro que vem de todas as direções do espaço. No entanto, a sua origem nas bandas do infravermelho próximo nunca foi verificada de modo satisfatório. Uma população de estrelas de fluxo lançadas para o espaço intergaláctico poderá contribuir para esta radiação.

“Se tivermos de fato formação estelar ocorrendo na maioria dos fluxos galácticos, como algumas teorias prevêem, então poderemos ter um cenário completamente diferente de evolução das galáxias,” disse Maiolino.

Este trabalho foi descrito no artigo científico intitulado “Star formation in a galactic outflow” de Maiolino et al., que foi publicado hoje na revista Nature.

Fonte: ESO

Os nomes peculiares de objetos astronômicos

Alguns objetos astronômicos têm apelidos cativantes ou peculiares, inspirados pela mitologia ou sua própria aparência.

NGC 4424 e LEDA 213994

© Hubble (NGC 4424 e LEDA 213994)

Tomemos, por exemplo, a constelação de Órion (O Caçador), a Galáxia do Sombrero, a Nebulosa Cabeça de Cavalo, ou mesmo a Via Láctea. No entanto, a grande maioria dos objetos cósmicos aparecem em catálogos astronômicos, e são dados nomes menos poéticos baseados na ordem de sua descoberta.

Duas galáxias são claramente visíveis nesta imagem do Hubble, a maior delas é a NGC 4424. Esta galáxia é catalogada no Novo Catálogo Geral de Nebulosas e Aglomerados de Estrelas (NGC), que foi compilado em 1888. O NGC é um dos maiores catálogos astronômicos, por isso aparecem fotografias de muitos objetos NGC realizadas pelo Hubble. No total há 7.840 entradas no catálogo e eles também são geralmente os objetos maiores, mais brilhantes e mais atraentes no céu noturno, e, portanto, os mais facilmente vistos por astrônomos.

A galáxia menor, plana e brilhante, situada logo abaixo da NGC 4424, é chamada de LEDA 213994. O Lyon-Meudon Extragalactic Database (LEDA) é muito mais moderno do que o NGC. Criado em 1983 no Observatório de Lyon, contém milhões de objetos. No entanto, muitos objetos NGC ainda constam com seus nomes iniciais simplesmente porque eles foram batizados dentro do NGC primeiro. Nenhum astrônomo pode resistir a uma boa sigla, e "LEDA" é mais atraente do que o "LMED", talvez graças à antiga afinidade astronômica com a mitologia quando se trata de nomear as coisas: Leda era uma princesa na mitologia grega antiga.

Fonte: ESA

Lá em cima

Nesta imagem o Very Large Telescope (VLT) do ESO parece um telescópio muito pequeno!

a Via Láctea e o Very Large Telescope

© ESO/B. Tafreshi (a Via Láctea e o Very Large Telescope)

Visto desta perspectiva, torna-se difícil distinguir as silhuetas dos quatro Telescópios Principais de 8,2 metros do VLT, que estão colocados no alto do Cerro Paranal, no deserto chileno do Atacama.

A localização do VLT foi escolhida de modo extremamente cuidadoso. É vital que o local seja tão seco quanto possível, uma vez que o vapor d'água absorve a radiação infravermelha e degrada as observações. De modo a reduzir o máximo possível os efeitos da atmosfera terrestre, o VLT situa-se 2600 metros acima do nível do mar, minimizando assim a quantidade de atmosfera até as estrelas.

Devido a esta localização remota, o Paranal é um lugar praticamente imperturbado e livre de poluição luminosa. Até as estradas serpenteantes que conduzem ao local através do deserto do Atacama estão fracamente iluminadas de modo a evitar luz desnecessária.

Nesta imagem, uma trilha de estrelas corta o céu noturno, tal como fumaça subindo através de uma chaminé celeste. Trata-se da nossa casa galática, a Via Láctea. Em direção ao topo da imagem vemos uma seção mais brilhante e larga, que corresponde ao bojo galáctico repleto de estrelas e que se situa no coração da Via Láctea.

Fonte: ESO