Os buracos negros são criaturas das trevas. Eles rastejam através do Universo sem emitir luz própria, fora de um leve halo de radiação de Hawking que é quase invisível para buracos negros conhecidos.
© LBNL/Alexander Tchekhovskoy (ilustração de um burco negro emitindo dois jatos opostos)
Portanto, é uma das grandes ironias da astronomia que, muitas vezes, buracos negros foram encontrados nos lugares mais brilhantes do cosmos. Essa associação entre buracos negros e luz surge porque as incríveis forças gravitacionais exercidas por um buraco podem transmitir energia ao material próximo, fazendo com que ele irradie. Um exemplo desse processo ocorre em jatos de buraco negro, onde sua rotação e campos magnéticos se combinam para criar um fluxo de partículas de plasma que emitem luz em uma ampla faixa de comprimentos de onda.
Um novo conjunto de simulações realizado por Kyle Parfrey, do Lawrence Berkeley National Laboratory (LBNL), e seus colegas, oferece uma visão detalhada dos jatos de buraco negro, rastreando, pela primeira vez, o movimento das partículas de plasma que são produzidas através da criação de pares na vizinhança do buraco negro. Os resultados mostram que um grande número dessas partículas roubam energia da rotação do buraco negro. Esses tipos de simulações podem desempenhar um papel fundamental na decodificação dos sinais dos buracos negros no Universo distante e em nossa própria Via Láctea.
Para construir um jato de buraco negro, a natureza tem uma fórmula testada e comprovada. Comece com um buraco negro que está girando tão rápido que seu horizonte de eventos - a superfície que separa o interior do buraco negro do lado de fora - está correndo por uma fração apreciável da velocidade da luz. Agora sincronize o buraco negro em rotação com um campo magnético.
Cálculos mostram que a rotação do buraco negro, juntamente com o efeito de inflar o gás, fará com que as linhas do campo magnético se enrolem em hélices gigantes que espiralam ao longo do eixo rotacional do buraco negro. Nesse processo, a energia rotacional do buraco negro é lentamente transferida para o campo magnético. A energia no campo magnético é eventualmente dissipada e convertida em radiação comum através de um processo em cascata envolvendo a criação de pares e efeitos síncrotron. Acredita-se que os jactos de buraco negro como este alimentam algumas das mais brilhantes fontes de raios X e emissões de rádio no céu.
Durante a última década, houve muitos esforços para entender os jatos de buracos negros usando simulações numéricas. As atuais simulações de última geração usam a teoria da magnetohidrodinâmica relativista geral (GRMHD), que descreve o movimento de um fluido magnetizado no espaço-tempo curvo. Essas simulações são muito boas em descrever a transferência de energia do buraco negro em rotação para o campo magnético. No entanto, elas tratam o plasma como um fluido contínuo.
Em verdadeiros jatos astrofísicos, o plasma é tão rarefeito que a aproximação do fluido não é realmente válida, e sua densidade está constantemente se ajustando às interações locais entre as partículas de plasma e o campo magnético. Por causa de suas limitações, as simulações de GRMHD são incapazes de modelar a conversão de energia de campo magnético em radiação comum, e ainda precisam resolver questões remanescentes sobre a força geral dos jatos.
Para resolver esses problemas, os pesquisadores introduziram um novo tipo de simulação de jato de buraco negro. Em seu trabalho, o plasma é descrito corretamente como uma coleção de partículas individuais, e não como um fluido contínuo e suave. A densidade do plasma ainda não é baseada em um modelo de primeiro princípio das interações entre as partículas e o campo magnético, mas com base na criação de pares de elétrons e pósitrons no campo elétrico que é induzida pela dinâmica do campo magnético ao redor do buraco negro.
Como as simulações do GRMHD, as novas simulações exigem muito poder computacional para observar variações espaciais em pequena escala no jato. Esse trabalho apresenta apenas duas execuções de alta resolução, ambas descrevendo buracos negros girando a cerca de 96% da velocidade da luz. Em uma simulação, o limite para a criação de pares é baixo, levando a um plasma de alta densidade. Na outra simulação, o limiar é maior e o plasma resultante é menos denso.
Os resultados finais em ambos os casos são curtos, cada um durando apenas o suficiente para o buraco negro girar em torno de uma dúzia de vezes. Apesar da brevidade das simulações, os jatos parecem relaxar a um estado quase estático durante as simulações.
Os resultados das novas simulações não são radicalmente diferentes dos resultados das antigas simulações do GRMHD, o que é, em certo sentido, tranquilizador. No entanto, os pesquisadores descobriram algum comportamento interessante e novo. Por exemplo, eles encontram uma grande população de partículas cujas energias relativísticas são negativas, medidas por um observador longe do buraco negro. Quando essas partículas caem no buraco negro, a energia total do buraco negro diminui.
A possibilidade de criar partículas de energia negativa perto de um buraco negro em rotação foi prevista há muito tempo por Roger Penrose. O que é surpreendente é que as novas simulações mostram um fluxo substancial dessas partículas no buraco negro, tanto que a energia que elas extraem ao cair no buraco é comparável à energia extraída pelo enrolamento do campo magnético. É necessário um trabalho de acompanhamento para confirmar essa previsão, mas se o efeito das partículas de energia negativa for tão forte quanto o alegado, isso poderia alterar as expectativas para os espectros de radiação dos jatos de buraco negro.
Os próximos anos estão cheios de promessas. Os detectores de ondas gravitacionais começaram a captar as ondulações no espaço-tempo deixado pelas fusões de buracos negros distantes. Embora ainda não tenha sido visto, os buracos negros também devem emitir ondas gravitacionais quando engolem uma estrela. Essas ondas gravitacionais devem chegar acompanhadas de luz comum.
Modelos de jato como os desenvolvidos pela equipe de pesquisadores desempenhará um papel fundamental na interpretação dessas observações. Mais perto de casa, o Event Horizon Telescope (EHT) está pronto para fornecer a mais alta resolução ainda do buraco negro escondido no centro de nossa galáxia. Esse buraco negro tem um jato modesto, portanto, os dados do EHT precisarão ser processados com a ajuda de modelos de jato realistas. O futuro é brilhante para a pesquisa dos buracos negros.
Fonte: Physical Review Letters
Nenhum comentário:
Postar um comentário