Uma das grandes questões da astrofísica é a origem dos elementos pesados, no nosso Universo, que constituem a tabela periódica.
© NASA (ruptura na crosta de uma estrela de nêutrons altamente magnetizada)
Os elementos mais leves, o hidrogênio e o hélio, formaram-se principalmente no Big Bang que deu origem ao Universo. Elementos um pouco mais pesados, como o oxigênio e o ferro, são forjados no interior dos núcleos quentes das estrelas e expelidos para o espaço quando estas morrem em explosões de supernova. No entanto, os elementos raros muito mais pesados do que o ferro, como o ouro e a platina, só são criados em condições muito mais extremas do que as encontradas nas estrelas normais.
Durante décadas, os astrofísicos nucleares têm trabalhado para identificar os eventos, na natureza, que podem sintetizar estes elementos pesados. Agora, um grupo de pesquisadores da Universidade de Columbia em New York, EUA, tem uma nova resposta a esta questão, que desafia as ideias existentes sobre onde são criados os elementos pesados.
Foi demonstrado que elementos muito mais pesados do que o ferro foram criados num famoso evento cósmico de há mais de 20 anos, que liberou mais energia em meio segundo do que o nosso Sol produz em 250 mil de anos. A descoberta deste evento único fornece uma perspectiva importante sobre a forma como estes elementos são sintetizados em geral.
Comparando os modelos teóricos com os dados observados, foi encontrado evidências de que uma das explosões mais brilhantes alguma vez observadas na Via Láctea, um poderoso surto de raios gama em 2004, produziu uma enorme quantidade de elementos pesados que excede, em massa, o planeta Marte. No dia 27 de dezembro de 2004, vários satélites, incluindo o telescópio espacial INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) da ESA, detectaram uma explosão extremamente poderosa de raios gama proveniente de um magnetar na nossa Galáxia.
Os magnetares são uma classe de estrelas de nêutrons que abrigam os campos magnéticos mais fortes do Universo, mais de 10 trilhões de vezes mais fortes do que o típico ímã de geladeira. As estrelas de nêutrons são os corpos compactos que sobram quando estrelas massivas colapsam e explodem como supernovas. A imensa energia magnética dos magnetares provoca surtos extremos, semelhantes mas muito mais energéticos do que as erupções de partículas que o nosso Sol produz.
Embora o magnetar, SGR 1806-20, se encontre a cerca de 30.000 anos-luz de distância, a "erupção gigante" de 2004 foi suficientemente brilhante para afetar as camadas superiores da atmosfera da Terra. Após a explosão inicial de raios gama, o telescópio espacial INTEGRAL também detectou um sinal de raios gama mais fraco, mas mais longo, que durou várias horas. Embora este brilho remanescente tenha sido relatado pela primeira vez por pesquisadores em 2005, no momento não houve qualquer explicação física convincente.
Agora, os cientistas mostraram que este sinal anteriormente inexplicado da famosa erupção gigante do magnetar de 2004 pode ser atribuído à emissão de raios gama do decaimento radioativo de elementos pesados, que foram recentemente sintetizados por uma série de reações nucleares na crosta da estrela de nêutrons, à medida que esta era expelida para o espaço durante a erupção gigante.
Estima-se que até 10% ou mais dos metais preciosos da Terra podem ser produzidos por magnetares. Embora muitos potenciais fenômenos que criam estes elementos tenham sido propostos ao longo dos anos, este representa apenas o segundo evento confirmado em que os elementos mais pesados do Universo podem ser sintetizados; o primeiro foi uma fusão de estrelas de nêutrons prevista em 2010 e confirmada observacionalmente em 2017.
Esta descoberta abre uma série de novas questões relacionadas com a função que os magnetares podem desempenhar na propagação de elementos em todo o Universo.
Um artigo foi publicado no periódico The Astrophysical Journal Letters.
Fonte: Columbia University