sexta-feira, 29 de março de 2013

Bloqueador solar em estrela gigante

Uma equipe internacional de astrônomos, incluindo pesquisadores do Instituto Max Planck de Radioastronomia (MPIfR) e da Universidade de Colônia, conseguiu identificar dois óxidos de titânio na atmosfera estendida em torno de uma estrela gigante.

moléculas ao redor de nebulosa

© NASA/ESA (moléculas ao redor de nebulosa)

O objeto VY Canis Major é uma das maiores estrelas do Universo conhecido e ela está perto do fim da sua vida.

A descoberta foi feita no decorrer de um estudo de uma estrela espetacular, VY Canis Majoris (VY CMa), que é uma estrela variável localizada na constelação de Canis Major (Cão Maior). "A VY CMa não é uma estrela comum, é uma das maiores estrelas conhecidas, e está perto do fim de sua vida", diz Tomasz Kamiński do Instituto Max Planck de Radioastronomia. Na verdade, com um tamanho de cerca de uma a duas mil vezes a do Sol, que poderia estender para fora da órbita de Saturno se fosse colocada no centro de nosso Sistema Solar.
A estrela ejeta grandes quantidades de material que forma uma nebulosa empoeirada. Torna-se visível por causa das pequenas partículas de poeira que formam em torno dela, que refletem a luz da estrela central. A complexidade desta nebulosa tem sido  intrigante por décadas para os astrônomos. Tem-se formado como um resultado do vento estelar, mas não é bem compreendido por que está tão longe de ter uma forma esférica.
Nem se sabe o processo físico que sopra o vento, ou seja, o que eleva o material acima da superfície estelar e faz expandir. O destino da VY CMa é explodir como uma supernova, mas não se sabe exatamente quando isso vai acontecer. Observações em diferentes comprimentos de onda fornecem diferentes informações e que permite identificar as moléculas existentes na nebulosa.
"Emissão em comprimentos de onda de rádio de curta duração, em ondas chamados submilimétrico, é particularmente útil para tais estudos de moléculas", diz Sandra Brunken da Universidade de Colônia. A equipe de pesquisa observou TiO e TiO2, um ingrediente encontrado em filtros solares, pela primeira vez em comprimentos de onda de rádio. De fato, o dióxido de titânio tem sido visto no espaço de forma inequívoca, pela primeira vez. No entanto, as estrelas irão ejetar grandes quantidades de óxido de titânio, a temperaturas relativamente altas próximas à estrela. "Elas tendem a se agrupar para formar partículas de poeira visíveis na óptica ou no infravermelho", diz Patel Nimesh do Centro Harvard-Smithsonian de Astrofísica. "E a propriedade catalítica do TiO2 pode influenciar nos processos químicos que ocorrem nessas partículas de poeira, que são muito importantes para a formação de moléculas maiores no espaço", acrescenta Holger Müller, da Universidade de Colônia.
Linhas de absorção de TiO são conhecidas a partir dos espectros na região do visível há mais de cem anos. Esses recursos são usados ​​em parte para classificar alguns tipos de estrelas com temperaturas superficiais baixas (estrelas do tipo M e S). A pulsação de estrelas Mira, uma classe específica de estrelas supergigantes variáveis localizadas na constelação de Cetus, é provavelmente causada por óxido de titânio.

As observações de TiO e TiO2 mostra que as duas moléculas são facilmente formadas em torno VY CMa numa localização que é mais ou menos como prevista pela teoria.

As novas detecções em comprimentos de onda submilimétrico são especialmente importantes porque permitem o estudo do processo de formação de poeira. Além disso, a comprimentos de onda ópticos, a radiação emitida pelas moléculas é dispersada pela poeira presente na nebulosa que obscurece a imagem, enquanto que o efeito é negligenciável em comprimentos de onda de rádio que permitem medições mais precisas.
As descobertas de TiO e TiO2 no espectro da VY CMa têm sido feitas com o Submillimetre Array (SMA), um interferômetro de rádio localizada no Havaí, EUA.

interferômetro SMA

© N. Patel/SMA (interferômetro SMA)

O instrumento combina oito antenas que operam juntas como um grande telescópio de 226 metros de tamanho, propiciando aos astrônomos realizarem observações com sensibilidade e resolução angular sem precedentes. A confirmação das novas detecções foi sucessivamente feitas posteriormente com o IRAM Plateau de Bure Interferometer (PdBI) localizado nos alpes franceses.

Fonte: Max Planck Institute for Radio Astronomy

Desvendando a galáxia NGC 3169

A brilhante galáxia espiral NGC 3169 parece estar se revelando nessa cena cósmica.

galáxia NGC 3169

© Adam Block (galáxia NGC 3169)

A galáxia NGc 3169 está localizada a aproximadamente 70 milhões de anos-luz de distância da Terra, logo abaixo da brilhante estrela Regulus na direção da apagada constelação de Sextans. Seus belos braços espirais são distorcidos pelas forças de marés enquanto a NGC 3169 (esquerda) e a sua vizinha, a NGC 3166 interagem gravitacionalmente, um destino comum mesmo para as galáxias mais brilhantes no nosso Universo local.

De fato, fora os arcos e plumas estelares, indicativos das interações gravitacionais, parecem claros nessa imagem profunda desse grupo de galáxias. A imagem acima se espalha por 20 arcos de minutos, ou aproximadamente, 400.000 anos-luz considerando a distância estimada do grupo, e inclui uma menor e mais apagada galáxia, a pequena NGC 3165, localizada à direita. A NGC 3169 é também conhecida por brilhar através do espectro desde as ondas de rádio até os raios X, hospedando um núcleo galáctico ativo que provavelmente é o local de um buraco negro supermassivo.

Fonte: NASA

quarta-feira, 27 de março de 2013

Descoberta nova espécie de supernova

Até agora, supernovas são geradas de dois tipos principais. Uma supernova com colapso de núcleo é a explosão de uma estrela cerca de 10 a 100 vezes a massa do sol, enquanto uma supernova Tipo Ia é a interrupção completa de uma anã branca minúscula.

geração do novo tipo de supernova

© CfA/Christine Pulliam (geração do novo tipo de supernova)

Hoje, os astrônomos estão relatando a descoberta de um novo tipo de supernova chamada tipo Iax. Esta nova classe é mais fraca e menos energética do que a do Tipo Ia. Apesar de ambas as variedades surgem da explosão de anãs brancas, as supernovas Tipo Iax não pode destruir completamente a anã branca.
"Uma supernova Tipo Iax é essencialmente uma mini supernova," diz o autor Ryan Foley, do Centro Harvard-Smithsonian de Astrofísica (CFA). Foley e seus colegas identificaram 25 exemplos de um novo tipo de supernova. Nenhuma delas apareceu em galáxias elípticas, que são preenchidos com estrelas velhas. Isso sugere que as supernovas Tipo Iax vêm de sistemas de estelares jovens.
Com base em uma variedade de dados observacionais, a equipe concluiu que uma supernova Tipo Iax vem de um sistema estelar binário contendo uma anã branca e uma estrela companheira que perdeu seu hidrogênio exterior, com domínio do hélio. A anã branca coleta hélio da estrela normal.
Os pesquisadores não têm certeza do que desencadeia uma supernova Tipo Iax. É possível que a camada de hélio exterior inflama primeiro, enviando uma onda de choque para a anã branca. Como alternativa, a anã branca pode inflamar-se primeiro, devido à influência da camada sobrejacente de hélio.
De qualquer forma, parece que em muitos casos, a anã branca sobrevive a explosão, ao contrário de uma supernova Tipo Ia, onde a anã branca é completamente destruída.

Foley calcula que as supernovas Tipo Iax são cerca de um terço das supernovas Tipo Ia. A razão da baixa detecção das supernovas Tipo Iax é que as mais fracas são apenas um centésimo tão brilhante do que uma supernova Tipo Ia.
"Supernovas Tipo Iax não são raras, elas são apenas débeis", explica Foley.

O Large Synoptic Survey Telescope, em que o CfA é um parceiro, pode descobrir milhares de supernovas Tipo Iax durante sua existência.
Esta pesquisa foi aceita para publicação no The Astrophysical Journal e está disponível online.

Fonte: Harvard-Smithsonian Center for Astrophysics

Estrelas jovens, quentes e azuis

A imagem a seguir mostra o céu salpicado de estrelas azuis brilhantes constituindo o aglomerado NGC 2547, um grupo de estrelas recém formadas situado na constelação austral da Vela.

aglomerado aberto NGC 2547

©  ESO/MPG (aglomerado aberto NGC 2547)

Esta imagem foi obtida com o instrumento Wide Field Imager, montado no telescópio MPG/ESO de 2,2 metros no Observatório de La Silla, no Chile.

O Universo é velho, tem aproximadamente 13,8 bilhões de anos. A nossa galáxia, a Via Láctea, também é velha - algumas das estrelas que contém têm mais de 13 bilhões de anos, como observadas no aglomerado globular NGC 6397.

aglomerado globular NGC 6397

© ESO/VLT (aglomerado globular NGC 6397)

No entanto, muita coisa ainda está acontecendo: novos objetos formam-se e outros são destruídos. Na imagem aglomerado NGC 2547 podemos ver algumas estrelas jovens que estão se formando.
Mas, quão novos são realmente estes jovens cósmicos? Embora a sua idade exata seja incerta, os astrônomos estimam que as estrelas no NGC 2547 tenham entre 20 e 35 milhões de anos de idade. O que na realidade, não parece muito jovem. No entanto, comparando com o Sol que ainda nem chegou à meia idade e tem 4 bilhões e 600 milhões de anos, corresponde a imaginarmos que se o Sol for uma pessoa de 40 anos de idade, as estrelas brilhantes da imagem são bebês de três meses.
A maior parte das estrelas não se formam isoladas, mas sim em ricos aglomerados estelares com tamanhos que vão das várias dezenas aos vários milhares de estrelas. Embora o NGC 2547 contenha muitas estrelas quentes que brilham intensamente no azul, um sinal claro da sua juventude, podemos também encontrar uma ou duas estrelas amarelas ou vermelhas que já evoluíram até se tornarem gigantes vermelhas. Os aglomerados estelares abertos como este têm vidas comparativamente curtas, da ordem de várias centenas de milhões de anos, antes de se desintegrarem à medida que as suas estrelas se afastam.
Os aglomerados são objetos chave no estudo da evolução das estrelas ao longo das suas vidas. Os membros de um aglomerado nascem todos a partir do mesmo material e ao mesmo tempo, o que torna mais fácil determinar os efeitos de outras propriedades estelares.
O aglomerado estelar NGC 2547 situa-se na constelação da Vela, a cerca de 1.500 anos-luz de distância da Terra, e é suficientemente brilhante para poder ser visto com binóculos. Foi descoberto em 1751 pelo astrônomo francês Nicolas-Louis de Lacaille, com o auxílio de um pequeno telescópio com menos de dois centímetros de abertura, durante uma expedição astronômica ao Cabo da Boa Esperança, na África do Sul.
Entre as estrelas brilhantes do aglomerado NGC 2547 podemos ver também imensos outros objetos, especialmente se observarmos a imagem de perto. Muitos são estrelas da Via Láctea, mais tênues ou mais distantes de nós, mas alguns, que aparecem como objetos extensos difusos, são galáxias situadas muito para além das estrelas do campo de visão, a milhões de anos-luz de distância.

Fonte: ESO

segunda-feira, 25 de março de 2013

A Galáxia Perdida

A imagem a seguir mostra a galáxia NGC 4535, na constelação de Virgo (A Virgem), em um fundo bonito repleto de muitas galáxias tênues e distantes.

galáxia NGC 4535

© ESO/VLT (galáxia NGC 4535)

Sua aparência quase circular mostra que a observamos quase de frente. No centro da galáxia, há uma estrutura de barras bem definido, com faixas de poeira que curvam acentuadamente antes dos braços em espiral dispersarem a partir das extremidades da barra. A cor azulada dos braços em espiral indica a presença de um grande número de estrelas quentes e jovens. No centro, no entanto, estrelas mais velhas e frias fornecem ao bojo da galáxia uma aparência amarelada.
Esta imagem foi executada com o instrumento FORS1 no Very Large Telescope (VLT) de 8,2 metros do ESO. A galáxia também pode ser vista através de pequenos telescópios amadores; e foi observada pela primeira vez por William Herschel em 1785. Quando visto através de um telescópio menor, a galáxia NGC 4535 tem uma aparência de nebulosa fantasmagórica, que inspirou o proeminente astrônomo amador Leland S. Copeland para cunhar o nome de "A Galáxia Perdida" em 1950.
A galáxia NGC 4535 é uma das maiores galáxias no aglomerado de Virgem, um grande conjunto de até 2.000 galáxias, a cerca de 50 milhões de anos-luz de distância. Embora o aglomerado de Virgem não é muito maior em diâmetro que o Grupo Local - o aglomerado de galáxias ao qual pertence a Via Láctea - que contém quase 50 vezes mais de galáxias.

Fonte: ESO

Colisão galáctica brilhante

Essa charmosa e brilhante galáxia, conhecida como IRAS 23436+5257, foi registrada pelo telescópio espacial Hubble.

IRAS 23436+5257

© Hubble (IRAS 23436+5257)

Essa galáxia está localizada na constelação do céu do hemisfério norte da Cassiopeia.

A estrutura contorcida é o resultado muito provavelmente de uma colisão e da subsequente fusão de duas galáxias. Essas interações são muito comuns no Universo, e elas podem variar de interações menores envolvendo uma galáxia satélite sendo capturada por uma galáxia espiral, até colisões galácticas gigantescas. A fricção entre o gás e a poeira durante uma colisão podem ter efeitos gigantescos nas galáxias envolvidas, dando diferentes formas para as galáxias originais além de criar interessantes estruturas novas.

Quando você olha tranquilidade para o céu noturno, nem sempre é fácil registrar o dinâmico e vibrante ambiente com galáxias inteiras em movimento, girando e colidindo no céu. Os movimentos, logicamente são extremamente lentos e ocorrem durante períodos de milhões ou até mesmo bilhões de anos.

O resultado dessas colisões galácticas ajuda os cientistas a entenderem como esses movimentos ocorrem e o que pode estar guardado para a nossa própria galáxia que está em rota de colisão com a vizinha galáxia M31 (Andrômeda).

Fonte: NASA

sábado, 23 de março de 2013

A ascenção do quasares no Universo

O professor Michael Shull e o pesquisador David Syphers usaram o telescópio espacial Hubble para observar um quasar - o núcleo brilhante de uma galáxia ativa que age como um "farol" - para entender melhor as condições do Universo primordial.

ilustração de um quasar distante

© NASA/ESA/G.Bacon (ilustração de um quasar distante)

Os cientistas estudaram o material gasoso entre o telescópio e o quasar HS1700 6416 com um espectrógrafo ultravioleta acoplado no Hubble, projetado por uma equipe do Centro de Astrofísica e Astronomia Espacial em Boulder.
Durante um tempo conhecido como a "era de reionização do hélio" cerca de 11 bilhões de anos atrás, explosões de radiação ionizante de buracos negros nos núcleos de quasares retiravam elétrons de átomos primitivos de hélio. Isto ocorreu pouco depois do Big Bang.
Os resultados do novo estudo indicam que a era de reionização do hélio no Universo parece ter ocorrido mais tarde do que se pensava, disse Shull. O Cosmic Origins Spectrograph (COS) utilizado para as observações de quasares a bordo do Hubble foi projetado para investigar a evolução de galáxias, estrelas e matéria intergaláctica. O COS foi instalado no Hubble por astronautas durante sua última missão de manutenção em 2009.

O Universo começou com o Big Bang que gerou um plasma que se expandiu e então se tornou um gás neutro frio em cerca de 380.000 anos, perfazendo a "idade das trevas" quando não havia luz de estrelas ou galáxias. Esta época foi seguida por um período de reionização do hidrogênio, formando as primeiras galáxias a cerca de 13,5 bilhões de anos atrás. A era das primeiras galáxias foi seguida pela ascensão de quasares cerca de 2 bilhões anos depois, o que levou à era da reionização hélio.
A radiação dos enormes quasares aquece o gás em torno de 11.000 a 22.000 graus Celsius em reinos intergalácticos do início do Universo. Se o gás hélio é aquecido durante a época da formação da galáxia, torna-se mais difícil para as protogaláxias manterem a massa do seu gás; é como se fosse um aquecimento global intergaláctico.
A equipe está usando COS para investigar o "registro fóssil" dos gases no Universo, incluindo uma estrutura conhecida como a "teia cósmica" que acredita-se ser feita de longos filamentos estreitos de galáxias e pelo gás intergaláctico separados por vazios enormes. Os cientistas teorizam que um filamento único da rede cósmica pode se estender por centenas de milhões de anos-luz, um número expressivo, considerando que um único ano-luz é cerca de 9,5 trilhões de quilômetros.
O COS separa a luz em comprimentos de ondas característicos, semelhante à maneira como a luz solar é refratada em gotas de chuva formando as cores do arco-íris, e revela informações sobre a composição de temperatura, densidade, distância, velocidade e a composição química de galáxias, estrelas e nuvens de gás.
O primeiro quasar, abreviação de "fonte de rádio quase-estelar", foi descoberto há 50 anos pelo astrônomo Maarten Schmidt da Caltech. O quasar que ele observou, denominado 3C-273, está localizado a cerca de 2 bilhões de anos da Terra e é 40 vezes mais luminoso do que uma galáxia inteira de 100 bilhões de estrelas. O quasar está se afastando da Terra a 15% da velocidade da luz, com ventos soprando a milhões de quilômetros por hora.

Fonte: The University of Colorado Boulder

Grande Nuvem de Magalhães em infravermelho

Nuvens de poeira cósmica ondulam através desse retrato em infravermelho da galáxia satélite da Via Láctea, a Grande Nuvem de Magalhães.

Grande Nuvem de Magalhães no infravermelho

© Herschel e Spitzer (Grande Nuvem de Magalhães no infravermelho)

De fato, essa impressionante composição de imagens do observatório espacial Herschel  e do telescópio espacial Spitzer mostra que as nuvens de poeira preenchem essa galáxia anã vizinha, do mesmo modo que a poeira preenche o plano da própria Via Láctea. As temperaturas da poeira tendem a rastrear as atividades de formação de estrelas. Os dados do Spitzer, em azul, indicam a poeira quente, aquecida pelas jovens estrelas. Os dados do Herschel, em vermelho e verde, revelam a emissão de poeira de regiões mais frias e intermediárias onde a formação de estrelas está apenas começando. Dominada pela emissão de poeira a aparência da Grande Nuvem de Magalhães em infravermelho se difere e muito da sua visão na luz óptica, vista a seguir.

Grande Nuvem de Magalhães no óptico

© Marco Lorenzi (Grande Nuvem de Magalhães no óptico)

Mas a bem conhecida Nebulosa da Tarântula  dessa galáxia ainda se destaca e é facilmente observada aqui como sendo a região mais brilhante na parte esquerda ao centro da imagem. Localizada a somente 160.000 anos-luz de distância, a Grande Nuvem de Magalhães tem aproximadamente 30.000 anos-luz de diâmetro.

Fonte: NASA

quarta-feira, 20 de março de 2013

Galáxia espiral e supernova apagando

A cerca de 35 milhões de anos-luz da Terra, na constelação do Rio Erídano, situa-se a galáxia espiral NGC 1637. Em 1999 a aparência serena desta galáxia foi perturbada pelo aparecimento de uma supernova muito brilhante.

galáxia NGC 1637 e supernova SN 1999em

© ESO (galáxia NGC 1637 e supernova SN 1999em)

Os astrônomos que estudam o resultado dessa explosão com o auxílio do Very Large Telescope (VLT) do ESO no Observatório do Paranal, no Chile, obtiveram esta magnífica imagem desta galáxia relativamente próxima.

As supernovas estão entre os fenômenos mais violentos da natureza. Marcam a morte ofuscante de estrelas e podem brilhar mais intensamente do que a radiação combinada de bilhões de estrelas nas suas galáxias hospedeiras.
Em 1999, o Observatório Lick na Califórnia relatou a descoberta de uma nova supernova na galáxia espiral NGC 1637. Esta supernova foi descoberta com o auxílio de um telescópio construído especialmente para procurar estes raros e importantes objetos cósmicos. Observações de rastreamento deste fenômeno foram pedidas no intuito de confirmar a descoberta e estudar o objeto com mais detalhe. A supernova foi nomeada SN 1999em, tendo sido extensamente observada. Depois da sua espectacular explosão em 1999, o brilho da supernova tem sido cuidadosamente monitorizado pelos cientistas, que observam o seu declínio relativamente lento ao longo dos anos.
A estrela que se transformou na SN 1999em era de elevada massa, com mais do que oito vezes a massa do Sol. No final da sua vida, o núcleo colapsou, dando origem a uma explosão cataclísmica. A SN1999em é uma supernova de colapso de núcleo classificada mais precisamente como do Tipo IIp. O “p” significa de “platô”, isto é, as supernovas deste tipo permanecem brilhantes (no platô da curva de luminosidade) durante um período de tempo relativamente longo, depois do brilho máximo.
Durante o período das observações de rastreamento da SN 1999em, os astrônomos obtiveram muitas fotografias deste objeto com o VLT, que foram depois combinadas nesta imagem muito nítida da sua galáxia hospedeira, a NGC 1637. A estrutura em espiral aparece-nos na imagem de forma muito distinta, com traços azulados de estrelas jovens, nuvens de gás brilhante e camadas de poeira obscurante. 
Embora à primeira vista a NGC 1637 pareça ser um objeto relativamente simétrico, possui algumas particularidades interessantes. É um tipo de galáxia denominada espiral irregular: o braço em espiral mais aberto, em cima e à esquerda, estende-se em torno do núcleo muito mais longe do que o braço mais compacto e curto, em baixo e à direita, que parece ter sido dramaticamente cortado ao meio.
Espalhadas por toda a imagem, podemos ver estrelas mais próximas e galáxias mais distantes que, por acaso, se encontram na mesma direção no céu.

Fonte: ESO

domingo, 17 de março de 2013

Sondas exploram remanescente de supernova

Enquanto realiza sua extensiva pesquisa por fontes de raios X nas regiões centrais da galáxia, o satélite Swift da NASA descobriu a até então desconhecida remanescente de uma estrela destruída.

imagem composta da remanescente de supernova

© NASA (imagem composta da remanescente de supernova)

Designada G306.3-0.9 depois que as suas coordenadas na posição do céu foram definidas, o novo objeto aparece entre uma das remanescentes supernovas mais jovens conhecidas na Via Láctea.

Os astrônomos anteriormente catalogaram mais de 300 remanescentes de supernovas na galáxia. As novas análises indicam que a G306.3-0.9 tem provavelmente menos de 2.500 anos de idade, fazendo dela uma das 20 remanescentes mais jovens já identificadas.

A imagem composta acima da remanescente de supernova G306.3-0.9 funde observações feitas com o Chandra em raios X (azul), com dados adquiridos pelo telescópio espacial Spitzer em infravermelho (vermelho e ciano) e observações feitas com o Australia Telescope Compact Array em rádio (roxo). A imagem tem 20 arcos de minuto de diâmetro, que corresponde a 150 anos-luz na distância estimada para a remanescente.

Os astrônomos estimam que uma explosão de supernova ocorra uma ou duas vezes por século na Via Láctea. A onda de expansão da explosão e os detritos estelares quentes vagarosamente se dissipam por centenas de milhares de anos, eventualmente se misturando com o gás do meio interestelar se tornando indistinguíveis.

A jovem remanescente de supernova fornece a melhor oportunidade para entender a natureza da estrela original e os detalhes de sua destruição.

As remanescentes de supernovas emitem energia através do espectro eletromagnético, desde as ondas de rádio até os raios gama, e pistas importantes podem ser encontradas em cada banda de energia. As observações de raios X revelam o movimento dos detritos em expansão, seu conteúdo químico, e a sua interação com o ambiente interestelar, mas a remanescente de supernova se apaga na região dos raios X depois de aproximadamente 10.000 anos. Na verdade, somente metade das remanescentes de supernovas conhecidas na Via Láctea foi detectada em raios X.

O Swift Galactic Plane Survey é um projeto para imagear uma faixa de dois graus de largura ao longo do plano central da Via Láctea nas energias de raios X e ultravioleta, ao mesmo tempo. O imageamento começou em 2011 e espera-se que seja completado na metade deste ano.

A pesquisa realizada pelo Swift aproveita o imageamento previamente compilado pelo telescópio espacial Spitzer da NASA e estende essa pesquisa para energias maiores. As pesquisas de raios X e infravermelho se complementam, pois a luz nessas energias penetra as nuvens de poeira do plano galáctico, enquanto que a pesquisa em ultravioleta da região é a primeira já realizada.

imagem de campo aberto da remanescente de supernova

© NASA (imagem de campo aberto da remanescente de supernova)

Em 22 de fevereiro de 2011, o Swift imageou um campo de pesquisa perto da borda sul da constelação de Centaurus. Embora nada incomum tivesse aparecido na exposição ultravioleta, as imagens em raios X revelaram uma fonte estendida, semi-circular parecida com uma remanescente de supernova. Uma análise nos dados de arquivo revelaram detalhes nas imagens infravermelhas do Spitzer e nos dados de rádio do Molonglo Observatory Synthesis Telescope na Austrália.

A investigação posterior do objeto feita pela equipe usou 83 minutos de exposição do observatório de raios X Chandra e observações adicionais de rádio feitas com o Australia Telescope Compact Array.

Considerando uma distância estimada de 26.000 anos-luz para a G306.3-0.9, calcula-se que a onda de choque da explosão está correndo pelo espaço a uma velocidade de 2,4 milhões de quilômetros por hora. As observações feitas com o Chandra revelam a presença de ferro, neônio, sílica e enxofre em temperaturas superiores a 28 milhões de graus Celsius, uma lembrança não somente da energia envolvida, mas da função das supernovas em semear a galáxia com elementos pesados produzidos no coração das estrelas massivas.

Um artigo descrevendo os achados da equipe estará numa próxima edição do The Astrophysical Journal.

Fonte: NASA

sábado, 16 de março de 2013

Um trio raro de quasares

Pela segunda vez na história, uma equipe de cientistas descobriu um sistema de quasar triplo extremamente raro.

localização do trio de quasares

© Calar Alto Observatory (localização do trio de quasares)

Os quasares são fontes extremamente brilhantes e poderosas de energia que ficam no centro de uma galáxia, em torno de um buraco negro. Em sistemas com múltiplos quasares, os corpos são mantidos juntos pela gravidade e acredita-se ser o produto de galáxias em colisão.
Os sistemas de quasar triplo são muito difícil de serem detectados, por causa dos limites de observação que impedem de diferenciar vários corpos próximos um do outro em distâncias astronômicas. Além disso, tais fenômenos são consideradas muito raros. Ao combinar observações de vários telescópios e modelagem avançada, a equipe liderada por Emanuele Farina, da Universidade de Insubria na Itália foi capaz de encontrar o quasar triplo J1519 QQQ 0627.
A luz dos quasares já viajou 9 bilhões de anos-luz para chegar até a Terra, o que significa que a luz foi emitida quando o Universo tinha apenas um terço de sua idade atual. Análise avançada confirmou que foi encontrado realmente são três fontes distintas energia proveniente dos quasares. Dois dos membros do tripleto estão mais próximos entre si do que a terceiro. Isto significa que o sistema pode ter sido formado por interação entre os dois quasares adjacentes, mas não foi provocado provavelmente pela interação com o terceiro quasar mais distante.
Além disso, nenhuma prova foi vista de qualquer galáxia ultra-luminosa infravermelha, que é onde os quasares são comumente encontrados. Como resultado, a equipe propõe que este sistema triplo de quasar é parte de alguma estrutura maior que ainda está em formação.
Por intermédio de observações e técnicas de modelagem para encontrar este raro fenômeno estelar ajudará a entender como estas estruturas cósmicas se formam em nosso Universo e os processos básicos pelos quais as galáxias massivas são geradas.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Carnegie Institution for Science

sexta-feira, 15 de março de 2013

Descoberto o sistema estelar mais próximo

De acordo com um artigo que será publicado na revista Astrophysical Journal Letters, um par de estrelas recém-descobertas é o terceiro sistema estelar mais próximo do Sol.

sistema estelar observado

© WISE/Gemini (sistema estelar observado)

A dupla é o sistema mais próximo descoberto desde 1916. A descoberta foi feita por Kevin Luhman, professor de Astronomia e Astrofísica da Universidade Penn State e pesquisador do Centro para Exoplanetas e Mundos Habitáveis da mesma instituição.

Ambas as estrelas no novo sistema binário são "anãs castanhas", que são estrelas muito pequenas em massa para se tornarem quentes o suficiente para iniciar a fusão do hidrogênio. Como resultado, são muito frias e tênues, mais parecidas com um planeta gigante como Júpiter do que uma estrela brilhante como o Sol.

"A distância a esta anã castanha é de 6,5 anos-luz, tão perto que as transmissões televisivas da Terra de 2006 está agora lá chegando," afirma Luhman. "Vai ser um excelente terreno de caça planetária porque está muito próximo da Terra, o que torna muito mais fácil ver todos os planetas que orbitam qualquer das anãs castanhas."

O sistema estelar é chamado "WISE J104915.57-531906" porque foi descoberto num mapeamento de todo o céu obtido pelo satélite WISE (Wide-field Infrared Survey Explorer) da NASA.

O WISE J104915.57-531906 foi descoberto através do seu movimento rápido pelo céu, que é visto nestas imagens obtidas entre 1978 e 2010 pelo Digitized Sky Survey, pelo Two Micron All-Sky Survey, pelo satélite WISE.

imagens obtidas entre 1978 e 2010 do sistema estelar

© NASA (imagens obtidas entre 1978 e 2010 do sistema estelar)

Este sistema estelar está apenas um pouco mais longe do que a segunda estrela mais próxima, a estrela de Barnard, que foi descoberta a 6 anos-luz do Sol em 1916. O sistema estelar mais próximo consiste das estrelas Alpha Centauri, descoberta em 1839 a 4,4 anos-luz e da mais tênue Proxima Centauri, descoberta em 1917 a 4,2 anos-luz.

Edward Wright, investigador principal do WISE, disse: "um dos principais objetivos ao propôr o WISE era encontrar as estrelas mais próximas do Sol. O WISE 1049-5319 é de longe a estrela mais próxima encontrada até ao momento com os dados do WISE, e as ampliações deste sistema binário que podemos obter com grandes telescópios como o Gemini e o futuro telescópio espacial James Webb vão-nos dizer muito sobre as estrelas de baixa massa conhecidas como anãs castanhas".

Os astrônomos há muito que especulavam acerca da possível presença de um objeto distante e tênue em órbita do Sol, que é às vezes chamado de Némesis. No entanto, conclui Luhman, "nós podemos descartar que o novo sistema duplo é o tal objeto porque move-se pelo céu demasiado depressa para estar em órbita do Sol."

Para descobrir o novo sistema estelar, Luhman estudou as imagens do céu que o satélite WISE obteve durante um período de 13 meses que terminou em 2011. Durante a sua missão, o WISE observou cada ponto no céu 2 a 3 vezes. "Nestas imagens, era capaz de saber se este sistema movia-se rapidamente através do céu, uma bela pista que indicava que provavelmente estava muito perto do nosso Sistema Solar," afirma Luhman.

Depois de perceber o seu rápido movimento nas imagens do WISE, Luhman foi em busca da detecção do sistema suspeito em estudos estelares mais antigos. Ele descobriu que de fato tinha sido detectado em imagens entre 1978 e 1999 pelo "Digitized Sky Survey", pelo "Two Micron All-Sky Survey", e pelo "Deep Near Infrared Survey of the Southern Sky". "Com base no movimento deste sistema binário nas imagens do estudo WISE, fui capaz de extrapolar no passado para prever onde deveria ter sido localizado nos estudos mais antigos e, com certeza, lá estava ele," acrescenta Luhman.

Ao combinar as detecções do sistema estelar em vários estudos, Luhman foi capaz de medir a sua distância via paralaxe, que é o deslocamento aparente de uma estrela no céu devido à órbita da Terra em torno do Sol. Ele então usou o telescópio Gemini South em Cerro Pachón, no Chile, para obter o seu espectro, o que demonstrou que tinha uma temperatura muito fria e, portanto, eram anãs castanhas. "Como um bônus inesperado, as imagens nítidas do Gemini também revelaram que o objeto era na realidade não apenas uma estrela, mas um par de anãs castanhas que orbitavam uma à outra," realça Luhman.

"Existem milhares de milhões de pontos de luz no céu, e o mistério é saber qual pode ser uma estrela que está muito perto do nosso Sistema Solar."

Fonte: CCVAlg

Moléculas na atmosfera de exoplaneta

Uma equipe de cientistas detectou vapor de água e monóxido de carbono num exoplaneta. Medições dão indicações sobre formação de sistema estelar.

ilustração do sistema planetário HR 8799

© Instituto Dunlap (ilustração do sistema planetário HR 8799)

O planeta HR 8799c é um gigante girando em torno de uma estrela a 130 anos-luz de distância da Terra, descoberto em 2008.

Agora, os cientistas conseguiram detectar moléculas de monóxido de carbono e vapor de água na sua atmosfera quente através de um potente espectrógrafo, algo que nunca tinha sido feito com esta precisão. Pode-se dizer que este é um sistema jovem. A estrela HR 8799, que tem cerca 1,5 vez o tamanho do Sol e é cinco vezes mais brilhante do que ele, nasceu há 30 milhões de anos, muito antes da linhagem humana evoluir na África, mas há pouquíssimo tempo se compararmos esta data com os 4,6 bilhões de anos que o Sol possui.

Conhecem-se ao todo quatro planetas gigantes orbitando em torno desta estrela, todos maiores do que Júpiter. Devido ao seu tamanho e ao seu brilho foram identificados por observação direta.

O planeta HR 8799e, o mais interno dos achados, tem aproximadamente nove vezes a massa de Júpiter, o maior do nosso Sistema Solar. Ele está 14,5 vezes mais longe de sua estrela do que a Terra está do Sol.

Já o planeta HR 8799d é ainda maior, com dez vezes a massa de Júpiter. Ele leva cerca de cem dias da Terra para orbitar sua estrela.

Também com dez vezes a massa de Júpiter, o HR 8799c teve alguns detalhes da atmosfera revelados. Ao estudarem a luz refletida pelo planeta, os cientistas identificaram que sua atmosfera tem água e carbono.

O planeta mais externo do grupo, HR 8799b, tem cerca de sete vezes a massa de Júpiter. Ele está 68 vezes mais longe da estrela do que a Terra está do Sol.

Apesar das fortes evidências, os planetas ainda são considerados candidatos.

“O sistema só tem 30 milhões de anos de idade o que faz com que os planetas sejam muito quentes, cerca de 726ºC e por isso são mais fáceis de se observarem”, explica Bruce Macintosh, do Laboratório Nacional Lawrence Livermore, Califórnia, Estados Unidos.

O planeta HR 8799c é o segundo planeta mais distante. Está, comparativamente, tão longe da sua estrela como Plutão está do Sol. É um planeta gasoso gigante, e a equipe inspecionou a sua atmosfera no Observatório Keck no Havai, com um espectrógrafo de alta resolução chamado OSIRIS que consegue observar uma região muito localizada e distante no céu. E permite descobrir as impressões digitais de moléculas específicas.

Foi observada a região do espectro luminoso situada no infravermelho, uma região de onde o planeta, devido às altas temperaturas, emite mais brilho. “A técnica divide a luz do planeta em muitas porções pequenas ao longo de uma região do infravermelho. E podemos medir pequenas mudanças no brilho que correspondem às propriedades da água e do monóxido de carbono”, disee Travis Barman, do Observatório de Lowell, Arizona.

Ao contrário da atmosfera de Júpiter, que contém metano, no caso da atmosfera do planeta HR 8799c não foi encontrada esta molécula. Os cientistas defendem que devido às altas temperaturas o carbono tende a transformar-se em monóxido de carbono e não em metano.

A proporção das duas moléculas encontradas foi o suficiente para os pesquisadores compreenderem melhor como se formou este longínquo sistema estelar. As medições permitiram verificar que a atmosfera continha mais monóxido de carbono do que vapor de água. “Isto significa que a atmosfera deste planeta tem menos vapor de água do que o esperado se o planeta tivesse a composição da estrela em que orbita. No início haveria muitas partículas de gelo no disco planetário original que rodeava a estrela, depois desta formar-se, e estas partículas de gelo condensaram-se nas regiões frias do disco”, explica Quinn Konopacky, pesquisadora da Universidade de Toronto.

Depois, estas partículas terão agregado continuamente até formarem planetas suficientemente grandes, cuja massa foi capaz de reter atmosfera pela força da gravidade. A este processo de formação de planetas chama-se acreção e é o mesmo que se pensa que tenha acontecido durante a formação do nosso Sistema Solar.

Fonte: Science