sábado, 5 de fevereiro de 2011

Quasar é captado por radiotelescópio gigante

As imagens do quasar 3C196, um buraco negro em uma galáxia distante, foram tiradas em janeiro de 2011 pelo Internacional LOFAR Telescope (ILT).
quasar 3C196
© ASTRON e LOFAR (quasar 3C196)
O LOFAR (Low Frequency Array) é uma rede de radiotelescópios criado para estudar o céu nas frequências mais baixas de rádio acessível a partir da superfície da Terra com uma resolução sem precedentes. Um conjunto de radiotelescópios foi conectado pela primeira vez em vários locais da Europa, criando o maior telescópio do mundo com quase 1000 km de largura.
O telescópio baseado no Reino Unido no Observatório Chilbolton em Hampshire, foi adicionado à rede, e é o telescópio mais ocidental da LOFAR.
quasar 3C196 através do LOFAR
© ASTRON e LOFAR (quasar 3C196 através do LOFAR)
As novas imagens são três vezes mais nítidas do que foi anteriormente possível com LOFAR, melhorando a resolução e sensibilidade. Os sinais dos radiotelescópios do LOFAR na Holanda, França, Alemanha e Reino Unido têm sido combinadas com sucesso no supercomputador BlueGene. A conexão entre o telescópio e o supercomputador Chilbolton exige uma velocidade de internet de 10 gigabits por segundo, mais de 1000 vezes mais rápido que a velocidade de banda larga típica.
As imagens mostram uma região do céu de 15 graus de largura centrado no quasar 3C196. À luz visível, o quasar 3C196 visto através do Telescópio Espacial Hubble parece ser um único ponto. Ao adicionar as estações internacionais, foi possível observar dois pontos brilhantes pincipais.
O LOFAR foi projetado e construído pela ASTRON (Netherlands Institute for Radio Astronomy) na Holanda e atualmente está sendo estendido por toda a Europa. Bem como a cosmologia profunda, LOFAR será usado para monitorar a atividade do Sol, planetas, estudar mais sobre os raios e tempestades geomagnéticas. O LOFAR contribuirá também para o planejamento do radiotelescópio global da próxima geração, a Square Kilometer Array (SKA).
Fonte: Universe Today

quinta-feira, 3 de fevereiro de 2011

Movimentação das dunas de Marte

As dunas de areia da região norte de Marte, que até agora estavam congeladas, apresentam movimentos bruscos e gradativos, segundo revelaram as imagens da sonda de reconhecimento MRO (Mars Reconnaisance Orbiter) da NASA.
movimentação das dunas de Marte
© NASA (movimentação das dunas de Marte)
Os cientistas tinham considerado que as dunas, formadas no passado quando os ventos na superfície do planeta eram mais fortes que na atualidade, eram praticamente estáticas. No entanto, as mudanças detectadas pela câmera de alta resolução da sonda MRO sugerem que se trata de um das paisagens mais ativas de Marte.
Os pesquisadores da Universidade de Tucson (Arizona), responsáveis pela análise das imagens da câmera da sonda, estudaram as fotografias tiradas em um período de dois anos marcianos, equivalentes a quatro anos da Terra. "A quantidade e a magnitude das mudanças foram realmente surpreendentes", assinalou Candice Hansen, diretora do Laboratório Lunar e Planetário da Universidade do Arizona.
O estudo apontou que o movimento sazonal de dióxido de carbono, que no inverno se congela e na primavera volta a estar em estado gasoso, junto com rajadas de vento maiores do que se pensava, são os dois responsáveis pelo fenômeno. Este fluxo de gás desestabiliza as dunas de Marte, causando avalanches de areia e a criação de novos nichos, barrancos e rampas de areia. O nível de erosão em só um ano de Marte foi realmente surpreendente. Em alguns lugares se desprenderam centenas de metros cúbicos de areia como em um desmoronamento.
A análise também descobriu que as "cicatrizes" das avalanches de areia podem ser apagadas parcialmente em apenas um ano marciano, que equivale a 687 dias na Terra. A sonda espacial MRO foi enviada ao planeta Marte no dia 12 de agosto de 2005 e entrou na órbita marciana em 10 de março de 2006.
Operado no Laboratório de Propulsão a Jato (JPL) da NASA, a sonda MRO conta com câmeras de alta definição e uma antena de 3 metros de diâmetro com a capacidade de transmitir 6 megabits por segundo. Em 2008 foi finalizada a primeira fase de prospecção científica que continuou depois as pesquisas da superfície e da atmosfera do planeta.
Além do descobrimento de grandes massas de água nas latitudes médias do planeta, o MRO determinou que a água esculpiu a superfície de Marte há milhões de anos e determinou que em sua superfície existiram diversos ambientes hidrográficos, alguns ácidos e outros alcalinos.
Fonte: Science

quarta-feira, 2 de fevereiro de 2011

Descobertos 6 planetas que orbitam estrela similar ao Sol

A NASA anunciou o descobrimento de seis pequenos planetas que orbitam ao redor de uma estrela semelhante ao Sol, graças aos dados do telescópio espacial Kepler.
ilustração da estrela Kepler-11 e os seis planetas
© NASA (ilustração da estrela Kepler-11 e os seis planetas)
Os planetas são formados por uma mistura de rochas e gases, possivelmente incluindo água. O sistema planetário está distante 2 mil anos-luz da Terra.
Os planetas orbitam dentro de um sistema denominado Kepler-11, e que chamou a atenção dos cientistas por estar composto por um elevado número de planetas, de pequenas dimensões e muito próximos uns dos outros. Todos os planetas que orbitam a estrela são maiores que a Terra, com os maiores podendo ser comparados a Urano e Netuno.
A descoberta é importante porque poucas são as estrelas conhecidas que têm mais de um planeta circulando ao seu redor, e Kepler-11 é a primeira descoberta a ter mais de três. Há certamente muito menos do que 1% de estrelas que têm sistemas como o Kepler-11. Estes planetas precisam ainda de acompanhamento para verificar se existem realmente.
Os cinco planetas mais interiores do novo sistema planetário são mais próximos de Kepler-11 do que qualquer planeta do Sistema Solar é do Sol. Os cinco primeiros têm órbitas que variam entre 10 e 47 dias, com massas de 2,3 a 13,5 vezes maiores que a Terra, enquanto o mais afastado completa sua órbita em 118 dias, mas ainda não teve a massa definida. A imagem a seguir mostra o tamanho relativo à Terra dos planetas Keplerianos em função do período orbital.
tamanho relativo em função do período orbital
© NASA (tamanho relativo em função do período orbital)
O telescópio Kepler da NASA, lançado em março de 2009, está medindo a luz de 100 mil estrelas nas constelações Cisne e Lira. A esperança é encontrar planetas com tamanho e composição semelhantes às da Terra, dentro da chamada zona habitável, quente o suficiente para que exista água líquida, mas não quente demais para abrigar vida.
Desde o início da missão Kepler, foram descobertos 68 candidatos a planetas do tamanho da Terra e 288 maiores que o nosso planeta. Outros 662 planetas descobertos têm o tamanho de Netuno, 165 são comparáveis a Júpiter, o maior planeta do Sistema Solar. Outros 19 são maiores que qualquer planeta do nosso sistema.
Com os dados do Kepler, astrônomos da Universidade da Califórnia de Santa Cruz (UCSC) analisaram a dinâmica orbital deste sistema planetário, cujos resultados serão publicados na edição de fevereiro da revista científica Nature. A imagem a seguir mostra o tamanho dos planetas Keplerianos comparados com a Terra e Júpiter.
planetas Keplerianos comparados com a Terra e Júpiter
© NASA (planetas Keplerianos comparados com a Terra e Júpiter)
Para determinar o tamanho e as massas dos planetas, a equipe analisou as medições realizadas pelo observatório Kepler, que captou a luminosidade em transformação da estrela por volta da qual os planetas giram quando passam em frente a ela.
O fotômetro sensível do telescópio capta este momento em que se interrompe o brilho da estrela. Com as imagens, é possível conhecer o tamanho e a massa de cada planeta medindo seu raio. "Isso não só é um sistema planetário surpreendente, mas também valida um novo e poderoso método para medir as massas dos planetas", assinalou Daniel Fabrycky da UCSC, que dirigiu a análise da dinâmica orbital junto a Jack Lissauer, cientistas da NASA.
Fonte: NASA

Uma galáxia de disco puro

A galáxia brilhante NGC 3621 parece ser um exemplar perfeito de uma espiral clássica. No entanto, é bastante invulgar, pois esta galáxia não tem bojo central e é por isso descrita como uma galáxia de disco puro.
© ESO (galáxia espiral NGC 3621)
A NGC 3621 é uma galáxia espiral situada a cerca de 22 milhões de anos-luz de distância na constelação da Hidra. É relativamente brilhante e pode ser observada com um telescópio de tamanho médio. Esta imagem foi obtida com o instrumento Wide Field Imager montado no telescópio MPG/ESO de 2,2 metros, instalado no observatório do ESO de La Silla, Chile. Os dados foram selecionados, a partir de arquivo do ESO, por Joe DePasquale, que participou no concurso Tesouros Escondidos. O concurso deu aos astrônomos amadores a oportunidade de procurar no seio dos vastos arquivos de dados astronômicos do ESO, na busca de jóias escondidas que necessitaram de polimento por parte dos concorrentes. A imagem da NGC 3621 submetida por Joe ao concurso valeu-lhe o quinto lugar nesta competição.
Foram obtidas múltiplas imagens monocromáticas através de quatro filtros de cor diferentes que foram combinadas para obter esta fotografia.
A galáxia tem a forma de uma panqueca achatada, o que indica que ainda não interagiu de forma direta com outra galáxia, sofrendo por exemplo uma colisão galáctica, o que teria perturbado o fino disco de estrelas e criado um pequeno bojo no seu centro. A maioria dos astrônomos pensa que as galáxias crescem por fusão com outras galáxias, num processo chamado formação hierárquica de galáxias. Com o tempo este processo deverá criar bojos grandes no centro das espirais. Investigações recentes sugeriram, no entanto, que galáxias espirais sem bojo, ou de disco puro, como a NGC 3621, são na realidade bastante comuns.
Esta galáxia torna-se igualmente interessante na medida em que, encontrando-se relativamente próxima, permite-nos estudar uma grande variedade de objetos astronômicos que se encontram no seu interior, incluindo maternidades estelares, nuvens de poeira e estrelas pulsantes, as chamadas variáveis Cefeides. Estas últimas são utilizadas como marcos de distância no Universo. As variáveis Cefeides são estrelas muito brilhantes, cerca de 30.000 vezes mais brilhantes que o nosso Sol, cujo brilho varia a intervalos regulares em períodos de vários dias, semanas ou meses. O período desta variação em brilho está relacionado com o brilho verdadeiro da estrela, conhecido como magnitude absoluta. Sabendo a magnitude absoluta de uma estrela e medindo o brilho observado, podemos calcular a sua distância à Terra. As variáveis Cefeides são, por isso, vitais no estabelecimento da escala do Universo. No final do século passado, a NGC 3621 foi uma das 18 galáxias selecionadas para um programa importante do Telescópio Espacial Hubble: observar variáveis Cefeides e medir a taxa de expansão do Universo com uma precisão maior do que a conseguida até então. Neste projeto, que correu bastante bem,  foram observadas, apenas nesta galáxia, 69 Cefeides.
Foram obtidas múltiplas imagens monocromáticas através de quatro filtros de cor diferentes que foram combinadas para obter esta fotografia.
Fonte: ESO

sábado, 29 de janeiro de 2011

Quasar tipo 2 visto pelo Chandra

No painel abaixo, a imagem da esquerda é feita com raios-X e a imagem da direita é feita com o comprimento de onda óptico do espectro e mostram um buraco negro.
buraco negro
© Chandra (buraco negro)
A imagem da esquerda foi construída com dados do Observatório de Raios-X Chandra e mostra a poderosa fonte pontual de raios-X. A imagem da direita foi construída com dados do Telescópio Espacial Hubble e mostra a galáxia espiral com a qual a fonte de raios-X está associada. A fonte de raios-X está localizada no centro da galáxia, e tem um déficit de raios-X de baixa energia consistente com a absorção por uma espessa nuvem de gás. A combinação da poderosa emissão de raios-X e da absorção dos raios-X de baixa energia e a relativamente normal aparência óptica da galáxia sugere que a fonte é um raro tipo de buraco negro chamado de quasar Tipo 2.
A aparência espalhada da fonte de raios-X é um artefato instrumental. A distribuição de raios-X é consistente com essa fonte como sendo um ponto. As imagens em raios-X e óptica tem a mesma escala, com 10 arcos de segundo de lado.
Fonte: Harvard-Smithsonian Center for Astrophysics

quarta-feira, 26 de janeiro de 2011

Uma estrela supergigante com disco

A estrela exótica HD 62623 é uma supergigante muito quente que está localizada na constelação do Cisne perto da supergigante brilahnte Deneb.
imagem em 3-D da estrela HD 62623
© OCA (imagem em 3-D da estrela HD 62623)
As supergigantes são as estrelas mais massivas que existem, possuindo de 10 a 70 massas solares, produzindo um brilho 30.000 a 100.000 vezes maior que o Sol.
Foi observado na HD 62623 um disco de gás e poeira, que é comum em estrelas jovens com menor massa, que poderam dar origem a planetas. Porém, as estrelas bastante massivas não têm esses discos de poeira, porque esse disco é dispersado pela intensidade da onda de choque durante o nascimento da estrela. Por exemplo, a estrela Deneb não apresenta tal disco.
Os astrônomos utilizaram o Very Large Telescope interferometer do ESO para capturar as imagens em 3-D que evidenciam a presença do disco ao redor da estrela. A pesquisa foi liderada pelo francês Florentin Millour do Observatoire de la Côte d’Azur (OCA).
A estrela HD 62623 possui um tempo de vida muito curto, cerca de centenas de milhares de anos ou pouco mais de alguns milhões de anos. A trajetória final deste tipo de estrela é sua detonação que a transformará numa supernova do tipo II.
Fonte: Universe Today

Descoberta uma galáxia que pode ser a mais distante detectada

Um grupo de astrônomos descobriu uma galáxia que pode ser a mais distante detectada até o momento. Ela está situada a cerca de 13,2 bilhões de anos-luz.
galáxia UDFj-39546284
© NASA (galáxia UDFj-39546284)
Uma equipe de astrônomos que analisava imagens cósmicas registradas pelo telescópio espacial Hubble aumentou seu alcance até 480 milhões de anos após o Big Bang, quando o Universo tinha 4% de sua idade atual.
"Estamos nos aproximando das primeiras galáxias, que achamos que foram formadas entre 200 milhões e 300 milhões de anos depois do Big Bang", ressaltou Garth Illingworth, professor de astronomia e astrofísica da Universidade da Califórnia (EUA) e um dos autores do estudo.
Em sua pesquisa, Illingworth e Rychard Bouwens, da Universidade de Leiden (Holanda), utilizaram dados do Hubble reunidos pela câmara Wide Field Camera 3 (WFC3).
Os astrônomos observaram as mudanças que se produziram nas galáxias de 480 milhões a 650 milhões de anos depois do Big Bang e detectou que a taxa de nascimento das estrelas no Universo aumentou cerca de dez vezes durante esse período de 170 milhões de anos. Para Illingworth, isso é um "aumento assombroso em um período de tempo tão curto, somente 1% da idade atual do Universo".
Os astrônomos também registraram mudanças significantes no número de galáxias detectadas. "Nossas buscas anteriores tinham encontrado 47 galáxias quando o Universo possuía cerca de 650 milhões de anos", disse Illingworth. Ele acrescentou que "o Universo está mudando muito rapidamente em um período de tempo muito curto".
Já Bouwens afirmou que os resultados dos estudos são consistentes com a imagem hierárquica da formação das galáxias, segundo a qual estas cresceram e se uniram sob a influência gravitacional da matéria escura.
Para chegar à nova descoberta, os astrônomos calcularam a distância de um objeto no espaço com base em seu redshift, fenômeno que ocorre quando a radiação eletromagnética, normalmente a luz visível, que se emite de um objeto tende ao vermelho no final do espectro.
Sua medida é considerada pela comunidade astronômica internacional como o procedimento mais confiável para calcular distâncias espaciais, a galáxia recém-descoberta alcançou um nível provável de redshift de 10,3 pontos.
Os especialistas acrescentaram que a galáxia em questão é pequena se for comparada às enormes já vistas no Universo, como a Via Láctea, pelo menos cem vezes maior.
Fonte: Nature

segunda-feira, 24 de janeiro de 2011

Uma estrela azul fugitiva

A estrela azul próxima do centro dessa imagem é a Zeta Ophiuchi. Quando observada utilizando o comprimento de onda da luz visível ela aparece como uma estrela vermelha relativamente apagada envolta por outras estrelas apagadas e sem poeira.
Zeta Ophiuchi
© NASA/WISE (estrela Zeta Ophiuchi)
Contudo, essa imagem infravermelha feita pelo WISE (Wide field Infrared Survey Explorer) da NASA, fornece uma visão completamente diferente da estrela. A Zeta Ophiuchi é na verdade uma estrela muito massiva, quente, brilhante e azul, avançando em seu caminho para fora da grande nuvem de gás e poeira interestelar.
As cores usadas nessa imagem representam comprimentos de onda específicos da luz infravermelha. Azul e ciano (azul esverdeado) representa a luz emitida com comprimento de onda de 3.4 e 4.6 mícron, emitidas de forma predominante pelas estrelas. Verde e vermelho representam a luz com comprimento de onda de 12 e 22 mícron respectivamente, emitida predominantemente pela poeira.
A Zeta Ophiuchi provavelmente fazia parte de um sistema binário de estrelas com uma parceira ainda mais massiva. Quando a companheira explodiu como uma supernova, ela expeliu grande parte de sua massa, e a Zeta Ophiuchi foi repentinamente liberada de sua parceira empurrada para longe se movendo a 24 quilômetros por segundo. A Zeta Ophiuchi é aproximadamente 20 vezes mais massiva e 65.000 mais luminosa do que o Sol. Se ela não fosse envolvida por tanta poeira ela seria uma das estrelas mais brilhantes do céu e apareceria azul para os nossos olhos. Como todas as estrelas com esse tipo de massa e potência extrema, ela tem um tempo de vida curto e morre jovem. Ela se encontra aproximadamente na metade  de sua vida de 8 milhões de anos. Em comparação o Sol está na metade da sua vida de 10 bilhões de anos. Enquanto o Sol eventualmente se tornará uma calma anã branca, a Zeta Ophiuchi irá explodir num violento evento se tornando uma supernova.
Talvez, as feições mais interessantes nessa imagem estejam relacionadas com o gás e a poeira interestelar que envolve a Zeta Ophiuchi. Nos lados da imagem e no plano de fundo existem nuvens de poeira relativamente calmas que aparecem em verde, lembrando muito as auroras encontradas na Terra. Próximo à Zeta Ophiuchi, essas nuvens parecem um pouco diferentes. A nuvem em todas as direções ao redor da estrela é mais brilhante e avermelhada, isso ocorre devido as extremas quantidades de radiação ultravioleta emitida pela estrela que está aquecendo a nuvem causando o brilho mais brilhante no infravermelho do que o normal.
Mais impressionante ainda é a aparência de uma curva que brilha em amarelo diretamente acima da Zeta Ophiuchi. Esse é um impressionante exemplo de uma onda de choque. Nessa imagem, a estrela fugitiva, está voando desde o canto inferior direito em direção ao canto superior esquerdo. À medida que ela se desloca, seu poderoso vento estelar está empurrando o gás e a poeira (o vento estelar se estende além da porção visível da estrela criando uma bolha invisível ao seu redor). E diretamente em frente à passagem do vento estelar está o gás sendo comprimido e essa compressão faz com que ele brilhe intensamente no infravermelho, criando a onda de choque. Essa caractrística é completamente invisível à luz visível. As imagens infravermelhas como essa do WISE geram novas interpretações sobre a região.
Fonte: NASA

O pólo sul de Fobos

A lua Fobos, a lua mais próxima de Marte, foi fotografada recentemente pela sonda da ESA, a Mars Express,que fez imagens detalhadas de uma área ao redor do pólo sul do satélite.
Fobos
© ESA (lua Fobos)
Fobos está tão perto de Marte que se espera que esse satélite se parta e caia no planeta vermelho nos próximos 100 milhões de anos.
São visíveis na incomum superfície escura da pequena lua muitas crateras circulares, longas cadeias de crateras e estranhas listras. A grande Cratera Stickney, que aparece à direita, foi também visível na imagem correspondente do pólo norte do satélite feita há dez anos. Essa imagem e outras feitas pela Mars Express possuem a excelente resolução de até 10 metros e com essa resolução elas são úteis para examinar propostas de locais de pouso para a futura missão Fobos-Grunt. A sonda robótica russa Fobos-Grunt está programada para ser lançada em direção a Fobos no final de 2011 e para retornar com amostras da superfície do satélite em 2014.
Fonte: ESA

domingo, 23 de janeiro de 2011

Descoberto um buraco negro supermassivo

Os cientistas da NASA confirmaram a existência de um buraco negro supermassivo no centro da galáxia M84. Foi utilizado o espectrógrafo, um equipamento que realiza um registro fotográfico de um espectro luminoso, mais potente do telescópio Hubble para mapear a rápida rotação de gás no centro da galáxia.
buraco negro supermassivo
© NASA (detecção de um buraco negro supermassivo)
A prova concreta da descoberta é o ziguezague colorido. Se na imagem não existisse o buraco negro, a linha seria quase que vertical. Os astrônomos calculam que o buraco negro tenha pelo menos 300 milhões de vezes à massa solar. O espectrógrafo (Space Telescope Imaging Spectrograph) mediu uma velocidade de 393 km/s dentro dos 26 anos-luz do centro da galáxia.
M84
© NASA/Hubble (M84)
A galáxia M84 está localizada no aglomerado de galáxias Virgo, a 50 milhões de anos-luz, da Terra, e vizinho próximo da galáxia M87, que também contém um buraco negro muito massivo. A imagem, datada originalmente de 1997, exibe à esquerda o centro da galáxia em luz visível.
Fonte: NASA

NASA encontra galáxias ativas desaparecidas

O céu inteiro visto por raios X tem um brilho incandescente. Mesmo longe de fontes luminosas, as imagens de fora da Via Láctea apresentam um brilho constante em todas as direções. Os astrônomos já suspeitavam que as principais contribuições para essa radiação cósmica de fundo fossem buracos negros envoltos em poeira no centro das galáxias ativas. O problema é que poucos deles foram detectados para elucidar a questão.
Cosmic X-ray Background
© NASA/Goddard Space Flight Center (Cosmic X-ray Background)
A imagem mostra um gráfico da intensidade em função da energia, onde a curva azul é a radiação cósmica de fundo. A curva laranja representa a população de galáxias com forte absorção de energia. Ambas curvas têm formas espectrais e pico de energias semelhantes. A curva amarela indica absorção parcial de energia e a curva roxa indica nenhuma absorção de energia.
Uma equipe internacional de cientistas, usando dados do satélite Swift da NASA, confirmou a existência de uma grande população invisível de galáxias abastecidas com buracos negros. A emissão de raios X deles é tão fortemente absorvida que pouco mais de uma dúzia é conhecida. No entanto, apesar dos raios X pouco nítidos, essas fontes são responsáveis por pelo menos um quinto de todas as galáxias ativas do Universo.
"Essa grande cobertura de buracos negros está ao nosso redor. Mas, antes desse satélite, eles eram muito fracos e obscuros para vermos", disse Neil Gehrels, coautor do estudo e principal pesquisador do Swift no Centro Espacial Goddard, em Greenbelt, Maryland (EUA).
A maioria das grandes galáxias contém um buraco negro gigante central, e os observados no estudo do Swift pesam cerca de 100 milhões de vezes a massa do Sol. Em uma galáxia ativa, a matéria que cai em direção ao buraco negro supermassivo tem tanta energia que as duas classes de galáxias ativas, quasares e blazares, são consideradas os objetos mais luminosos do Universo.
A análise de raios X levou os astrônomos a suspeitar que as galáxias ativas foram subavaliadas. Grossas nuvens de gás e poeira cercam os buracos negros centrais, que não eram vistos de forma satisfatória em raios ultravioleta, óticos e raios X moles (de baixa energia). Embora a radiação infravermelha atinja o interior desse material, ela pode se confundir com a poeira quente nas regiões de formação estelar da galáxia.
Desde 2004, o Telescópio de Alerta de Explosões do Swift (BAT, na sigla em inglês), desenvolvido e operado pelo Centro Goddard, mapeia todo o céu com raios X duros, com energia entre 15 mil e 200 mil elétron-volts, milhares de vezes a energia da luz visível. Atualmente, o trabalho é o maior, mais sensível e completo censo sobre esse tipo de energia. Ele inclui centenas de galáxias ativas a uma distância de 650 milhões de anos-luz da Terra.
Fonte: Astrophysical Journal

sábado, 22 de janeiro de 2011

Encontrada estrela pulsante que hospeda planeta gigante

Um grupo de pesquisadores do Instituto de Ciências Espaciais da Universidade Autônoma de Barcelona, na Espanha, descreve a descoberta, pela primeira vez, de uma estrela pulsante que hospeda um planeta gigante, quente e em trânsito.
ilustração do exoplaneta WASP-33b e sua estrela
© ESA (ilustração do exoplaneta WASP-33b e sua estrela)
O estudo foi realizado pelo estudante de pós-doutorado Enrique Herrero, pelo pesquisador Dr. Juan Carlos Morales, pelo especialista em exoplanetas Dr. Ignasi Ribas e pelo astrônomo amador Ramón Naves.
A estrela WASP-33 (também conhecida como HD15082) é mais quente, tem 1,5 vez a massa do Sol e está localizada a uma distância de 378 anos-luz de distância da Terra, na constelação de Andrômeda. Também tem a peculiaridade de pulsar tanto radialmente, como um balão que infla e desinfla de forma contínua, quanto não radialmente, como as marés dos oceanos causadas pela presença da Lua, que deforma a massa da água entre os polos e a linha do Equador.
Essa estrela abriga um planeta gigante, o WASP-33b, detectado em 2006 pelo método do trânsito (fenômeno durante o qual um astro passa em frente a outro maior, bloqueando parcialmente sua visão). A massa do planeta é 4 vezes a de Júpiter, e ele orbita a estrela em uma velocidade tão alta que leva apenas 1,2 dia para completar uma volta. Esse curto período orbital indica sua extrema proximidade com a estrela, de 0,02 unidade astronômica (UA); o planeta Mercúrio, o mais próximo do Sol, está situado a 0,39 UA. Esse planeta é muito especial porque tem uma órbita inversa e com um ângulo bastante inclinado em relação ao equador da estrela.
A estrela possui uma temperatura de 7160 °C na fotosfera, sendo mais quente que o Sol que possui uma temperatura de 5600 °C. O exoplaneta WASP-33b orbita a estrela numa região cuja temperatura é de 3200 °C, de acordo com medidas em infravermelho obtidas pela câmara do telescópio William Herschel nas ilhas Canárias. O WASP-33b tem temperatura mais alta que outro exoplaneta, o WASP-12b, que apresenta uma temperatura de 2300 °C. Observa-se também o WASP-33b apresenta temperatura maior do que algumas anãs vermelhas.
O estudo também sugere que as pulsações da WASP-33 podem ser causadas pela presença do planeta gigante, algo nunca visto antes em nenhum outro sistema planetário. Um pequeno sinal periódico, visível durante o trânsito do planeta, chamou a atenção dos pesquisadores e, por meio de uma análise minuciosa, os modos de pulsação da estrela foram determinados e também sua possível relação com o planeta.
Além de ser pioneira nesse campo, a pesquisa foi feita a partir de observatórios profissionais e amadores. Pela primeira vez na história de suas atividades, o Observatório Astronômico do Montsec, na Espanha, é responsável por fornecer a maior parte do material usado em um trabalho. Além disso, o astrônomo amador R. Naves, do Observatório Montcabrer, no mesmo país, tem proporcionado excelentes dados, revelando a grande importância da colaboração entre profissionais e amadores nesse campo.
Por essa razão, o sistema da WASP-33 representa um marco no mundo dos exoplanetas, já que pode fornecer informações vitais sobre os modos de pulsação que ocorrem em estrelas, os efeitos das marés entre estrelas e planetas e a evolução dinâmica dos sistemas planetários.
Fonte: Astronomy & Astrophysics

quinta-feira, 20 de janeiro de 2011

Não há relação direta entre buracos negros e matéria escura

Os buracos negros massivos são encontrados no centro de quase todas as galáxias, onde as maiores delas, embutidas em halos de matéria escura, abrigam os buracos negros. Na galáxia NGC 5457 (M101) possui um halo escuro volumoso mas nenhuma protuberância e nenhum buraco negro descoberto.
M101
© HubbleSite (galáxia M101)
Esse fato levou à especulação de que existe uma relação direta entre a matéria escura e os buracos negros, ou seja, que uma física estranha controla o crescimento de um buraco negro.
Cientistas da Universidade do Texas em Austin (EUA) e do Instituto Max Planck de Física Extraterrestre, ligado ao Observatório da Universidade de Munique (Alemanha), conduziram um estudo abrangente sobre galáxias para provar que a massa dos buracos negros não está diretamente relacionada à massa do halo de matéria escura, mas parece ser determinada pela formação do bojo (centro) da galáxia. Os resultados são publicados em uma carta à revista Nature.
As galáxias, como a nossa Via Láctea, são compostas por bilhões de estrelas, além de grandes quantidades de gás e poeira. A maior parte disso pode ser observada por variações em comprimentos de ondas infravermelhas e de rádio para objetos mais frios e por sistema ótico e raios X para os de altas temperaturas. No entanto, há dois elementos importantes que não emitem luz e só podem ser percebidos a partir de sua força gravitacional.
Todas as galáxias estão embutidas em halos da chamada matéria escura, que se estende além da borda visível da galáxia e domina sua massa total. Esse componente não pode ser observado diretamente, mas medido por seu efeito sobre o movimento das estrelas, do gás e da poeira. A natureza dessa matéria escura ainda é desconhecida, mas os cientistas acreditam que ela é feita de partículas estranhas, ao contrário da matéria bariônica, da qual a Terra, o Sol e as estrelas são feitos.
O outro componente invisível em uma galáxia é o buraco negro supermassivo no centro. A própria Via Láctea abriga um buraco negro, que é cerca de 4 milhões de vezes mais pesado que o Sol. Essa gravidade exorbitante têm sido encontrada em todas as galáxias luminosas com bojo central, onde uma pesquisa direta é viável. A maioria, ou talvez todas as galáxias com bojo, contém um buraco negro central. No entanto, esse componente também não pode ser observado diretamente, a massa do buraco negro só pode ser inferida a partir do movimento das estrelas em torno dele.
Em 2002, foi especulado que pode existir uma estreita correlação entre a massa do buraco negro e a velocidade de rotação externa dos discos das galáxias, que é dominada pelo halo de matéria escura, sugerindo que a física desconhecida da matéria escura de alguma forma controla o crescimento dos buracos negros. Por outro lado, já havia sido demonstrado há alguns anos que a massa do buraco negro está relacionada com a massa ou luminosidade do bojo. Dado que galáxias maiores em geral contêm bojos maiores, ainda não ficou claro qual das correlações é a principal para promover o crescimento dos buracos negros. Outro exemplo desse estudo, é a galáxia NGC 6503 com uma protuberância menor, um halo volumoso e um buraco negro pequeno.
NGC 6503
© ESA (galáxia NGC 6503)
Para testar essa ideia, os astrônomos John Kormendy, da Universidade do Texas, e Ralf Bender, do Instituto Max Planck, fizeram observações espectrais de alta qualidade em muitos discos, bojos e galáxias com pseudobojos. A crescente precisão dos parâmetros resultantes da dinâmica das galáxias levou à conclusão de que não há quase nenhuma correlação entre a matéria escura e os buracos negros.
Os pesquisadores descobriram que as galáxias sem bojo, mesmo aquelas embutidas em halos maciços de matéria escura, podem conter, no máximo, uma massa muito baixa de buracos negros. Assim, Kormendy e Bender mostraram que o crescimento do buraco negro é mais ligado à formação do bojo, e não à matéria escura.
"Parece muito mais plausível que os buracos negros cresçam a partir do gás em suas imediações, principalmente quando as galáxias estão se formando", afirma Kormendy. Nesse cenário, fusões de galáxias ocorrem com frequência, o que mexe nos discos e permite que o gás caia no centro e, assim, desencadeie explosões de estrelas e alimente os buracos negros. As observações indicam que esse efeito deve ser o processo dominante de formação e crescimento desses buracos no Universo.
Fonte: Instituto Max Planck

Campo magnético intenso em anãs vermelhas

Uma pesquisa de mais de 200.000 estrelas na nossa Via Láctea tem revelado o comportamento às vezes petulante de pequenas estrelas conhecidas como anãs vermelhas.
estrelas anãs vermelhas ativas
© HubbleSite (estrelas anãs vermelhas ativas)
Essas estrelas que são menores que o Sol, podem lançar poderosas erupções chamadas de protuberâncias, que são labaredas que podem atingir a energia de mais de 100 milhões de bombas atômicas. As anãs vermelhas são as estrelas mais abundantes no Universo e são presumidamente o local de numerosos planetas. Contudo, seu comportamento errático poderia fazer com que a vida nesses mundos que as orbitam fosse algo nada prazeroso, senão impossível. As labaredas são erupções repentinas de plasma aquecido que ocorre quando poderosas linhas do campo magnético na atmosfera da estrela se reconectam, criando um tipo de alça e lançando vastas quantidades de energia. Quando as labaredas ocorrem, elas podem aniquilar qualquer planeta que esteja orbitando a estrela com uma intensa luz ultravioleta, explosões de raios-X e jatos de partículas carregadas através de um intenso vento estelar. Estudando a luz de 215.000 estrelas anãs vermelhas, luz essa coletada em observações feitas com o Telescópio Espacial Hubble da NASA, os astrônomos encontraram 100 labaredas estelares.
As observações foram feitas em um período de sete dias, e constituem o maior monitoramento contínuo de estrelas anãs vermelhas já feito até hoje. “Nós sabemos que as estrelas jovens hiperativas produzem labaredas, mas esse estudo mostrou que mesmo em estrelas velhas que têm alguns bilhões de anos de vida, as labaredas são um fato”, disse a astrônoma Rachel Osten do Space Telescope Science Institute localizado em Baltimore, Maryland.
A vida poderia ser algo bruto para qualquer planeta orbitando esse tipo de estrela a uma distância suficiente para sofrer com essas labaredas. Sua atmosfera seria evaporada e arrancada do planeta.
Osten e sua equipe, incluindo Adam Kowalski da University of Washington em Seattle, descobriram que nas estrelas anãs vermelhas as labaredas são 15 vezes menos frequente do que se previa em estudos anteriores que observaram estrelas mais jovens e menos massivas.
As estrelas no estudo foram originalmente usadas para uma pesquisa por planetas. O Hubble monitorou as estrelas de forma contínua por uma semana em 2006, procurando por assinaturas de planetas passando em frente às estrelas. As estrelas foram fotografadas pela Advanced Camera for Surveys do Hubble durante a pesquisa por exoplanetas chamada de Sagittarius Window Eclipsing Extrasolar Planet Search (SWEEPES). Osten e Kowlski pesquisaram nos dados do Hubble, procurando por um pequeno aumento no brilho das estrelas anãs vermelhas, uma assinatura das labaredas. Algumas das estrelas pesquisadas tiveram um aumento de 10% em um curto espaço de tempo, o que é na verdade muito mais brilhante do que as labaredas produzidas pelo Sol. A duração média das labaredas foi de 15 minutos. Algumas estrelas chegaram a produzir múltiplas labaredas. Os astrônomos descobriram que as estrelas periodicamente oscilam o seu brilho, as chamadas estrelas variáveis, mas não é uma variação tão grande quanto as que sofrem explosões.
“Nós descobrimos que as estrelas variáveis tem aproximadamente mil vezes mais probabilidade de ter uma labareda do que uma estrela não variável”, disse Kowalski. “As estrelas variáveis estão em rápida rotação, o que pode significar que elas estão em um sistema binário de órbita rápida. Se as estrelas possuem grandes manchas, regiões escuras na superfície da estrela, isso irá fazer com que o brilho da estrela varie quando as manchas entram e saem do campo de visão. As manchas estelares são produzidas quando as linhas do campo magnético batem na superfície. Então, se existem grandes manchas, existe uma grande área coberta por um forte campo magnético e nós descobrimos que essas estrelas têm mais labaredas”.
Embora as estrelas anãs vermelhas sejam menores que o Sol, elas possuem uma profunda zona de convecção, onde células de bolhas de gás quente seguem para a superfície. Essa zona gera o campo magnético que permite que as anãs vermelhas tenham energéticas labaredas. As anãs vermelhas também têm campos magnéticos que são mais fortes que os do Sol. Eles cobrem uma área muito maior que no Sol. Manchas solares cobrem 1% da superfície do Sol, enquanto que nas anãs vermelhas essas manchas podem cobrir metade da sua superfície!
Fonte: NASA

quarta-feira, 19 de janeiro de 2011

O maior buraco negro do Universo

Um buraco negro localizado no centro da galáxia M87 vem chamando a atenção de especialistas. Sua massa é correspondente a 6,6 bilhões o tamanho do Sol, e é o maior buraco negro já encontrado até o momento.
buraco negro gigantesco
© Science (ilustração de um buraco negro gigantesco)
Para o astrônomo Karl Gebhart, da Universidade do Texas, sua força é tanta que ele poderia engolir o Sistema Solar se estivesse mais próximo. A descoberta foi anunciada esta semana no encontro anual da Sociedade de Astronomia Americana.
Para determinar a massa do buraco negro, é preciso analisar estrelas próximas a ele e a velocidade em que estão orbitando a estrutura.
Até agora, cientistas estimavam que a massa do buraco negro da M87 era a metade da apresentada por Gebhart. Mesmo assim, já seria mil vezes maior que o maior buraco negro da Via Láctea. Ele fica a 50 milhões de anos luz da Terra na direção da constelação de Virgem, e provavelmente ganhou seu tamanho após a fusão com buracos negros menores.
Fonte: Science