segunda-feira, 7 de março de 2011

A formação de estrelas na nebulosa Sh2-284

O telescópio WISE captou uma imagem mostrando uma nuvem de poeira e gás com formação de estrelas, localizada na constelação de Monoceros.
nebulosa Sh2-284
© NASA (nebulosa Sh2-284)
Esta nebulosa, conhecida por Sh2-284, está relativamente isolada no extremo de um braço espiral exterior da Via Láctea. No céu noturno, situa-se na direção oposta ao centro da Via Láctea.
Nesta nebulosa salienta-se a existência da chamamada "elephant trunks" (trombas de elefante), que são gigantescas colunas de gás e poeira densas, que têm como exemplo os famosos "Pilares da Criação", observados numa imagem da Nebulosa da Águia, do Telescópio Espacial Hubble.
pilares da criação
© Hubble (Pilares da Criação)
Nesta imagem do WISE, os "elephant trunks" aparecem como pequenas colunas de gás estendidas em direção ao centro vazio da Sh2-284, como pequenos dedos verdes com unhas amarelas. A coluna mais notável está no lado direito do vazio, por volta da posição das 3 horas. Parece uma mão fechada com um dedo apontando para o centro do vazio. Esta tromba de elefante tem cerca de sete anos-luz de comprimento.
Pode observar-se uma outra visão desta grande região de formação de estrelas neste endereço, assim como um pormenor mais detalhado do pilar semelhante ao dedo apontando na cavidade central.
Bem no interior de Sh2-284 situa-se um agrupamento de estrelas, Dolidze 25, que emite enormes quantidades de radiação em todas as direções, juntamente com ventos estelares. Estes ventos estelares e a radiação limpam uma cavidade no interior do gás e da poeira em volta, criando o vazio que se vê no centro.
A parede verde brilhante rodeando a cavidade mostra como o gás tem sido destruído. No entanto, algumas seções da nuvem de gás originais eram muito mais densas do que outras, e conseguiram resistir ao poder erosivo da radiação e dos ventos estelares. Estas bolsas de gás denso mantiveram-se e protegeram o gás, não deixando ser destruído pelos ventos estelares, deixando para trás as "trombas de elefante", como estalagmites nas paredes das grutas terrestres.
A nebulosa Sh2-284 está classificada como uma região HII, ligada à formação de estrelas. As estrelas do centro, o aglomerado Dolidze 25, formaram-se recentemente. São estrelas quentes, jovens e brilhantes, com idades variando de 1,5 a 13 milhões anos. Em comparação, o Sol tem cerca de 4,6 biliões de anos.
As cores usadas na imagem representam determinados comprimentos de onda da luz infravermelha. Azul e ciano (azul e verde) representam a luz emitida predominantemente por estrelas. Verde e vermelho representam a luz a emitida principalmente pela poeira.
Fonte: NASA

domingo, 6 de março de 2011

Encontrada evidência de vida extraterrestre

O astrobiólogo da NASA, Richard Hoover, afirmou ter encontrado evidências de vida extraterrestre em um meteorito, segundo estudo publicado na revista científica Journal of Cosmology.
filamento no meteorito Ivuna, da classe CI1
© Journal of Cosmology (filamento no meteorito Ivuna, da classe CI1)
De acordo com Hoover, ele teria encontrado microfósseis similares a cianobactérias existentes em uma classe extremamente rara de meteoriotos, o CI1, encontrado em áreas remotas do planeta, como Antártica, Sibéria e Alasca.
Para Hoover, o estudo pode permitir a implicação de que a vida está em todos os lugares e que a vida na Terra pode ter surgido a partir de corpos vivos em outros planetas. Segundo Rudy Schild, pertencente do centro de astrofísica Harvard-Smithsonian e editor-chefe do Journal of Cosmology, em comunicado oficial, a análise atenciosa de Hoover fornece provas definitivas de que existe vida microbial em corpos do Universo, sendo que alguns destes podem inclusive proceder a origem da Terra e até mesmo do Sistema Solar. "Estas bactérias fossilizadas não são contaminantes para a Terra. São restos fossilizados de organismos vivos que existiram em corpos celestes similares aos deste meteoro, como cometas, luas e outros", destaca o artigo.
Em declarações ao canal de televisão norte-americano Fox News, Hoover afirmou que este campo de estudo não é amplamente explorado porque muitos grandes cientistas afirmaram que é impossível. A publicação ainda convidou mais de 100 especialistas e 5 mil cientistas para revisarem e opinarem sobre o artigo, devido à "controvertida polêmica que pode gerar este descobrimento", afirmou Schild. O artigo controverso está sendo criticado pela comunidade científica.
Fonte: Journal of Cosmology

sexta-feira, 4 de março de 2011

Nova família no cinturão de asteroides

Uma nova família no cinturão de asteroides na ressonância secular v6 foi descoberta pelo físico e doutor em astronomia Valério Carruba, professor do Departamento de Matemática da Universidade Estadual Paulista (Unesp).
asteroide Lutécia
© ESA (asteroide Lutécia)
Os asteroides nessa configuração fazem movimentos ressonantes aos de Saturno. Isso significa que a frequência de precessão g – ou seja, a frequência associada com o período de revolução do pericentro – dos asteroides é igual à frequência de precessão do pericentro do planeta g6. Esse fenômeno é chamado de ressonância secular linear.
“É a primeira vez que registramos no Sistema Solar a ocorrência de uma família de asteroides em suas configurações originais dentro de uma ilha de estabilidade nesse tipo de ressonância. Por ser linear, a v6 é muito eficaz em aumentar a excentricidade dos asteroides, fazendo dela uma das mais desestabilizadoras ressonâncias do Sistema Solar”, disse Carruba.
Ao todo, são 110 corpos celestes na ilha de estabilidade, sendo 90 deles integrantes da família chamada Tina, que se formou há milhões de anos a partir do choque entre asteroides e permanece incólume em meio à agitação celestial da ν6 .
Essa característica singular de Tina evita a saída de seus membros rumo ao Sol ou para fora do cinturão. A união nessa espécie de bolha protetora se deve aos valores limitados da excentricidade – a medida do achatamento da órbita elíptica dos asteroides – atingidos pelos asteroides nessa configuração.
“Para manter o equilíbrio nesse caso, o valor precisa estar entre zero e 0,4. Valores maiores provocam encontros próximos de asteroides com planetas terrestres e podem causar a perda do objeto”, explicou.
Na pesquisa foi obtida uma estimativa da idade da família e descobriram que o choque que deu origem a ela teria ocorrido há 170 milhões de anos.
Segundo o pesquisador, os asteroides no horizonte de v6 são muito instáveis por estarem perdidos em uma escala de tempo relativamente muito curta, de cerca de 2 milhões a 10 milhões de anos.
“Tina faz parte de uma nova classe de asteroides. A comunidade científica, no entanto, já conhecia as ressonâncias de 2:1 e 3:2 de movimento médio com Júpiter. Ambas possuem ilhas de estabilidade e uma população de objetos nessas regiões. Porém, esta é a primeira vez que se encontra uma família de asteroide em uma ilha de estabilidade de uma ressonância secular linear”, disse.
O artigo foi publicado em janeiro no Monthly Notices of the Royal Astronomical Society por Valério Carruba, da Unesp, e Alessandro Morbidelli, da Universidade de Nice, na França.
Fonte: FAPESP (Pesquisa)

quinta-feira, 3 de março de 2011

Modelo para prever comportamento do Sol

Uma pesquisa da NASA apresentou a criação do primeiro modelo computadorizado que tenta explicar o recente período de diminuição da atividade solar.
representação da conexão do interior e a superfíce do Sol
© Harvard CfA (conexão do interior e a superfíce do Sol)
Esta representação do interior do Sol mostra a Grande Correia Transportadora que os cientistas acreditam conectar a superfície ao interior do Sol.
O período de diminuição da atividade solar, que ocorre durante um ciclo de 11 anos, se chama solar minimum e é caracterizado por uma menor frequência de manchas e erupções solares. O último minumum foi o mais intenso em cerca de 100 anos.
O mínimo solar tem repercussões sobre a segurança das viagens espaciais, sobre a quantidade de lixo espacial que se acumula ao redor da Terra e sobre o próprio clima da Terra.
Os astrônomos até hoje tiveram dificuldade para explicar o solar minimum. No entanto novas simulações de computador sugerem que o período de pouca atividade do Sol resultou em mudanças no seu fluxo de plasma.
"O Sol tem imensos rios de plasma similares às correntes oceânicas da Terra. Esses rios de plasma afetam a atividade solar de maneiras que nós estamos apenas começando a compreender", disse Andres Munoz-Jaramillo, pesquisador do Centro Harvard-Smithsonian de Astrofísica.
"As correntes de plasma nas profundezas do Sol interferiram com a formação das manchas solares e prolongaram o mínimo solar", disse Dibyendu Nandi, do Instituto Indiano de Ciência, Ensino e Pesquisa.
A estrela em torno da qual gira o nosso sistema planetário é feita de um quarto estado da matéria, o plasma, no qual elétrons negativos e íons positivos fluem livremente. Quando o plasma flui, ele cria campos magnéticos que propiciam a formação de erupções e manchas solares.
Os astrônomos sabem há décadas que a atividade solar aumenta e diminui em um ciclo que dura cerca de 11 anos. Em seu momento de maior atividade, chamado de solar maximum, manchas solares escuras aparecem e as erupções passam a ser mais frequentes, mandando toneladas de plasma quente para o espaço. Se o plasma atinge a Terra ele pode afetar sistemas de comunicação, satélites e redes elétricas.
Durante seu período de menor atividade, o solar minimum, o Sol se acalma e tanto as manchas quanto as erupções passam a ser mais raras. Os efeitos na Terra, embora menos dramáticos, também são significativos. Por exemplo, a camada exterior da atmosfera terrestre encolhe e esfria, pois o vento que sopra pelo sistema solar associado ao campo magnético é enfraquecido, permitindo que mais raios cósmicos chegue à Terra.
Como consequência, os detritos espaciais em órbita da Terra tiveram seu ritmo de queda diminuído, devido a um menor arrasto atmosférico.
Por outro lado, os satélites artificiais podem manter mais facilmente suas órbitas sem precisar gastar combustível para isso, permanecendo no espaço por mais tempo e desfrutando de uma vida útil maior.
O solar minimum mais recente teve um número incomum de dias sem manchas solares. Foram 180 dias entre 2008 e 2010. Em um solar minimum típico, o Sol fica sem manchas por cerca de 300 dias, tornando o último minimum o mais longo desde 1913.
ciclos solares ao longo do último século
© Dibyendu Nandi (ciclos solares ao longo do último século)
O gráfico mostra os ciclos solares ao longo do último século. A curva em azul indica a variação cíclica no número de manchas solares. As barras vermelhas indicam o número acumulado de dias sem manchas solares.
O último solar minimum teve duas características principais: um longo período sem manchas solares e um campo magnético polar fraco. Um um campo magnético polar é o campo magnético que fica nos polos norte e sul do Sol.
O solar minimum foi analisado através de simulações de computador para fazer modelos do comportamento do Sol em 210 ciclos durante 2 mil anos. A intenção é entender especificamente o papel dos rios de plasma que circulam do equador do Sol até latitudes maiores.
Foi descoberto que a velocidade dos rios de plasma do Sol aumenta e diminui, havendo um fluxo mais rápido durante a primeira metade do ciclo solar, seguido de um fluxo mais lento, que pode levar ao solar minimum estendido. A causa da mudança de velocidade provavelmente envolve uma relação complicada entre o fluxo de plasma e os campos magnéticos.
O objetivo final do estudo é conseguir prever os períodos de solar minimum e maximum com precisão, o que até hoje não é possível fazer.
Fonte: NASA

quarta-feira, 2 de março de 2011

O disco de poeira da galáxia NGC 247

A galáxia espiral NGC 247 é uma das galáxias espirais do céu austral mais próximas de nós.
galáxia espiral NGC 247
© ESO (galáxia espiral NGC 247)
Nesta nova imagem obtida com o instrumento Wide Field Imager montado no telescópio MPG/ESO de 2,2 metros no Chile, podem observar-se nos braços em espiral um grande número de estrelas individuais que compõem a galáxia, assim como muitas nuvens de hidrogênio cor de rosa brilhantes, que marcam regiões de formação estelar ativa.
A galáxia NGC 247 faz parte do Grupo do Escultor, um conjunto de galáxias associadas à galáxia do Escultor (NGC 253). Este é o grupo de galáxias mais próximo do nosso Grupo Local, o qual inclui a Via Láctea. No entanto, é inerentemente difícil ter um valor preciso para tais distâncias celestes.
Para medir a distância da Terra à galáxia mais próxima, os astrônomos têm que se basear num tipo de estrelas variáveis chamadas cefeidas, as quais funcionam como um marcador de distância. As Cefeides são estrelas muito luminosas, cujo brilho varia a intervalos regulares. O tempo que a estrela demora a ficar muito luminosa e a diminuir o seu brilho pode ser utilizado numa relação matemática simples para calcular o seu brilho intrínseco. Quando comparamos esse valor com o brilho medido podemos saber a distância a que a estrela se encontra. No entanto, este método é falível, uma vez que os astrônomos acreditam que esta relação período-luminosidade depende da composição da Cefeide.
Existe ainda outro problema que se prende com o facto de alguma da radiação da cefeida poder ser absorvida pela poeira no seu trajeto até à Terra, fazendo com que pareça menos brilhante do que é na realidade e consequentemente mais afastada. Este é um problema particular no caso da NGC 247 porque como a sua orientação é bastante inclinada, a linha de visão das cefeidas passa através do disco de poeira da galáxia.
No entanto, uma equipe de astrônomos está atualmente estudando os fatores  que influenciam estes marcadores de distâncias celestes num estudo chamado Projeto Araucaria. O Projeto Araucaria é uma colaboração entre astrônomos de instituições no Chile, Estados Unidos e Europa. O Very Large Telescope do ESO proporcionou dados para o projeto. A equipe já afirmou que a NGC 247 se encontra mais próxima da Via Láctea co mais de um milhão de anos-luz do que o anteriormente suposto, o que lhe dá uma distância de um pouco mais de 11 milhões de anos-luz.
Para além da própria galáxia, esta imagem revela ainda inúmeras galáxias que brilham além da NGC 247. Em cima à direita podemos observar três galáxias espirais proeminentes formando uma linha e mais longe ainda, muito por trás delas, vemos imensas galáxias, algumas brilhando por intermédio do disco da NGC 247.
Esta imagem a cores foi criada a partir de um grande número de exposições monocromáticas obtidas através dos filtros azul, amarelo/verde e vermelho ao longo de muitos anos. Adicionalmente foram igualmente incluídas, e coloridas em vermelho, exposições obtidas através de um filtro que isola a emissão do gás de hidrogênio. Os tempos de exposição totais por filtro foram de 20 horas, 19 horas, 25 minutos e 35 minutos, respetivamente.
Fonte: ESO

terça-feira, 1 de março de 2011

Meteoritos poderiam ter trazido nitrogênio para a Terra

Um meteorito encontrado na Antártida fortalece o argumento de que a vida na Terra pode ter sido trazida do espaço.
ilustração da queda de um meteoróide
© NASA (ilustração da queda de um meteoróide)
Análises químicas do meteorito mostraram que o material é rico em hidrocarbonetos e amônia, um componente químico formado por nitrogênio e hidrogênio, encontrado em proteínas e no DNA que forma a base da vida que conhecemos.
Os pesquisadores acreditam que esses elementos podem ter sido trazidos para a Terra através de meteoritos que caíram sobre a Terra no passado, povoando o planeta com os ingredientes que faltavam para a criação da vida. As conclusões se baseiam em uma análise de pouco menos de 4 gramas de pó extraído do meteorito Grave Nunataks 95229, batizado em referência ao local onde foi descoberto na Antártida em 1995.
"O estudo mostra que há asteróides no espaço que, ao se fragmentar em meteoros, podem ter caído sobre a Terra com uma mistura de componentes com propriedades atrativas, incluindo uma grande quantidade de amônia", disse a coordenadora da pesquisa, Sandra Pizzarello, da Universidade do Arizona. Segundo ela, meteoritos podem ter fornecido à Terra uma quantidade suficiente de nitrogênio para fazer emergir a vida em seu estado primitivo.
Estudos realizados com o meteorito Murchison, que atingiu a Austrália em 1969, mostraram que aquela rocha também é rica em componentes orgânicos. Mas Pizzarello diz que o meteorito Murchison é "complexo demais" e contém moléculas de hidrocarbonetos mais propensas a serem encontradas em um período mais tardio da história da vida.
A teoria de que as "sementes" da vida na Terra foram trazidas por cometas ou asteróides resulta, em parte, da tese de que nosso planeta, em seu período formativo, não contivesse o estoque necessário de moléculas simples para ativar os processos que deram início à vida primitiva. Tais processos poderiam ter ocorrido no chamado cinturão de asteróides entre Marte e Júpiter, longe do calor e da pressão de planetas em formação.
Colisões entre os asteróides dentro deste cinturão teriam produzido os meteoros que viajaram pelo sistema solar e, ocasionalmente, terminaram carregando seu material para a Terra.
A especialista em meteoros Caroline Smith, do Museu de História Natural de Londres, concorda que um importante elemento no novo estudo é a detecção de nitrogênio. Mas ela questiona se a quantidade encontrada no meteorito da Antártida se repete em outras ocasiões. "Um dos problemas em relação à biologia primitiva na Terra tem a ver com a necessidade de nitrogênio em abundância para deslanchar todos esses processos pré-biológicos", ela explica.
O nitrogênio está presente na amônia. Mas há uma série de evidências que apontam que a amônia não existia em abundância no início da Terra. O fator específico que levou ao nascimento da vida na Terra permanece um mistério. Uma das hipóteses aventadas pela professora Pizzarello é que materiais provenientes de meteoritos tenham interagido com ambientes como vulcões e piscinas formadas pelas marés oceânicas.
Estas hipóteses ainda estão no campo da especulação, porém é possível que este elemento tenha surgido do espaço.
Fonte: Proceedings of the National Academy of Sciences

Descoberto proto-aglomerado de galáxias

Uma equipe internacional de pesquisadores liderada por Ichi Tanaka a partir do Observatório Astronômico Nacional do Japão (NAOJ) descobriu um aglomerado de galáxias, passando por uma explosão de formação de estrelas, que pode conter a chave para entender como as galáxias se formaram no Universo primordial.
área de proto-aglomerado de galáxias 4C 23.56
© Subaru (área do proto-aglomerado de galáxias 4C 23.56)
O aglomerado está localizado próximo à constelação Vulpecula e está a 11 bilhões de anos-luz de distância (redshift z = 2,5), 2,7 bilhões de anos após o nascimento do Universo, quando ele ainda estava em sua infância. Essas galáxias recém-nascidas pode ser um proto-aglomerado, um antepassado dos atuais aglomerados de galáxias, elas ainda parecem estar crescendo para adquirir o tamanho total de uma galáxia. A descoberta é produto de observações feitas em 2007 com o Multi-Object Infrared Camera and Spectrograph (MOIRCS) com o telescópio Subaru e observações posteriores com o telescópio Spitzer. Analisando os dados de emissão infravermelha do telescópio Subaru, com dados de emissão no infravermelho médio do telescópio Spitzer, a equipe de pesquisa foi capaz de identificar objetos brilhantes no infravermelho como membros de um grupo primordial. Essa conquista mostra como o feedback entre os dados arquivados, a tecnologia e a colaboração podem produzir avanços contínuos no nosso conhecimento do Universo.
grupo de galáxias com emissão em H-alfa e Ks
© NAOJ (grupo de galáxias com emissão em H-alfa e Ks)
Embora telescópios atuais possam capturar imagens fracas de galáxias antigas, os cientistas precisam de mais provas para confirmar e identificar a natureza dos objetos nessas imagens. A taxa de formação estelar (SFR - Star Formation Rate) é um dos critérios fundamentais que os astrônomos procuram estabelecer na sua busca por galáxias antigas, porque a SFR tende a ser bastante elevada durante a formação das galáxias.
Análises espectroscópicas das assinaturas de luz de um objeto podem fornecer uma estimativa da SFR. As linhas de emissão H-alfa possuem uma das mais populares assinatura que os astrônomos utilizam para aproximar a SFR; eles medem o hidrogênio ionizado na parte (óptica) visível do espectro.
A descoberta surpreendeu até os pesquisadores. Essas galáxias primordiais apresentam uma taxa de formação de estrelas muito elevada, correspondendo à criação de cerca de várias centenas de sóis por ano. Essa alta taxa de formação de estrelas não ocorre em nenhuma galáxia próxima, nem mesmo na Via Láctea. Além disso, o número de fontes de infravermelho médio, aparentemente, excede o montante que pode ser atribuído aos objetos visíveis na emissão H-alfa. Isto indica que poderia haver mais galáxias envolvidas em poeira com formação estelar, invisíveis como as emissões de H-alfa mas detectáveis no infravermelho médio.
proto-aglomerado de galáxias visto pelo telescópio Spitzer
© Spitzer (proto-aglomerado de galáxias)
Embora os aglomerados de galáxias no Universo formem redes grandes e complexas, há somente uma porção de proto-aglomerados conhecidos por pertencer à era “Rosetta Stone” (Pedra de Roseta).
A equipe de pesquisa pretende ampliar seus esforços para localizar e decodificar mais galáxias desta época, usando o telescópio Subaru e o Atacama Large Millimeter Array (ALMA).
Fonte: National Astronomical Observatory of Japan

segunda-feira, 28 de fevereiro de 2011

Encontrado superfluido em estrela de nêutrons

Os astrônomos da NASA descobriram a primeira evidência direta da existência de um superfluido no centro de uma estrela de nêutrons.
supernova Cassiopeia A
© NASA (supernova Cassiopeia A)
A descoberta vai ajudar a entender como ocorrem as interações dos átomos em densidades praticamente impossíveis de replicar na Terra. O estudo foi publicado no periódico americano Physical Review Letters.
Superfluido é um estado da matéria equivalente ao de um líquido sem viscosidade, ou seja, que flui sem atrito. Em laboratório, o homem já descobriu que os superfluidos podem desafiar as leis da gravidade e até escapar de compartimentos lacrados. Se fosse possível colocar um pouco de superfluido em um copo, o fluido poderia subir suas paredes até derramar pelas bordas.
Dois grupos de pesquisa independentes, um mexicano e o outro russo, estudaram o que sobrou da supernova Cassiopeia A, cuja explosão foi observada pela primeira há 330 anos e está a uma distância de 11.000 anos-luz da Terra. Supernovas são corpos celestes formados a partir da explosão de estrelas com pelo menos 10 vezes a massa do Sol. São objetos extremamente brilhantes, mas seu brilho se perde semanas ou meses após a explosão.
As estrelas de nêutrons têm a matéria mais densa que se pode observar diretamente. Uma colher cheia do material que forma essas estrelas pesaria seis bilhões de toneladas. A pressão é tão grande que a maioria das partículas com carga (os prótons e os elétrons) se funde, gerando partículas sem carga (os nêutrons).
Materiais superfluidos podem ser replicados em nosso planeta sob temperaturas extremamente baixas, perto do zero absoluto (cerca de 273 graus Celsius abaixo de zero). Nas estrelas de nêutrons, contudo, os superfluidos ocorrem a temperaturas altíssimas, perto de um bilhão de graus Celsius, cerca de mil vezes mais que a corona, a atmosfera do Sol.
Utilizando o observatório espacial Chandra, foi descoberto que a temperatura no interior de uma estrela de nêutrons diminuiu 4% em um período de 10 anos. "Apesar de parecer pouco, essa queda significa que algo muito estranho está ocorrendo dentro da estrela", disse o astrônomo Dany Page, chefe do grupo de pesquisa mexicano.
A queda brusca de temperatura na estrela de nêutrons "é a primeira evidência direta de que o núcleo dessas estrelas é feito de uma material superfluido e supercondutor", disse Peter Shternin, chefe do grupo de pesquisa russo.
Essa nova pesquisa tem permitido às equipes determinarem de forma observacional pela primeira vez as restrições nas propriedade do material superfluido das estrelas de nêutrons. A temperatura crítica foi determinada entre meio bilhão a um bilhão de graus Celsius. Uma vasta região da estrela de nêutrons deve formar um superfluido de nêutrons como observado agora, e para explicar de forma completa o rápido resfriamento, os prótons na estrela de nêutrons precisam ter formado um superfluido antes da explosão. Por serem partículas carregadas, os prótons também formam supercondutores.
Usando um modelo que tem sido construído pelas observações do Chandra, o comportamento futuro da estrela de nêutrons tem sido previsto. O rápido resfriamento deve continuar por algumas décadas e então deve diminuir.
Fonte: Veja

Encontrados dois planetas na mesma órbita

O telescópio Kepler descobriu um sistema planetário muito diferente do que estamos acostumados. Dois planetas parecem compartilhar a mesma órbita ao redor de uma estrela central, como se fosse o nosso Sol. Se confirmada, a descoberta poderia levantar a teoria de que a Terra já dividiu uma órbita com outro planeta e, um dia, houve uma colisão que gerou a Lua.
© NASA/Ames (ilustração de dois planetas na mesma órbita)
Os dois planetas, que fazem parte do sistema KOI-730, completam um círculo em torno de seu "sol" a cada 9,8 dias, percorrendo a mesma trajetória, um 60 graus à frente do outro. Os pesquisadores supõem que um planeta apareça no céu noturno de outro como uma luz brilhante.
Apesar de carecer de confirmação, a gravidade permite que o fenômeno ocorra. Quando um corpo (como um planeta) orbita em torno de um corpo de maior massa (uma estrela) há dois pontos onde um terceiro corpo poderia orbitar com estabilidade, 60 graus antes ou depois do objeto menor. O planeta Júpiter, por exemplo, tem alguns asteróides exatamente nesses pontos de sua órbita.
Mesmo possível, essa foi a primeira vez que um sistema com dois planetas na mesma órbita foi avistado. Uma das teorias de formação da Lua defende que ela pode ter surgido do choque entre a Terra e outro planeta do tamanho de Marte, que um dia dividiram a mesma órbita. Mas os novos planetas ainda estão longe de se chocarem para formar sua "lua", de acordo com simulações eles dividirão a mesma órbita por pelo menos mais 2,22 milhões de anos.
Fonte: Galileu

sexta-feira, 25 de fevereiro de 2011

Quanta matéria escura é necessária para formar estrelas?

A matéria escura é uma substância invisível que os astrônomos podem medir apenas indiretamente, através de sua influência gravitacional sobre a matéria regular, visível. Apesar disso, é um ingrediente vital para as galáxias formarem estrelas.
matéria escura em Abell 1689
© Hubble (matéria escura em Abell 1689)
Se uma galáxia começasse com muito pouca matéria escura, ela se esgotaria em desenvolvimento. Se começasse com muito, o gás não arrefeceria eficientemente para formar uma grande galáxia, e isso acabaria em galáxias menores. Já com a quantidade certa de matéria escura, uma galáxia repleta de estrelas irá aparecer.
E qual é esse valor ideal? Um novo estudo acaba de descobrir o limite inferior dessa substância invisível para acender a formação de uma estrela: uma massa igual a 300 bilhões de sóis , cerca de 10 vezes menor que o valor estimado anteriormente. Os astrônomos pensavam que as galáxias precisavam de 5.000 massas solares de matéria escura para começar a formação de estrelas.
Uma região do céu do tamanho da Lua foi analisada, na constelação de Ursa Maior, para fazer esta descoberta. Esta fatia do céu, conhecida como Buraco Lockman, é ideal para estudar objetos fora de nossa galáxia por causa da baixa contaminação por poeira da Via Láctea.
Foram utilizados telescópios para medir a luz de galáxias maciças de rápida criação de estrelas a cerca de 10 a 11 bilhão anos-luz da Terra, galáxias que os astrônomos suspeitavam que haviam se formado dentro de halos ovais de matéria escura.
As características dessas galáxias, como brilho e massa estelar, estão diretamente relacionadas ao tamanho do seu halo de matéria escura.
A formação estelar é especialmente elevada dentro das galáxias chamadas submilimétricas, que são alguns dos berços estelares mais ativos do Universo há 13,7 bilhões de anos. Elas têm esse nome por causa de suas emissões, que rapidamente se afastam da Terra.
Dessa forma, novas estrelas são criadas a uma taxa de até alguns milhares por ano. Em comparação, a Via Láctea produz cerca de 10 estrelas por ano.
Depois de medir a luminosidade das galáxias, os pesquisadores calcularam a massa do halo necessária para desenvolver e sustentar uma galáxia submilimétrica quando a formação de estrelas estava em seu auge.
Uma massa igual a 300 bilhões de sóis, substancialmente menor do que as estimativas anteriores, ainda não foi explicado. Pode haver muitas razões para isso, por exemplo, pode ser que existam mais galáxias ativas no Universo, submetidas à formação de estrelas, do que o previsto. Ou pode ser algo totalmente diferente.
Seja qual for a causa, os cientistas afirmam que a nova ligação entre a massa do halo e a formação de estrelas vai exigir um estudo mais detalhado dos modelos teóricos atuais, bem como a formação de galáxias e sua evolução.
Fonte: Space

quinta-feira, 24 de fevereiro de 2011

Detectada possível formação planetária

Os planetas formam-se a partir de discos de matéria em torno de estrelas jovens, mas a transição de disco de poeira para sistema planetário é rápida, o que faz com que poucos objetos sejam observados durante essa fase.
ilustração do disco em torno da estrela T Cha
© ESO (ilustração do disco em torno da estrela T Cha)
Um destes objetos é T Chamaeleontis (T Cha), uma estrela T Tauri de baixa luminosidade situada na pequena constelação austral do Camaleão que, embora comparável ao Sol, se encontra ainda no início da sua vida. A estrela T Cha situa-se a cerca de 330 anos-luz de distância e tem apenas sete milhões de anos de idade. Até agora nunca foram encontrados planetas em formação nestes discos em transição, embora já tenham sido vistos planetas em discos mais maduros.
“Estudos anteriores mostraram que T Cha é excelente para estudar a formação de sistemas planetários”, diz Johan Olofsson do Instituto Max Planck para a Astronomia em Heidelberg na Alemanha, autor principal de um dos dois artigos científicos que descrevem este novo trabalho, publicados na revista da especialidade Astronomy & Astrophysics. Mas esta estrela encontra-se muito distante da Terra e por isso é necessário toda a capacidade do interferômetro do Very Large Telescope (VLTI) para possibilitar a observação de pequenos detalhes do disco de poeira.
Numa primeira fase os astrônomos observaram T Cha com o instrumento AMBER (Astronomical Multi-BEam combineR) e o interferômetro do VLT (VLTI), para combinarem a radiação coletada pelos quatro telescópios de 8,2 metros que compõem o VLT, criando assim um “telescópio virtual” de 130 metros de diâmetro. Descobriram que uma parte do material do disco formou um anel de poeira fino a apenas 20 milhões de quilômetros da estrela. Para além deste disco interior encontraram uma região desprovida de poeiras que se estende até cerca de 1,1 bilhões de quilômetros da estrela, distância a partir da qual começa o disco de poeira exterior.
É possível a existência de uma companheira realizando a limpeza do espaço no interior do seu disco protoplanetário?
No entanto, encontrar uma companheira de fraca luminosidade tão perto de uma estrela brilhante é um tremendo desafio e a equipe teve necessidade de utilizar o instrumento NACO (NAOS-CONICA), que é um instrumento de óptica adaptativa montado no VLT, aplicando um novo e poderoso método chamado “sparse aperture masking”, para procurar o objeto companheiro. Este é um tipo de interferômetro que, em vez  de combinar a radiação de diversos telescópios como é o caso do VLTI, utiliza diferentes partes do espelho de um único telescópio. Esta nova técnica é particularmente adequada para procurar objetos de fraca luminosidade muito próximo de objetos brilhantes.
Depois de uma análise cuidadosa, a equipe encontrou a assinatura clara de um objeto situado no interior do espaço vazio do disco de poeira, a cerca de um bilhão de quilômetros de distância da estrela - ligeiramente mais afastado do que Júpiter se encontra do Sol - e próximo da fronteira exterior da zona vazia. Esta é a primeira detecção de um objeto muito mais pequeno do que uma estrela no interior de um espaço vazio num disco de poeira a formar planetas em torno de uma estrela jovem. Indícios sugerem que este objeto não é uma estrela normal, mas poderá ser uma anã castanha rodeada de poeira ou um planeta recém formado. As anãs castanhas são objetos situados entre as estrelas e os planetas em termos de tamanho. Não possuem massa suficiente para poderem queimar hidrogênio nos seus centros mas são maiores que os planetas gigantes do tipo de Júpiter.
Observações futuras permitirão descobrir mais sobre a companheira e compreender qual o mecanismo que origina o disco de poeira interior.
Fonte: ESO e Astronomy & Astrophysics

quarta-feira, 23 de fevereiro de 2011

Discos protoplanetários em estrelas são vistos pela primeira vez

Foram obtidas pela primeira vez imagens detalhadas de discos protoplanetários de duas estrelas.
disco protoplanetário
© NAOJ (disco protoplanetário)
Acredita-se que os planetas se formem a partir de discos de gás e poeira que circundam estrelas jovens. Assim, observar esses locais é como fazer uma viagem ao passado da Terra e outros planetas.
Esta é a primeira vez que discos protoplanetários de tamanho comparável ao nosso próprio Sistema Solar foram detectados tão claramente, revelando características como anéis e espaços vazios que estão associados com a formação de planetas gigantes.
Os dois discos protoplanetários agora detectados diretamente estão ao redor da jovem estrela LkCa 15, que fica a cerca de 450 anos-luz da Terra, na constelação de Touro, e da estrela AB Aur, na constelação de Auriga, a uma distância de 470 anos-luz da Terra. Esta última é ainda mais jovem, com idade de apenas um milhão de anos.
A teoria atual sustenta que uma estrela recém-nascida deixa ao seu redor um disco de matéria, uma espécie de gigantesco anel.
Por processos ainda não bem compreendidos, aglomerados dessa matéria vão se juntando, até que sua própria gravidade torna-se suficientemente forte para comprimi-los em corpos densos, que chamamos planetas.
As observações são parte de um levantamento sistemático em busca de planetas e discos ao redor de estrelas jovens, usando uma câmera de alto contraste, concebida especificamente para este fim e instalada no telescópio Subaru, no Havaí.
O instrumento HiCIAO conseguiu este resultado inédito usando duas técnicas: uma compensação da distorção gerada pela atmosfera da Terra e o bloqueio físico da própria luz da estrela cujos arredores se quer observar.
Fonte: Astrophysical Journal Letters

Descoberto novos masers na Via Láctea

Foram descobertos três novos masers (microwave amplification by stimulated emission of radiation) na Via Láctea.
ilustração da estrela W43A
© National Science Foundation (ilustração da estrela W43A)
Os masers funcionam da mesma forma que os lasers, mas em vez de emitirem luz visível, emitem microondas.
Foi observado também um dos masers mais rápidos já encontrado, atingindo velocidades de até 350 km/s, e uma rara "fonte de água", uma classe especial de maser gerado pela massa de estrelas moribundas ou regiões de grande concentração de massa de estrelas em formação.
Usando o Australian Telescope Compact Array em New South Wales, Rees Glen da CSIRO (Commonwealth Scientific and Industrial Research Organisation), encontrou os três masers usando dados coletados pela HOPS (H2O Southern Galactic Plane Survey), investigando as características dos três únicos maser de água localizados na Via Láctea, e procurando por uma frequência de radiação particular na região de microondas, que é característica do maser de água. Os masers de água emitem na frequência de 22 GHz.
Um dos maser de água descoberto foi encontrado em torno de um AGB (Asymptotic Giant Branch), que é uma estrela se aproximando do fim da sua vida, emitindo jatos de moléculas de água durante esta fase de transição. Apenas 12 fontes de água já foram detectadas até agora.
Estas fontes de água estelar podem ajudar os cientistas a descobrir como estrelas AGB evoluem para nebulosas planetárias. Um disco brilhante, colorido de gás e poeira em torno de uma estrela nas últimas fases de sua vida, que apresentam várias formas e tamanhos.
A formação de estrelas massivas não é ainda bem compreendida e o maser de água pode dar informações valiosas sobre os processos envolvidos.
Fonte: Cosmos Magazine

Tyche: o planeta gigante do Sistema Solar?

Em 1999, os pesquisadores John Matese e Daniel Whitmire constataram que diversos cometas observados apresentavam fortes desvios em relação às órbitas calculadas. Segundo eles, isso seria provocado pela atração gravitacional de um planeta quatro vezes maior que Júpiter, escondido dentro do Sistema Solar.
ilustração do planeta Tyche
© NASA (ilustração do planeta Tyche)
Eles batizaram esse grande objeto de Tyche, e na época publicaram um artigo propondo que somente a presença de um objeto de grande massa no interior da nuvem de Oort, uma hipotética região circular localizada a quase um ano-luz do Sol, poderia explicar as anomalias observadas no caminho dos cometas provenientes daquele local.
Segundo os cientistas, devido ao brilho muito tênue e temperatura muito baixa, a existência de Tyche só poderia ser comprovada através de imagens no espectro infravermelho que registrassem aquela região específica e apostaram suas fichas nas imagens que seriam geradas pelo telescópio espacial WISE, lançado em 2009.
Recentemente, devido à divulgação de parte de dados do telescópio WISE, a teoria de Matese e Whitmire voltou a ser alvo de especulações, já que a NASA (agência espacial americana) confirmou que a primeira parte dos dados coletados será divulgada em abril de 2011 e a segunda etapa em março de 2012.
"Existem fortes evidências de que existe um grande objeto naquela região", disse Mantese. "O padrão de desvio na órbita de alguns cometas persiste. É possível que seja apenas uma casualidade estatística, mas essa probabilidade diminuiu à medida que temos mais dados acumulados nos últimos 10 anos", disse o cientista.
Mantese explica que a quantidade de dados gerados pelo telescópio é imensa e a exploração do banco de dados pode levar bastante tempo. "Não temos uma previsão ao certo. Talvez dois ou três anos até encontrarmos alguma coisa, mas se o objeto realmente estiver ali, vamos achá-lo."
Caso Tyche realmente exista, de acordo com a dupla de astrofísicos ele se localizaria a 2,25 trilhões de quilômetros de distância. Seria um objeto gasoso e teria um período de translação ao redor de 1,7 milhão de anos.
Apesar de Matese e Whitmire estarem bastante confiantes na localização do hipotético planeta, nem todos os astrofísicos concordam com a teoria.
"Entendo que o novo trabalho esteja sustentado em muito mais dados que antigamente, mas baseado no trabalho anterior acredito que as estatísticas estão incorretas", disse Hal Levison, cientista planetário ligado ao Instituto de Pesquisas do Sudoeste, no Colorado e autor de recente estudo publicado sobre a nuvem de Oort.
No entender de Levison, o que Matese e Whitmire estão vendo é um sinal muito sutil. "Não tenho certeza que esse desvio nas estatísticas seja significativo e provocado por um planeta com quatro vezes a massa de Júpiter. Não tenho nada contra a ideia, mas acredito que as estatísticas não estão sendo feitas corretamente", disse o astrofísico.
Outro cientista que se contrapõe aos argumentos a favor da existência de Tyche é Matthew Holman, pesquisador do Instituo Harvard Smithsonian de Astrofísica, que estuda há muitos anos os cometas vindos da nuvem de Oort.
"Já encontrei várias assinaturas de perturbações orbitais naquela região, mas isso não é suficiente para afirmar que existe um objeto de grandes dimensões capaz de afetar a órbita dos cometas na nuvem de Oort", disse Holman.
Se a hipótese de Matese e Whitmire estiver correta, Júpiter perderá seu posto de maior planeta do Sistema Solar.
Fonte: Icarus - International Journal of Solar System Studies

domingo, 20 de fevereiro de 2011

Detecção direta de buracos negros

Faz muito pouco tempo que os cientistas descobriram que a luz pode ser torcida até produzir uma onda em formato de parafuso, que parece ser algo natural para a luz que passa nas proximidades de um buraco negro.
ilustração da rotação de um buraco negro
© Discovery (ilustração da rotação de um buraco negro)
Esta é a conclusão de simulações feitas por uma equipe de físicos da Itália e da Suécia. Tudo acontece nas vizinhanças de buracos negros que giram em alta velocidade, aparentemente o tipo mais comum de buraco negro no Universo.
Ao redor desses corpos ultradensos, o espaço-tempo se contorce, segundo a Teoria da Relatividade.
Quando a luz entra nessa região suas ondas normalmente planas também se torcem, assumindo um formato de parafuso, com uma alteração em uma propriedade chamada momento angular orbital.
A medição dessa propriedade se tornaria então a primeira técnica capaz de detectar diretamente um buraco negro.
Ainda que sua existência seja largamente aceita pela comunidade científica, um buraco negro nunca foi observado diretamente. Os astrofísicos os estudam observando a rotação de discos de matéria ao seu redor.
Embora absorvam qualquer coisa que cruze seu horizonte de eventos, inclusive a luz, acredita-se que os buracos negros emitam um tênue jato de fótons, conhecido como radiação de Hawking. Mas essa radiação é tão fraca que é mascarada pela radiação cósmica de fundo do Universo, não podendo ser detectada com os meios conhecidos até agora.
detecção de buracos negros
© Nature Physics (detecção de buracos negros)
Esta região do céu mostra o que seria observado com um telescópio se o eixo de rotação do buraco negro estiver inclinado em um ângulo de 45 graus em relação ao observador.
Mas a variação no momento angular orbital pode se tornar uma ferramenta precisa o suficiente para filtrar a radiação de Hawking e detectar diretamente um buraco negro.
Isto poderia ser feito por futuros telescópios, equipados com sensores capazes de detectar a variação nessa propriedade da luz, medindo sua fase, o quanto ela está torcida.
A proposta fornece também um método para testar diretamente a Teoria da Relatividade.
Se a variação no momento angular orbital da luz for de fato detectado, isso significará que a teoria de Einstein está prevendo corretamente o que acontece ao redor de um corpo super maciço como um buraco negro.
Se os dados não concordarem com isto, pode ser que a Teoria da Relatividade não seja assim tão ampla e não esteja contando a história toda sobre o espaço-tempo.
E não será preciso esperar tanto para checar essa possibilidade. Os cientistas propõem que isto poderá ser feito com radiotelescópios, incluindo o Very Long Baseline Array (VLBA), um sistema de dez radiotelescópios distribuídos do Havaí ao Caribe.
Fonte: Nature Physics