sexta-feira, 1 de novembro de 2013

O crescimento das galáxias

Os biólogos observam uma árvore crescer através da evolução dos seus anéis. Começando no núcleo denso do tronco de uma árvore e movendo-se para fora, a passagem do tempo é marcada por anéis concêntricos, revelando assim capítulos de sua história.

galáxia NGC 3377

© GALEX/WISE (galáxia NGC 3377)

As galáxias superam as árvores em bilhões de anos, fazendo seu crescimento ser algo impossível de se ver. Mas como os biólogos, os astrônomos podem ler os anéis no disco de uma galáxia para revelar seus passados. Usando dados do Wide-field Infrared Survey Explorer (WISE) e do Galaxy Evolution Explorer (GALEX), os cientistas têm obtido mais evidências para a teoria do crescimento das galáxias de dentro para fora, mostrando que explosões de formação de estrelas nas regiões centrais foram seguidas de um a dois bilhões de anos depois pelo nascimento nas franjas externas.

“Inicialmente, um rápido período de formação de estrelas formou a massa no centro dessas galáxias, seguido posteriormente de uma fase de formação de estrelas nas regiões externas. Eventualmente, as galáxias param de formar estrelas e tornam-se tranquilas”,  disse Sara Petty, da Virginia Tech, em Blacksburg, principal autor da pesquisa. “Essa última fase de formação de estrelas poderia ter sido causada por fusões menores com vizinhas ricas em gás  que fornecem o combustível para novas estrelas”.

A descoberta pode também resolver um mistério das galáxias idosas. As galáxias no estudo, conhecidas como vermelhas e mortas, devido à sua coloração avermelhadas e à falta de novos nascimentos de estrelas, têm uma quantidade surpreendente de luz ultravioleta emanada de suas regiões externas. Frequentemente a luz ultravioleta é gerada por estrelas jovens e quentes, mas essas galáxias foram consideradas muito velhas para abrigar esse tipo de população.

A solução para esse quebra-cabeça é provavelmente estrelas velhas e quentes. Petty e seus colegas usaram uma nova abordagem em vários comprimentos de onda para mostrar que a luz ultravioleta sem explicação parece vir de uma fase final na vida das estrelas mais velhas, quando elas expelem suas camadas externas e se aquecem.

O GALEX e o WISE se tornaram a dupla ideal para o estudo. O GALEX era sensível à luz ultravioleta enquanto que o WISE observa a luz infravermelha vindo de estrelas mais velhas. O GALEX não está mais em operação, e o WISE recentemente foi reativado para caçar asteroides, num projeto denominado de NEOWISE. Ambos os telescópios têm grandes campos de visão, permitindo que eles facilmente capturem imagens de galáxias inteiras.

A sinergia entre o GALEX e o WISE produz medidas super sensíveis de onde as estrelas mais velhas e quentes residem nessas galáxias vermelhas e mortas”, disse Don Neill, do Instituto de Tecnologia da Califórnia, em Pasadena. “Isso nos permite mapear o progresso da formação de estrelas dentro de cada galáxia”.

Ned Wright da Universidade da Califórnia, em Los Angeles, um co-autor do estudo e principal pesquisador do WISE antes dele ter sido reativado, compara o intervalo dos vários comprimentos de onda dos dois telescópios a notas musicais, “o WISE por si só cobre o equivalente ao intervalo de três oitavas, enquanto que o WISE e o GALEX juntos cobrem um intervalo de sete oitavas”.

Um artigo foi publicado na edição de Outubro de 2013 do Astronomical Journal.

Fonte: Jet Propulsion Laboratory

quinta-feira, 31 de outubro de 2013

O Fantasma de Júpiter

Essa imagem fantasmagórica do telescópio espacial Spitzer da NASA mostra os restos mortais de uma estrela moribunda, chamada de nebulosa planetária.

NGC 3242

© Spitzer (NGC 3242)

As nebulosas planetárias são consideradas como o último estágio da vida de uma estrela parecida com o Sol, quando suas camadas externas foram descartadas e iluminadas pela luz ultravioleta da estrela central. O Fantasma de Júpiter, também conhecido como NGC 3242, está localizado a aproximadamente 1.400 anos-luz de distância da Terra na direção da constelação de Hydra. A visão infravermelha do Spitzer mostra o halo externo mais frio da estrela moribunda, colorido aqui em vermelho. Também evidente são os anéis concêntricos ao redor do objeto, o resultado do material que está sendo periodicamente lançado pelos suspiros mortais finais da estrela. Nessa imagem, a luz infravermelha no comprimento de onda de 3,6 mícron é mostrada em azul, a luz de 4,5 mícron é mostrada em verde e a de 8,0 mícron em vermelho.

Fonte: NASA

terça-feira, 29 de outubro de 2013

Lugar mais frio conhecido no Universo

Astrônomos do Observatório ALMA, no Chile, enxergaram um novo formato da Nebulosa do Bumerangue, nuvem de gás e poeira que é o lugar conhecido mais frio no Universo, com temperatura de -272° C.

Nebulosa Bumerangue

© NRAO/ALMA (Nebulosa do Bumerangue)

Segundo os pesquisadores, o que se vê nas novas imagens do Alma é um truque de luz. Nebulosas planetárias, como a Bumerangue, são estrelas no final de sua existência. Ao centro, é possível observar estrelas anãs brancas, que emitem uma intensa radiação ultravioleta que faz com que o gás ao seu redor brilhe e emita luz com cores vibrantes.

As primeiras imagens da nebulosa, feitas com telescópios terrestres, mostravam uma forma curvada, que deu origem ao seu nome. Outras fotografias, registradas pelo telescópio espacial Hubble em 2003, exibiam um perfil mais semelhante a uma gravata borboleta.

Nebulosa Bumerangue

© Hubble (Nebulosa do Bumerangue)

"Esse objeto ultrafrio é extremamente intrigante, e estamos aprendendo muito sobre sua verdadeira natureza", disse Raghvendra Sahai, pesquisador e principal cientista do Laboratório de Propulsão a Jato da NASA em Pasadena, na Califórnia, em nota divulgada pelo Observatório Nacional de Radioastronomia dos Estados Unidos. "O que parecia um lóbulo duplo ou a forma de bumerangue é, na verdade, uma estrutura muito mais ampla que está se expandindo rapidamente para o espaço."

A Nebulosa do Bumerangue fica a 5 mil anos-luz de distância da Terra, na constelação do Centauro. Segundo os astrônomos do ALMA, trata-se de uma nebulosa pré-planetária, na qual a estrela central ainda não está quente o suficiente para emitir a radiação ultravioleta que produz seu brilho característico.

A nuvem de gás e poeira dessa estrela está se expandindo e esfriando rapidamente, num processo semelhante ao dos refrigeradores que usam gás expandido para produzir temperaturas frias. Os cientistas mediram a temperatura do gás na nebulosa ao observar como ela absorve a radiação cósmica de micro-ondas, que têm temperatura de -270°C.

A pesquisa também revela que as franjas exteriores da Nebulosa do Bumerangue começam a se aquecer, apesar de ainda serem mais frias que a radiação cósmica. Segundo os cientistas, o aquecimento deve acontecer por conta do efeito fotoelétrico, em que a luz é absorvida pelo material sólido, que por sua vez reemite elétrons.

Um artigo foi publicado no jornal Astrophysical Journal.

Fonte: National Radio Astronomy Observatory

As Nebulosas Cabeça de Cavalo e de Órion

A escura Nebulosa Cabeça de Cavalo e a brilhante Nebulosa de Órion são contrastantes paisagens cósmicas.

Nebulosas Cabeça de Cavalo e Órion

© R. Colombari & F. Pelliccia (Nebulosas Cabeça de Cavalo e Órion)

Localizadas a 1.500 anos-luz em uma das constelações mais conhecidas do céu noturno, elas aparecem em cantos opostos do mosaico impressionante acima.

A familiar Nebulosa Cabeça de Cavalo aparece como uma nuvem escura, uma pequena silhueta marcou contra o brilho vermelho longo no canto inferior esquerdo. Alnitak é a estrela oriental no cinturão de Órion e é vista como a estrela mais brilhante à esquerda da Nebulosa Cabeça de Cavalo. Abaixo da estrela Alnitak está a Nebulosa da Chama, com nuvens de emissão brilhante e faixas de poeira escura dramáticas. A região de emissão magnífica, a Nebulosa de Órion (também conhecida como M42), encontra-se no canto superior direito. Imediatamente à sua esquerda está uma nebulosa de reflexão proeminente às vezes chamada de Running Man (Homem Correndo). Estruturas delgadas invasivas de gás hidrogênio brilhante são facilmente rastreadas em toda a região.

Fonte: NASA

sábado, 26 de outubro de 2013

O Aglomerado da Borboleta

O Aglomerado da Borboleta é um aglomerado de estrelas aberto brilhante com cerca de 12 anos-luz de diâmetro, localizado a 1.600 anos-luz de distância da Terra, na constelação austral de Scorpius (o Escorpião).

M6

© N.A.Sharp/Mark Hanna (M6)

Seu nome deriva da vaga semelhança de sua forma de uma borboleta, e também ele é conhecido como NGC 6405 ou Messier 6 (M6).

O aglomerado fica perto da fronteira da constelação de Sagitário, o que o torna o objeto Messier mais próximo do centro da Via Láctea. Os membros deste grupo foram formados na mesma nuvem molecular gigante e ainda estão gravitacionalmente ligados uns aos outros.

O Aglomerado da Borboleta contém, provavelmente, um pouco mais de 300 estrelas, embora apenas 80 tenham sido identificados. A maioria delas são jovens e quentes estrelas azuis, mas o membro mais brilhante (na borda da asa esquerda da borboleta) é uma estrela gigante laranja, chamada BM Scorpii (HD 160371), que contrasta com os seus vizinhos azuis na imagem. A estrela BM Scorpii, é classificada como uma estrela variável, cujo brilho varia de 5,5 a 7,0 de magnitude em um ciclo de cerca de dois anos. O aglomerado possui em torno de 100 milhões de anos de existência.

Você pode encontrar este conjunto de cerca de 4 graus ao norte da estrela brilhante Shaula na cauda do Escorpião, e apenas cinco graus a sudeste de Messier 7, um outro aglomerado aberto. Um olhar através de um telescópio pequeno revela por que ele é chamado de Aglomerado da Borboleta: com um aumento de 40 a 50 vezes, o aglomerado apresenta três estrelas brilhantes que atravessam o centro (o corpo da borboleta), com duas alças irregulares de estrelas de cada lado (as asas). Um pouco de imaginação revela as "antenas" da borboleta, a nordeste. Você verá apenas algumas dezenas de estrelas com binóculos e, talvez, 100 estrelas em um telescópio de 6 polegadas.

Fonte: National Optical Astronomy Observatory

A Rosa de Caroline

Encontrado entre os ricos campos de estrelas da Via Láctea na direção da constelação da Cassiopeia, o aglomerado estelar NGC 7789 localiza-se a aproximadamente a 8.000 anos-luz de distância da Terra.

NGC 7789

© Albert Barr (NGC 7789)

Sendo descoberto no final do século 18 pela astrônoma Caroline Lucretia Herschel, o aglomerado também é conhecido como a Rosa de Caroline. Sua aparência sugestiva é criada pelo imbricamento complexo de estrelas e vazios do aglomerado. Agora estimado como tendo 1,6 bilhões de anos, os aglomerados abertos de estrelas ou galácticos também mostram sua idade. Todas as estrelas no aglomerado provavelmente nasceram no mesmo momento, mas as mais brilhantes e mais massivas exaurem de forma mais rápida seus combustíveis de hidrogênio em seus núcleos. Essas têm se desenvolvido das estrelas da sequência principal como o Sol nas muitas estrelas gigantes vermelhas mostradas com um brilho amarelado nessa bela composição colorida. Usando as medidas de cor e brilho, os astrônomos podem modelar a massa e então a idade do aglomerado de estrelas, começando pelo desligamento das estrelas da sequência principal que se tornaram gigantes vermelhas. Com mais de 50 anos-luz de diâmetro, a Rosa de Caroline se espalha por quase meio grau (o tamanho angular da Lua Cheia) perto do centro da imagem telescópica de campo vasto acima.

Fonte: NASA

sexta-feira, 25 de outubro de 2013

A descoberta da galáxia mais distante

Embora as observações com o telescópio espacial Hubble da NASA identificaram muitos outros candidatos a galáxias no Universo primordial, incluindo alguns que talvez seja ainda mais distante.

ilustração da galáxia z8_GND_5296

© V. Tilvi e C. Papovich (ilustração da galáxia z8_GND_5296)

Esta galáxia é a mais distante e mais antiga, cuja distância pode ser definitivamente confirmada com observações do telescópio Keck I, um de um par dos maiores telescópios da Terra.

"Queremos estudar galáxias muito distantes para aprender como as galáxias mudam com o tempo, o que possibilita compreender como a Via Láctea evolui", disse Steve Finkelstein, autor principal do estudo.

"Isso é o que faz com que essa distante galáxia seja tão excitante, porque temos um vislumbre das condições de quando o Universo tinha apenas cerca de 5 por cento de sua idade atual de 13,8 bilhões anos", disse Casey Papovich da Universidade do Texas, segundo autor do estudo.

Os astrônomos podem estudar como as galáxias evoluem porque a luz viaja a uma certa velocidade, cerca de 300 mil quilômetros por segundo. Assim, quando olhamos para objetos distantes, nós os vemos como eles apareceram no passado.

Antes de obtermos conclusões fortes sobre como as galáxias evoluíram, temos que ter certeza que estamos olhando para as galáxias certas.

Isto significa que os astrônomos devem empregar os métodos mais rigorosos para medir a distância até essas galáxias, para entender em que época do Universo está sendo observada.
A equipe de Finkelstein selecionou esta galáxia, e dezenas de outras, para o acompanhamento das cerca de 100.000 galáxias descobertas na Hubble Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), de que Finkelstein é um membro da equipe. O maior projeto da história do Hubble, o CANDELS utilizou mais de um mês do tempo de observação do telescópio espacial Hubble.

a galáxia mais distante do Universo

© CANDELS (a galáxia mais distante do Universo)

A equipe observou tais galáxias que podem ser extremamente distantes, com base em suas cores das imagens captadas pelo Hubble. Este método é bom, mas não infalível. Usando cores para classificar galáxias é complicado porque objetos mais próximos podem se disfarçar como galáxias distantes.

Assim, para medir a distância até essas galáxias potencialmente no início de Universo de uma forma definitiva, os astrônomos usam espectroscopia; mais especificamente, analisando o redshift, ou seja, os deslocamentos dos comprimentos de onda de luz de uma galáxia ao mudar para a extremidade vermelha do espectro.

A equipe usou o telescópio Keck I, no Havaí, um dos maiores telescópios óptico/infravermelho do mundo, para medir o desvio para o vermelho da galáxia z8_GND_5296 em 7,51, o mais alto redshift de uma galáxia já confirmado. Isso significa que esta galáxia surgiu apenas 700 milhões de anos após o Big Bang.

O telescópio Keck I foi equipado com o novo instrumento MOSFIRE, que pode olhar para vários objetos ao mesmo tempo, e tornou a medição possível.

Os pesquisadores são capazes de medir com precisão as distâncias de galáxias medindo uma característica do hidrogênio através da transição Lyman-alfa, que emite intensamente em galáxias distantes. Ela é detectada em quase todas as galáxias que são vistas a partir de um tempo maior de 1 bilhão de anos a partir do Big Bang, mas chegando mais perto do que isso, a linha de emissão de hidrogênio, por alguma razão, torna-se cada vez mais difícil de notar.
Das 43 galáxias observadas com o MOSFIRE, a equipe de Finkelstein detectou esta transião Lyman-alpha em apenas uma.

Os pesquisadores suspeitam que possam ter alcançado a época em que o Universo fez a sua transição de um estado opaco, em que a maior parte do gás de hidrogênio entre as galáxias era neutro para um estado translúcido em que a maior parte do hidrogênio era ionizado (chamado de Era da Reionização). Portanto, não é necessariamente que as galáxias distantes não estão lá. Pode ser que elas estão escondidas atrás de uma parede de detecção de hidrogênio neutro, que bloqueia o sinal de Lyman-alfa,

Além de sua grande distância, as observações da equipe mostrou que a galáxia z8_GND_5296 está formando estrelas de forma extremamente rápida, produzindo estrelas a uma taxa 150 vezes mais rápido que a nossa própria galáxia, a Via Láctea. Esta nova distância recordista reside na mesma parte do céu onde está a recordista anterior (redshift 7,2), a galáxia UDFy-38135539 que também possui uma elevada taxa de formação de estrelas.

Além de seus estudos com Keck I, a equipe também observou a galáxia z8_GND_5296 no infravermelho com o telescópio espacial Spitzer da NASA. Com o Spitzer foi medida a quantidade de oxigênio ionizado contido na galáxia, o que ajuda a fixar para baixo a taxa de formação de estrelas. As observações do Spitzer também ajudou a descartar outros tipos de objetos que possam se disfarçar de uma galáxia muito distante, como uma galáxia mais próxima, que é particularmente empoeirada.

Em breve, telescópios terrestres maiores, como o telescópio Thirty Meter Telescope (TMT) no Havaí e o telescópio Giant Magellan Telescope, além do telescópio espacial James Webb, devem possibilitar a descoberta de mais dessas galáxias distantes. A Universidade do Texas é um dos sócios fundadores do Giant Magellan Telescope (GMT) de 25 metros de diâmetro, que em breve começará a construção nas montanhas do Chile. Este telescópio terá cerca de cinco vezes o poder de captação de luz do Keck I e será sensível às linhas de emissão muito mais fracas, buscando as galáxias ainda mais distantes. Embora as observações atuais estão começando a alcançar a Era da Reionização, é necessário mais trabalho.

"O processo de reionização é improvável que seja muito repentino ", disse Finkelstein. "Com o GMT, vamos detectar muito mais galáxias, empurrando nosso estudo do Universo distante ainda mais perto do Big Bang."

O resultado foi publicado na edição desta semana da revista Nature.

Fonte: Observatório McDonald – Universidade do Texas

terça-feira, 22 de outubro de 2013

Supernovas são energizadas por magnetars?

A descoberta recente de supernovas de tipo II anormalmente luminosas e muito distantes induziram pesquisadores a pensar que poderiam estar presenciando a explosão de estrelas por um processo, proposto por teóricos em finais dos anos 60, designado de par instável.

The Hibernating Stellar Magnet (artist's impression)

© ESO/L.Calçada (magnetar)

A luminosidade de uma supernova, mais concretamente, o tempo que demora a atingir o brilho máximo e o intervalo de tempo durante o qual consegue manter um brilho elevado, depende quase exclusivamente da quantidade de um isótopo radioativo de Níquel, o 56Ni, que é formado durante a fase inicial da explosão. Nas semanas e meses seguintes a supernova brilha em resultado dos raios gama produzidos pelos decaimentos do 56Ni num isótopo de Cobalto, o 56Co, e deste último num isótopo estável do Ferro, o 56Fe. Uma supernova de tipo II normal produz aproximadamente uma massa solar de 56Ni. Supernovas muito luminosas têm de produzir uma grande quantidade de 56Ni durante a explosão; cada uma das supernovas estudadas foi tão luminosa que deveria ter produzido algumas dezenas de massas solares deste isótopo.

Só estrelas muito maciças, estrelas com massas superiores a aproximadamente 150 vezes a massa do Sol, e com baixo teor em “metais”, elementos mais pesados do que o hidrogênio e hélio, conseguiriam produzir tal quantidade de 56Ni. Estrelas como estas são muito raras no Universo atual pois a maior parte do material interestelar, a partir do qual se formam as estrelas, está contaminado com “metais” produzidos por gerações sucessivas de estrelas; por outro lado, seriam mais abundantes quando o Universo era mais jovem. Estrelas tão maciças não explodem pelo mecanismo de colapso gravitacional, como é o caso das supernovas de tipo II (com linhas de hidrogênio no espectro), mas antes pelo referido processo de par instável. O interior destas estrelas é extremamente quente devido à enorme massa e à compressão resultante. Num determinado momento a energia dos fótons de raios gama no interior da estrela, que sustentam o peso das camadas exteriores, pode tornar-se tão elevada que os fótons se transformam espontaneamente em pares de elétron-pósitron, daí a palavra par. Esta reação absorve uma fração importante da energia disponível para manter a estrela em equilíbrio, daí a palavra instável, e a zona nuclear começa a contrair-se rapidamente. Ao contrário do que acontece num colapso gravitacional clássico, no entanto, esta contração aumenta as temperaturas no interior até um nível que deflagra uma cadeia de reações de fusão nuclear de forma descontrolada, as quais libertam energia suficiente para vencer a gravidade e destruir por completo a estrela. Trata-se de um mecanismo semelhante ao de uma bomba termonuclear, a bomba de hidrogênio.

Ao observar estas supernovas tão luminosas a bilhões de anos no passado, os astrônomos sugeriram, naturalmente, que poderiam tratar-se dos primeiros exemplos de supernovas de par instável. Entretanto, um artigo agora propõe um cenário alternativo para explicar a luminosidade destas supernovas. Matt Nicholl, do Astrophysics Research Centre, Queen’s School of Mathematics and Physics, e os seus colaboradores, realizaram cálculos que sugerem que estas supernovas podem ser mais normais, resultantes do colapso gravitacional de estrelas progenitoras com características menos extremas do que as avançadas pelo cenário anterior; no novo cenário, a energia suplementar que permitiria uma tal supernova atingir um pico de brilho acima do normal e manter-se brilhante durante mais tempo teria origem numa magnetar, uma estrela de nêutrons com um campo magnético extraordinariamente intenso. As magnetars, formam-se em supernovas de colapso gravitacional em circunstâncias ainda mal compreendidas. São conhecidas apenas 20 destas estrelas de nêutrons em toda a Via Láctea. Estima-se que, no instante em que são criadas, girem em torno do seu eixo de rotação 300 vezes por segundo e tenham um campo magnético mil vezes mas intenso do que o de uma estrela de nêutrons normal e quadrilhões de vezes mais intenso do que o campo magnético terrestre. No cenário apresentado por Nicholl e co-autores, uma magnetar formada numa supernova, perde energia rotacional através do seu campo magnético que, por sua vez, transfere essa energia para o plasma de partículas e núcleos atômicos que forma o remanescente da supernova. Os cálculos realizados pela equipe mostram que a quantidade de energia transferida por este processo de frenagem da magnetar permite explicar de forma quase perfeita as observações existentes das supernovas de luminosidade anormalmente elevada. Este cenário pode também explicar uma outra característica das magnetars: o fato de terem períodos de rotação anormalmente longos (entre 1 e 10 segundos) quando comparadas com outras estrelas de nêutrons, como se, no seu caso, algum mecanismo tivesse sugado essa energia rotacional precocemente.

Fonte: Nature

A maior estrutura cósmica do Universo Local

O satélite Planck da ESA (Agência Espacial Europeia) captou imagens de alguns dos maiores objetos existentes no Universo atualmente: aglomerados e superaglomerados de galáxias.

superaglomerado de galáxias de Shapley

© Planck (superaglomerado de galáxias de Shapley)

Enquanto rastreava pelo espaço em busca da luz cósmica mais antiga, o satélite encontrou centenas de galáxias entremeadas por uma imensa quantidade de gás, e registrou uma imagem do núcleo do superaglomerado de Shapley, a estrutura cósmica com a maior concentração de matéria do Universo Local.

Esse superaglomerado foi descoberto em 1930 pelo astrônomo americano Harlow Shapley, como uma notável concentração de galáxias na constelação do Centauro. Com mais de 8 mil galáxias e uma massa total superior a 10 quadrilhões de vezes a massa do Sol, essa é a estrutura mais maciça a uma distância de aproximadamente 1 bilhão de anos-luz da Via Láctea.

O gás quente que permeia aglomerados de galáxias brilha em na região dos raios X, mas também é visível nos comprimentos de onda de microondas, que o satélite Planck vê como uma assinatura distinta na radiação cósmica de fundo, o brilho do Big Bang.

Olhando para essa assinatura, o chamado efeito Sunyaev-Zel'dovich, o satélite Planck já observou mais de mil aglomerados de galáxias, incluindo vários superaglomerados e pares de grupos que interagem.

Esta imagem composta do núcleo do superaglomerado Shapley combina o gás detectado com Planck em grande escala entre os membros do superaglomerado (em azul ) com a detectada através dos raios X dentro dos aglomerados de galáxias de Shapley, utilizando o satélite Rosat (em rosa), bem como uma visão de sua rica população de galáxias, como observado em comprimentos de onda visíveis na Digitised Sky Survey.

Os borrões maiores em rosa em raios X identificam os dois aglomerados Abell 3558 (do lado direito) e Abell 3562 (do lado esquerdo), assim como um par de grupos mais pequenos entre eles.

Fonte: ESA

domingo, 20 de outubro de 2013

A Nebulosa da Caverna

Essa colorida paisagem celeste mostra o brilho empoeirado e avermelhado da região de emissão do catálogo Sharpless, conhecida como Sh2-155, ou a Nebulosa da Caverna.

Sh2-155

© Jimmy Walker (Sh2-155)

Localizada a aproximadamente 2.400 anos-luz de distância da Terra, a cena localiza-se ao longo do plano da Via Láctea, em direção à constelação do céu do norte de Cepheus. As explorações astronômicas da região revelam que ela se formou na fronteira da massiva nuvem molecular Cepheus B e as estrelas azuis, jovens e quentes da associação Cepheus OB3. O brilhante anel de gás hidrogênio ionizado é energizado pela radiação de estrelas quentes, dominada pela brilhante estrela azul do Tipo-O localizada na parte superior da imagem. As frentes de ionização dirigidas pela radiação são provavelmente criadas pelos núcleos de estrelas que estão colapsando e por novas formações de estrelas. Com um tamanho apropriado de um berçário estelar, a caverna cósmica tem mais de 10 anos-luz de diâmetro.

Fonte: NASA

sexta-feira, 18 de outubro de 2013

Três galáxias em Dragão

Esse intrigante trio de galáxias é algumas vezes chamado de Grupo Draco, e localiza-se na constelação do norte, chamada Draco (o Dragão).

trio de galáxias em Dragão

© Stephen Leshin (trio de galáxias em Dragão)

Da esquerda para a direita estão a galáxia espiral NGC 5981, a galáxia elíptica NGC 5982, e a galáxia espiral que aparece de frente para nós, NGC 5985; todas elas dentro do mesmo campo telescópico de visão que se espalha um pouco mais do que a metade da largura da Lua cheia. Enquanto o grupo é de longe muito pequeno para ser um aglomerado de galáxias, e não tem sido catalogado como um grupo compacto, todas essas galáxias localizam-se a cerca de 100 milhões de anos-luz da Terra. Numa análise mais detalhada realizada com espectrógrafos, o núcleo brilhante da impressionante galáxia espiral que aparece de frente para nós, a NGC 5985, mostra uma proeminente emissão em um comprimento de onda de luz específico, levando os astrônomos a classificarem essa galáxia como sendo uma Seyfert, ou seja, um tipo de galáxia ativa. Não tão bem conhecido como outros grupos de galáxias, o contraste na aparência visual de seus membros, faz desse trio um alvo atrativo para os astrofotógrafos. Essa exposição impressionantemente profunda nos fornece pistas, apagadas de conchas ao redor da NGC 5982, aspectos que são evidências de fusões galácticas do passado. Essa imagem também revela muitas outras galáxias bem mais distantes que esse trio.

Fonte: NASA

quarta-feira, 16 de outubro de 2013

Mistério dos jatos emitidos por buracos negros

Duas equipes internacionais de astrônomos usaram o Atacama Large Millimeter/submillimeter Array (ALMA) para estudar os jatos emitidos por enormes buracos negros situados no centro das galáxias e observar como é que estes jatos afetam o seu meio circundante.

imagem composta da galáxia NGC 1433

© ALMA/Hubble (imagem composta da galáxia NGC 1433)

As equipes obtiveram, respectivamente, a melhor imagem até hoje do gás molecular em torno de um buraco negro calmo próximo e inesperadamente viram de relance a base de um jato poderoso próximo de um buraco negro distante.

Existem buracos negros de massa extremamente elevada, com massas que vão até vários bilhões de vezes a massa solar, no núcleo de quase todas as galáxias do Universo, incluindo a nossa própria galáxia, a Via Láctea. Num passado distante, estes objetos estranhos encontravam-se muito ativos, engolindo enormes quantidades de matéria do seu meio circundante, brilhando intensamente e expelindo pequenas frações dessa matéria sob a forma de jatos extremamente poderosos. No Universo atual a maioria dos buracos negros de elevada massa encontram-se muito menos ativos do que na sua juventude, mas a interação entre os jatos e o meio circundante ainda afeta a evolução das galáxias.
Dois novos estudos, ambos publicados hoje na revista especializada Astronomy & Astrophysics, fizeram uso do ALMA para investigar jatos de buracos negros a escalas muito diferentes. Um dos estudos investigou um buraco negro próximo e relativamente calmo situado na galáxia NGC 1433, enquanto o outro observou um objeto muito distante e ativo chamado PKS 1830-211.
“O ALMA revelou uma estrutura em espiral surpreendente no gás molecular próximo do centro da NGC 1433”, diz Françoise Combes (Observatoire de Paris, França), autora principal do primeiro artigo científico. “Isto explica como é que o material flui para o interior, alimentando o buraco negro. Com as novas observações muito nítidas do ALMA descobrimos um jato de matéria sendo emitido pelo buraco negro e que se estende ao longo de apenas 150 anos-luz. Esta é a menor corrente molecular fluindo para o exterior já observada numa outra galáxia”.
A descoberta desta corrente de matéria, que está sendo arrastada com o jato emitido pelo buraco negro central, mostra como é que tais jatos podem fazer parar a formação estelar e regular o crescimento dos bojos centrais das galáxias.
Na PKS 1830-211, Ivan Martí-Vidal (Chalmers University of Technology, Onsala Space Observatory, Onsala, Suécia) e a sua equipe observaram também um buraco negro de massa extremamente elevada com um jato, mas muito mais brilhante e mais ativo que o anterior, situado no Universo primordial. A PKS 1830-211 tem um desvio para o vermelho (redshift) de 2,5, o que significa que a sua luz teve que viajar cerca de 11 bilhões de anos antes de chegar até nós. A radiação que observamos foi emitida quando o Universo tinha apenas 20% da sua idade atual. Comparativamente, a radiação emitida pela NGC 1433 leva apenas 30 milhões de anos para chegar à Terra, um tempo muito curto em termos galáticos. Este objeto é incomum porque a sua intensa radiação atravessa uma galáxia de elevada massa situado no seu percurso a caminho da Terra, dividindo-se em duas imagens por efeito de lente gravitacional.
De vez em quando, os buracos negros de massa extremamente elevada engolem de repente uma enorme quantidade de matéria, a qual faz aumentar a potência do jato e consequentemente a radiação é emitida nas energias mais elevadas. O ALMA conseguiu agora, e completamente por acaso, capturar um destes eventos na PKS 1830-211.
“As observações ALMA no caso desta “indigestão” do buraco negro deram-se completamente por acaso. Estávamos observando a PKS 1830-211 por outro motivo, quando percebemos variações sutis na cor e na intensidade nas imagens da lente gravitacional. Uma análise muito cuidadosa deste comportamento inesperado levou-nos à conclusão de que estávamos observando, por um feliz acaso do destino, no exato momento em que matéria nova estava entrando na base do jato do buraco negro”, diz Sebastian Muller, co-autor do segundo artigo científico.
A equipe verificou também se este fenômeno violento teria sido observado por outros telescópios e ficou surpreendida ao descobrir um sinal de raios gama muito claro, graças a observações de monitorização do satélite Fermi-LAT. O processo que deu origem ao aumento de radiação nos longos comprimentos de onda observados pelo ALMA, foi igualmente responsável por aumentar de forma dramática a radiação no jato, levando-a até às energias mais elevadas do Universo.
“Esta é a primeira vez que se estabelece uma ligação tão clara entre raios gama e radiação rádio submilimétrica, proveniente da base do jato de um buraco negro”, acrescenta Sebastian Muller.
As duas novas observações são apenas o início das investigações executadas com o ALMA no âmbito do funcionamento de jatos emitidos por buracos negros de massa extremamente elevada, tanto próximos como distantes. A equipe de Combes está já estudando outras galáxias ativas próximas com o ALMA e o objeto PKS 1830-211 será o foco de muita investigação futura com o ALMA e outros telescópios.
“Há ainda muito para aprender sobre como é que os buracos negros criam estes enormes jatos energéticos de matéria e radiação”, conclui Ivan Martí-Vidal. “Mas os novos resultados, obtidos ainda antes do ALMA estar completamente construído, mostram que esta é uma ferramenta extremamente poderosa para estudar estes jatos. As descobertas estão apenas começando”.

Fonte: ESO

terça-feira, 15 de outubro de 2013

Exoplaneta solitário sem estrela

Astrônomos anunciaram a descoberta de um planeta solitário fora do Sistema Solar, flutuando sozinho no espaço e sem girar na órbita de uma estrela.

ilustração mostra o exoplaneta PSO J318.5-22

© MPIA (ilustração mostra o exoplaneta PSO J318.5-22)

Chamado PSO J318.5-22, o planeta está apenas a 80 anos-luz da Terra e tem seis vezes a massa de Júpiter. Formado há 12 milhões de anos, ele é considerado novo entre os seus pares.

"Nunca tínhamos visto um objeto flutuando livremente no espaço com esse aspecto. Tem todas as características dos jovens planetas descobertos ao redor de outras estrelas, mas vagueia completamente só", disse o chefe da equipe de pesquisadores, Michael Liu, do Instituto de Astronomia da Universidade do Havaí, em Manoa. "Questionei-me muitas vezes se esses objetos solitários existiriam e agora sabemos que sim", acrescentou.

Os pesquisadores acreditam que o novo planeta tenha uma massa mais leve que a dos demais corpos que flutuam livremente.

Durante a última década, os cientistas descobriram cerca de mil planetas extrassolares, mas apenas meia dúzia foi observada diretamente, já que muitos giram em torno de jovens estrelas, a menos de 200 milhões de anos e emitem muita luz.

O trabalho foi publicado no Astrophysical Journal Letters.

Fonte: Universidade do Havaí

A Grande Nebulosa da Carina

Uma joia do céu do hemisfério sul da Terra, a Grande Nebulosa da Carina, também conhecida como NGC 3372, se espalha por mais de 300 anos-luz, e é uma das maiores regiões de formação de estrelas da nossa galáxia.

NGC 3372

© Lorand Fenyes (NGC 3372)

Localizada mais ao norte da Grande Nebulosa de Órion, a Nebulosa da Carina é facilmente visível a olho nu, apesar de estar a uma distância de 7.500 anos-luz da Terra, cinco vezes mais distante do que a Nebulosa de Órion. Essa bela imagem telescópica mostrada acima revela detalhes impressionantes dos filamentos brilhantes da região de gás interestelar e de nuvens de poeira escuras. Mais vasto do que o tamanho angular da Lua Cheia, o campo de visão se espalha por mais de 300 anos-luz através da nebulosa. A Nebulosa da Carina é o lar de estrelas extremamente massivas e jovens, incluindo a ainda enigmática estrela variável Eta Carinae, uma estrela com mais de 100 vezes a massa do Sol. A estrela Eta Carinae é a estrela mais brilhante localizada perto do centro da imagem, um pouco a esquerda da empoeirada Nebulosa Keyhole (NGC 3324). Enquanto que a própria Eta Carinae esteja talvez na eminência de uma explosão de supernova, imagens em raios X indicam que a Grande Nebulosa da Carina tem sido uma incrível fábrica de supernovas.

Fonte: NASA

segunda-feira, 14 de outubro de 2013

Nuvem inesperada em torno de estrela enorme

Esta nova imagem do Telescópio de Rastreio do VLT (VST), instalado no Observatório do Paranal do ESO, mostra o super enxame estelar Westerlund 1.

Westerlund 1

© ESO (Westerlund 1)

Este enxame excepcionalmente brilhante situa-se a cerca de 16.000 anos-luz de distância da Terra na constelação austral do Altar. O enxame contém centenas de estrelas muito brilhantes de elevada massa, todas com uma idade de apenas alguns milhões de anos. No entanto, torna-se difícil observar este enxame devido ao gás e poeira que impedem que a maior parte da radiação visível emitida pelas estrelas chegue até à Terra. 
Agora, ao estudarem imagens do Westerlund 1 com o auxílio de um novo rastreio do céu austral, os astrônomos descobriram algo inesperado neste enxame. Em torno de uma das estrelas, uma supergigante vermelha chamada W26 e possivelmente a maior estrela que se conhece, descobriram nuvens de hidrogênio brilhante, as quais aparecem nesta nova imagem em verde.
Tais nuvens brilhantes em torno de estrelas de elevada massa são muito raras, sendo ainda mais raro aparecerem em torno de uma supergigante vermelha, esta é a primeira nebulosa ionizada descoberta em torno de um tal tipo de estrelas. A W26 propriamente dita deverá ser fria demais para fazer com que o gás brilhe, por isso os astrônomos suspeitam que a fonte de radiação ionizante seja, ou estrelas quentes azuis situadas noutra zona do enxame ou uma estrela mais tênue mas muito mais quente, companheira da W26.
A W26 irá eventualmente explodir sob a forma de supernova. A nebulosa que a rodeia é muito semelhante à nebulosa que circunda a SN1987A, os restos de uma estrela que explodiu sob a forma de supernova em 1987. Pensa-se que esta nebulosa circundava a estrela progenitora da SN1987A antes desta ter explodido sob a forma de supernova. A SN1987A foi a supernova que se observou mais próxima da Terra desde 1604, tendo dado por isso aos astrônomos a oportunidade de explorar as propriedades destas explosões. Estudar objetos como esta nova nebulosa em torno da W26 ajudará a compreender os processos de perda de massa em torno de estrelas de elevada massa, os quais levam eventualmente ao seu fim explosivo.

Fonte: ESO