quinta-feira, 20 de março de 2014

Ocultação de Saturno pela Lua

Na noite de hoje, entre 22hs e a meia-noite, ocorrerá a ocultação do planeta Saturno pela Lua.

ocultação de Saturno pela Lua

© OSU (ocultação de Saturno pela Lua)

A imagem acima, obtida em 1997 por telescópio da Universidade Estadual de Ohio (OSU), mostra a Lua prestes a ocultar Saturno.

O fenômeno poderá ser visto a olho nu, onde um ponto brilhante irá gradualmente se aproximar da Lua, surgindo de baixo, para então passar por trás do disco lunar e sair pelo outro lado. Hoje, a Lua está quase cheia e o planeta Saturno está a cerca de 1,39 bilhão de km. Mesmo a esta distância, o planeta é muito brilhante, reluzindo atualmente na magnitude 0,5. Considerando o efeito da atmosfera, a magnitude observável é de 1,3.

As ocultações geralmente são úteis para os astrônomos, possibilitando estudar a atmosfera desse mundo ao analisar o padrão de redução de brilho do astro que será ocultado. Se houver uma camada de ar envolvendo o planeta, ela provocará um padrão de esmaecimento gradativo e permitirá até mesmo o estudo de sua composição, ao analisar a luz que parte da estrela distante e passa rasante pelo invólucro atmosférico, carregando consigo a linha espectral de seus componentes. Porém, o planeta Saturno não propiciará surpresas.

O momento exato do início e do término depende da localização exata, que dá uma perspectiva diferente da posição da Lua. A ocultação não ocorre simultaneamente em todas as regiões do país e quanto mais elevada a latitude onde se encontra o observador, mais cedo começa o evento. O tempo de ocultação também não é igual para todas as cidades. Em São Paulo, por exemplo, o espetáculo ocorrerá das 22:30hs as 23:16hs. Somente no Rio Grande do Sul a ocultação não será visível, a não ser nas localidades no extremo norte do Estado. Nesse caso, os gaúchos verão Saturno passar pertinho da Lua, mas sem jamais se esconder por trás dela. Nos demais estados do Brasil, só não verá quem estiver com o céu encoberto por nuvens.

Fonte: Cosmo Novas

quarta-feira, 19 de março de 2014

Terra foi atingida por asteroide binário na era Paleozoica

Uma pesquisa apresentada na 45ª Conferência de Ciência Lunar e Planetária, realizada em Woodlands, no Texas, sugere que um destes atingiu o planeta na era Paleozoica, formando duas crateras no norte da Suécia.

asteroide binário

© ESO (asteroide binário)

Utilizando análises de minúsculos animais marinhos encontrados nas crateras Lockne e Malingen, que se encontram a cerca de 16 quilômetros de distância, os pesquisadores encontraram a mesma idade para ambas formações. Essa seria a primeira evidência do impacto de um asteroide binário na Terra.

Acredita-se que formações binários acontecem quando um asteroide formado por um conglomerado de detritos de rocha começa a girar tão rápido sob a influência da luz solar que uma pedra solta é jogada para fora do seu plano equatorial, formando o que os astrônomos chamam de pequena lua.

Apesar de observações apontarem que 15% dos asteroides perto da Terra são duplos, apenas uma fração deles formaria crateras duplas com o impacto, já que aquelas luas que estão muito próximas de sua estrutura original criariam marcas sobrepostas. Cálculos sugerem que apenas 3% das crateras são duplas, um número próximo dos candidatos identificados por pesquisadores até o momento.

Jens Ormo, pesquisador do Centro de Astrobiologia de Madri, na Espanha, e sua equipe optaram por analisar as crateras Lockne, com 7,5 quilômetros de largura, e a Malingen, cerca de dez vezes menor, por suas características geológicas similares. Reconhecidas como crateras desde a metade do século XX, elas só foram formalizadas em meados de 1990.

Os pesquisadores perfuraram cerca de 145 metros para dentro da estrutura da Malingen utilizando pedra britada. Eles passaram pelo sedimento que a preenche, conhecido como brechas, e atingiram a pedra intacta no fundo.

A análise das brechas revelou a presença de uma forma do mineral quartzo, que é criado sob pressões intensas e está associado com o impacto de asteroides. No momento da queda, a região onde as crateras se encontram era coberta por um mar raso, então sedimentos marinhos teriam preenchido imediatamente o buraco formado no local.

A datação do impacto foi feita com um método conhecido como biostratigrafia, que permite que geólogos atribuam idades relativas a rochas com base nos tipos de criaturas fósseis encontradas dentro delas. Os pesquisadores utilizaram pequenos plânctons, chamados chitinozoas.

Os resultados revelaram que a estrutura Malingen era da mesma idade de Lockne, de cerca de 458 milhões anos de idade, durante o período Ordoviciano, da era Paleozoica.

Em entrevista à "BBC", Gareth Collin, pesquisador do Imperial College de Londres, afirmou que "com falta de testemunha dos impactos, é impossível provar que duas crateras próximas foram formadas simultaneamente, mas que a evidência neste caso é muito convincente. Sua proximidade no espaço e estimativas consistentes de idade tornam bastante provável um impacto binário".

Simulações sugerem que a pedra que formou Lockne tinha cerca de 600 metros de diâmetro, enquanto a de Malingen tinha aproximadamente 250 metros. De acordo com os pesquisadores, estas medições são um pouco maiores do que pode ser sugerido pelas suas crateras por causa dos mecanismos de impactos em ambientes marinhos.

Ormo acrescentou que a distância entre Malingen e Lockne está de acordo com a teoria de que elas teriam sido criadas por um binário. Segundo ele, para qualificar um impacto duplo, as crateras não podem estar muito longe, pois excederiam a distância máxima em que um asteroide e sua lua podem ficar vinculados por forças gravitacionais.

"O asteroide formador de Lockne era grande o suficiente para gerar uma abertura na atmosfera acima do local de impacto", disse Ormo.

Essa abertura pode fazer com que o material do asteroide se espalhe ao redor do globo, como teria acontecido durante o impacto que formou a cratera de Chicxulub, que muitos acreditam ter matado os dinossauros, há 66 milhões de anos.

O impacto no período Ordoviciano não foi potente o suficiente para que o material fosse espalhado, mas pode ter tido efeitos locais, como por exemplo, a vaporização instantânea de qualquer criatura do mar que estivesse nadando nas proximidades.

Outras crateras que podem ter sido formadas por um impacto duplo incluem Clearwater Ocidental e Oriental, em Quebec, no Canadá; Kamensk e Gusev, no sul da Rússia; e Ries e Stenheim, no sul da Alemanha.

Outros cientistas alertam que crateras aparentemente contemporâneas podem ter sido formadas com semanas, meses ou mesmo anos de intervalo.

Fonte: Lunar and Planetary Institute

Sonda Cassini registra ondas nos mares de Titã

Não é surpresa que a região polar norte de Titã seja coberta por vastos lagos e mares de metano líquido, que foram imageados muitas vezes pela sonda Cassini durante seus dez anos em órbita ao redor do planeta Saturno.

Kivu Lacus

© Cassini/VIMS (Kivu Lacus)

O que surpreende, é como são suaves as superfícies desses lagos. Alguém, porém, poderia pensar que essas grandes expansões de superfícies líquidas – alguns mares de Titã são maiores que os Grandes Lagos – poderiam exibir no mínimo uma pequena atividade num mundo com uma atmosfera tão densa como Titã. Mas, repetidas imagens de radar têm mostrado que as suas superfícies são muito suaves. Nos últimos anos, os cientistas quebraram a cabeça sobre essa anomalia, mas agora eles podem ter finalmente visto uma luz no fim do túnel, ou seja, a luz refletida daquilo que poderia ser na verdade, ondas em Titã.

Usando dados adquiridos durante os sobrevoos realizados em Titã em 2012 e 2013, o cientista planetário Jason Barnes, da Universidade de Idaho, e uma equipe de pesquisadores de algumas outras instituições incluindo, o JPL, Cornell, e o MIT, identificaram que possa existir ondas na superfície do Punga Mare, um dos maiores lagos de Titã.

Para se ter uma ideia da escala, o Lago Vitoria, o maior lago da África, poderia tranquilamente caber dentro do Punga Mare de Titã que tem 380 km de largura.

As variações em detalhes espetaculares de quatro pixels observados na superfície de Punga Mare pelo instrumento VIMS (Visible and Infrared Mapping Spectrometer) da Cassini têm sido interpretadas pela equipe como sendo resultado de ondas, ou talvez, ondulações com uma altura estimada de 2 centímetros.

Se as observações da Cassini interpretadas por Barnes e outros, sejam indicativos de ondas no Punga Mare, elas poderiam também explicar variações especulares anteriores vistas em outros corpos de líquido como o menor Kivu Lacus.

“Se a descoberta se confirmar, representará as primeiras ondas em superfície de mares conhecidas fora da Terra”, disse Jason W. Barnes.

Novamente, as ondas não são as únicas explicações. Variações especulares similares poderiam também ser causadas pela superfície molhada, como uma lama achatada de metano. Observações futuras serão necessárias para confirmar ou não a real presença de ondas em Titã.

Fonte: Universe Today

terça-feira, 18 de março de 2014

O planeta Mercúrio contraiu além do que era estimado

A superfície de Mercúrio está encolhendo mais rápido do que se pensava anteriormente, revelam as fotos obtidas pela sonda MESSENGER da NASA que está na órbita do pequeno planeta do Sistema Solar.

planeta Mercúrio

© NASA/MESSENGER (planeta Mercúrio)

A primeira pesquisa compreensiva da superfície de Mercúrio feita pela sonda MESSENGER mostra que a crosta do planeta tem contraído em 7 quilômetros à medida que ele esfria, significantemente mais do que se estimava anteriormente.

Esses novos resultados resolveram um paradoxo que dura mais de uma década sobre os modelos da história termal e a contração estimada de Mercúrio, diz um estudo liderado pelo autor Paul Byrne do Carnegie Institution for Science.

A superfície de Mercúrio é feita de apenas uma placa continental que cobre todo o planeta. Seu enorme núcleo de ferro, estimado em 4.040 km de diâmetro, deixa um manto e uma crosta com somente 420 km de espessura, uma camada extremamente fina para o menor planeta do Sistema Solar. O manto da Terra, para comparação tem cerca de 2.900 km de espessura, enquanto que a crosta acima dele tem cerca de 40 km de espessura. E além disso, o pequeno Mercúrio está encolhendo.

No passar dos bilhões de anos desde a sua formação no nascimento do Sistema Solar, o planeta vem vagarosamente se resfriando, um processo que todos os planetas sofrem se eles não possuem uma fonte interna renovável de calor. À medida que o núcleo de ferro líquido solidifica, ele esfria, e o volume total de Mercúrio encolhe.

Quando a sonda Mariner 10 da NASA circulou o planeta nos anos de 1970, ela capturou imagens da superfície criadas pelo encolhimento. A contração do planeta empurrou a crosta sobre ela mesma, formando escarpas que podem estender quilômetros abaixo da superfície do planeta. Ao mesmo tempo, o encolhimento da superfície fez com que a crosta dobra-se sobre si mesma, formando as chamadas cadeias de dobras.

Byrne e sua equipe usou a sonda MESSENGER para identificar 5.934 cadeias e escarpas criadas pela contração do planeta, variando de 9 a 900 km de comprimento. Isso criou uma amostra substancialmente maior do que aquelas coletadas pela sonda Mariner 10, que somente imageou 45% da superfície de Mercúrio. A sonda MESSENGER foi capaz de mapear toda a superfície do planeta.

A sonda MESSENGER (Mercury Surface, Space ENvironment, GEochemistry and Ranging) foi lançada em 2004 e está atualmente no meio da missão estendida ao redor de Mercúrio.

As escarpas e as cadeias de dobras identificadas pela Mariner 10 permitiram estimar que o planeta tem perdido cerca de 1 a 2 km de raio global, um achado que entrava em contradição com o entendimento sobre a perda de calor que o planeta sofreu no decorrer do tempo. Byrne e sua equipe descobriu uma contração de 7 km que se ajusta de maneira melhor com os modelos atuais.

“A discrepância entre a teoria e a observação, um grande mistério de quatro décadas, finalmente foi resolvido. É maravilhoso afirmar que nós vemos nosso entendimento teórico se ajustando com as evidências geológicas”, disse Sean Solomon, o principal pesquisador da MESSENGER.

Fonte: Nature Geoscience

segunda-feira, 17 de março de 2014

Detectadas evidências de ondas gravitacionais no Universo primordial

Astrônomos estão anunciando hoje que obtiveram a primeira evidência direta de que as ondas gravitacionais percorreram o Universo primordial, durante um período de crescimento explosivo.

telescópio BICEP2

© Steffen Richter/Universidade Harvard (telescópio BICEP2)

Esta é a confirmação mais evidente da teoria de inflação cósmica, onde o Universo se expandiu por 100 trilhões de trilhões de vezes, em menos de um piscar de olhos. A existência destas ondulações de espaço-tempo, primeiro eco do Big Bang, previstas na teoria da relatividade de Albert Einstein, demonstra a expansão extremamente rápida do Universo na primeira fração de segundo de sua existência, uma fase conhecida como inflação cósmica.
As descobertas foram feitas com a ajuda da tecnologia desenvolvida pela NASA em colaboração com a Fundação Nacional de Ciência (NSF), de detectores acoplados ao telescópio BICEP2 (Background Imaging of Cosmic Extragalactic Polarization 2) no Pólo Sul.
"Operar os últimos detectores em experiências transmitidas por balão e terrestres nos permite amadurecer estas tecnologias para missões espaciais e, no processo, fazer descobertas sobre o Universo ", disse Paul Hertz , diretor da Divisão de Astrofísica da NASA, em Washington.
Nosso Universo surgiu através de um evento conhecido como o Big Bang a 13,8 bilhões anos atrás. Momentos depois, o próprio espaço ampliou exponencialmente em um episódio conhecido como a inflação. Os sinais indicadores deste capítulo no início da história do nosso Universo são impressas nos céus, em uma relíquia  brilhante chamada radiação cósmica de fundo. Recentemente, esta teoria básica do Universo foi novamente confirmado pelo satélite Planck, uma missão da ESA.
Mas os pesquisadores há muito tempo procuram evidência mais direta da inflação em forma de ondas gravitacionais, que comprimem e distendem o espaço.
"Pequenas flutuações quânticas foram amplificados para tamanhos enormes pela expansão inflacionária do Universo. Sabemos que isso produz outro tipo de ondas chamadas de ondas de densidade, mas queríamos testar se as ondas gravitacionais são produzidos também", disse o co- líder do projeto Jamie Bock do Laboratório de Propulsão a Jato da NASA, em Pasadena, na Califórnia, que desenvolveu a tecnologia do detector BICEP2. Bock tem um compromisso conjunto com o Instituto de Tecnologia da Califórnia, também em Pasadena.
As ondas gravitacionais produzidas têm um padrão característico espiralado em luz polarizada, chamada polarização "modo B". A luz pode tornar-se polarizada por espalhamento de superfícies, tais como um carro ou uma lagoa. Óculos polarizados rejeitam a luz polarizada para reduzir o brilho. No caso da radiação cósmica de fundo, a luz espalhada por elétrons para tornar-se ligeiramente polarizada.
A equipe BICEP2 assumiu o desafio de detectar a polarização de modo B, reunindo os maiores especialistas na área, desenvolvendo tecnologia revolucionária e viajando para o melhor local de observação da Terra no Pólo Sul. A colaboração inclui grandes contribuições da Caltech, JPL, Universidade de Stanford, Universidade de Harvard e da Universidade de Minnesota.
Como resultado das experiências realizadas desde 2006, a equipe foi capaz de produzir provas convincentes para o sinal em modo B, e com ele, o apoio mais forte ainda para a inflação cósmica. A chave para seu sucesso foi o uso de detectores de supercondutores, são materiais que quando refrigerados permitem que a corrente elétrica flua livremente, com resistência zero.
"Nossa tecnologia combina as propriedades de supercondutividade com minúsculas estruturas que só pode ser visto com um microscópio. Estes dispositivos são fabricados com o mesmo processo de micro-usinagem dos sensores em celulares e controles do Wii", disse Anthony Turner do Jet Propulsion Laboratory (JPL). O sinal de modo B é extremamente fraco. Para obter a sensibilidade necessária para detectar o sinal de polarização, Bock e Turner desenvolveram um único conjunto de detectores múltiplos, semelhante aos pixels em câmaras digitais modernos, mas com a capacidade adicional de detectar polarização. O sistema detector inteiro opera com temperatura extremamente baixa de 0,25 Kelvin.

detectores do BICEP2

© NASA/JPL-Caltech (detectores do BICEP2)

O experimento BICEP2 usou 512 detectores, que ampliaram as observações da radiação cósmica de fundo por 10 vezes ao longo de medições anteriores da equipe. Um novo experimento BICEP3 está fazendo observações com 2.560 detectores.

"A detecção destas ondulações é um dos objetivos mais importantes da cosmologia na atualidade e resultado de um enorme trabalho realizado por uma grande quantidade de cientistas", destacou John Kovac, professor de Astronomia e de Física no Harvard-Smithsonian Center for Astrophysics (CfA) e chefe da equipe de investigação BICEP2, que fez a descoberta.

Estes e experimentos futuros, não só ajudaram a confirmar que o Universo inflou dramaticamente, mas fornecerão as primeiras pistas sobre as forças exóticas que levaram a separação do espaço e do tempo.
Os resultados deste estudo foram submetidos à revista Nature.

Fonte: Harvard-Smithsonian Center for Astrophysics

Estrelas mortais na Nebulosa de Órion

A Nebulosa de Órion, também descrita como M42 ou NGC 1976, é a moradia de centenas de estrelas jovens e até mesmo proto-estrelas ainda mais novas conhecidas como "proplyds".

discos protoplanetários descobertos na M42

© NASA/ESA/ESO-L. Ricci (discos protoplanetários descobertos na M42)

Muitos destes sistemas emergentes vão continuar desenvolvendo planetas, enquanto outros terão a sua poeira e gás que forma planetas expelidos pela intensa radiação ultravioleta emitida por estrelas massivas do tipo-O que se escondem nas proximidades.

Uma equipe de astrônomos do Canadá e dos Estados Unidos usou o ALMA (Atacama Large Millimeter/submillimeter Array) para estudar a relação muitas vezes mortal entre as estrelas altamente luminosas do tipo-O e proto-estrelas próximas na Nebulosa de Órion. Os seus dados revelam que as proto-estrelas até 0,1 anos-luz (cerca de 946 bilhões de quilômetros) de uma estrela do tipo-O estão condenadas a ter os seus casulos de gás e poeira arrancados em apenas alguns milhões de anos, muito mais rápido do que os planetas se conseguem formar.

"As estrelas do tipo-O, que são realmente monstros quando comparadas com o nosso Sol, emitem quantidades tremendas de radiação ultravioleta e isso pode atrapalhar o desenvolvimento de sistemas planetários jovens," comenta Rita Mann, astrônoma do Conselho Nacional de Pesquisa do Canadá em Victoria. "Com o ALMA, observamos dúzias de estrelas embrionárias com potencial de formação planetária e, pela primeira vez, encontramos indícios claros de que os discos protoplanetários simplesmente desapareceram sob o brilho intenso de uma estrela maciça vizinha."

Muitas, se não todas, as estrelas semelhantes ao Sol nascem em amontoados berçários estelares idênticos à Nebulosa de Órion. Ao longo de apenas alguns milhões de anos, grãos de poeira e reservatórios de gás combinam-se em corpos maiores e mais densos. Se deixados relativamente imperturbados, estes sistemas eventualmente evoluem para sistemas estelares, com planetas grandes e pequenos, e afastam-se para se tornar parte da população estelar galáctica.

Acredita-se que estrelas massivas mas ainda de curta duração dentro e ao redor de grandes nuvens interestelares são essenciais para o processo contínuo da formação estelar. No final das suas vidas, as estrelas maciças explodem como supernovas, semeando a área circundante com poeira e elementos pesados que serão usados na próxima geração de estrelas. Estas explosões também fornecem o impulso necessário para o início de uma nova rodada de formação estelar e planetária. Mas enquanto ainda brilham, estas estrelas maiores podem ser mortais para planetas caso um sistema embrionário se aproxime demasiado.

"As estrelas massivas são quentes e centenas de vezes mais luminosas que o nosso Sol," afirma James Di Francesco, também do Conselho Nacional de Pesquisa do Canadá. "Os seus fótons energéticos podem rapidamente esgotar um disco protoplanetário próximo através do aquecimento do seu gás, quebrando-o e varrendo-o para fora."

30 proplyds descobertos pelo Hubble

© NASA/ESA/ESO-L. Ricci (30 proplyds descobertos pelo Hubble)

Observações anteriores com o telescópio espacial Hubble revelaram imagens impressionantes de "proplyds" em Órion. Muitos têm formas de lágrimas, com o seu gás e poeira afastando-se de uma estrela massiva vizinha. Estas imagens ópticas, no entanto, não podem revelar nada sobre a quantidade de poeira presente ou como as concentrações de poeira e gás mudam em relação a estrelas de grande massa.

As novas observações do ALMA detectaram estes e outros "proplyds" nunca antes fotografados, essencialmente duplicando o número de discos protoplanetários descobertos na região. O ALMA também pôde ver além do seu aspecto superficial, olhando profundamente para realmente medir a massa dos "proplyds".

Combinando estes estudos com observações prévias do SMA (Submillimeter Array), no Havaí, descobriu-se que qualquer proto-estrela dentro do extremo invólucro UV (ultravioleta) de uma estrela massiva teria muito do seu material destruído. As "proplyds" nestas regiões íntimas retêm apenas uma fração (metade ou menos) da massa necessária para criar um planeta tipo-Júpiter. Com raios acima de 0,1 anos-luz, na região dominada pelo longínquo UV, os astrônomos observaram uma grande variedade de massas de disco, entre uma e 80 vezes a massa de Júpiter. Isto é semelhante à quantidade de poeira encontrada em regiões de formação de estrelas de baixa massa.

"No seu conjunto, as nossas investigações com o ALMA sugerem que as regiões UV extremas não são apenas inóspitas, são francamente perigosas para a formação de planetas. Com uma distância suficiente, no entanto, é possível encontrar um ambiente muito mais agradável," realça Mann. "Este trabalho é realmente a ponta do iceberg do que virá do ALMA; esperamos eventualmente aprender quão comuns são os sistemas estelares como o nosso."

Um artigo sobre a pesquisa foi publicado na revista Astrophysical Journal.

Fonte: National Radio Astronomy Observatory

sábado, 15 de março de 2014

A galáxia de anel polar NGC 2685

A NGC 2685 é uma galáxia de anel polar, um tipo raro de galáxias com estrelas, gás e poeira orbitando em anéis perpendiculares ao plano de seu disco galáctico achatado.

NGC 2685

© Ken Crawford (NGC 2685)

A configuração inusitada poderia ser causada pela captura de material de uma outra galáxia pelo disco de uma galáxia, com os detritos capturados se localizando num anel em rotação. Observando as propriedades da NGC 2685 sugere-se que a estrutura do anel em rotação é predominantemente velha e estável. Nessa imagem nítida do sistema peculiar também conhecido como ARP 336, ou Galáxia da Hélice, os estranhos e perpendiculares anéis são fáceis de serem identificados já que eles passam em frente ao disco galáctico, juntamente com outras estruturas externas perturbadas. A NGC 2685 tem cerca de 50.000 anos-luz de diâmetro e está localizada a aproximadamente 40 milhões de anos-luz de distância na constelação da Ursa Maior.

Fonte: NASA

sexta-feira, 14 de março de 2014

Uma borboleta interestelar!

O "efeito borboleta" diz que o bater das asas de uma borboleta pode provocar um furacão em desenvolvimento do outro lado do mundo.

Roberts 22

© Hubble (Roberts 22)

Mas o que acontece quando uma borboleta bate as asas nas profundezas do espaço?

Esta borboleta cósmica é uma nebulosa conhecida como AFGL 4104, ou Roberts 22. Causada por uma estrela que está chegando ao fim da sua vida e expeliu suas camadas exteriores, a nebulosa surge como uma crisálida cósmica para produzir este espetáculo impressionante. Estudos dos lobos de Roberts 22 mostraram uma estrutura incrivelmente complexa, com inúmeros laços e filamentos que se cruzam. O tempo de vida de uma borboleta é contada em semanas, embora em uma escala de tempo muito mais longa, esta fase da vida da Roberts 22 também é transitória. Atualmente é uma nebulosa pré- planetária, uma fase de curta duração que começa quando uma estrela moribunda expulsou grande parte do material em suas camadas exteriores para o espaço, e termina quando este remanescente estelar fica quente o suficiente para ionizar as nuvens de gás ao redor e fazendo que brilhem. Cerca de 400 anos atrás, a estrela no centro de Roberts 22 lançou suas camadas externas para fora, para formar esta borboleta. A estrela central em breve será quente o suficiente para ionizar o gás circundante, e ele irá evoluir para uma verdadeira nebulosa planetária.

Fonte: NASA

quarta-feira, 12 de março de 2014

Detectada a maior estrela hipergigante amarela

O interferômetro do Very Large Telescope (VLT) do ESO revelou a maior estrela amarela já encontrada até hoje.

o campo em torno da estrela hipergigante amarela HR 5171

© ESO/VLT (o campo em torno da estrela hipergigante amarela HR 5171)

Descobriu-se que esta hipergigante tem um tamanho superior a 1.300 vezes o diâmetro do Sol e faz parte de um sistema estelar duplo, com uma segunda componente tão próxima que ambas as estrelas estão em contato. Observações obtidas ao longo de sessenta anos, algumas por observadores amadores, indicam também que este objeto raro e extraordinário está mudando muito depressa, o que significa que o estamos observando durante uma fase muito breve da sua vida.

Com o auxílio do Interferômetro do Very Large Telescope (VLTI) do ESO, Olivier Chesneau (Observatoire de la Côte d´Azur, Nice, França) e uma equipe internacional de colaboradores descobriram que a estrela hipergigante amarela HR 5171 A, é também conhecida como V766 Cen, HD 119796 e HIP 67261, é absolutamente monstruosa. Objetos comparáveis parecem ser todos supergigantes vermelhas, os quais atingem 1.000 a 1.500 vezes o raio do Sol e têm massas iniciais não superiores a 20 a 25 massas solares. Esperava-se que o raio de uma supergigante amarela fosse de 400 700 vezes o do Sol. Este fato faz com que esta seja a maior estrela amarela que conhecemos e também uma das dez maiores estrelas conhecidas, 50% maior que a famosa supergigante vermelha Betelgeuse, e cerca de um milhão de vezes mais brilhante que o Sol.
“As novas observações mostraram também que esta estrela tem uma companheira binária muito próxima, o que foi uma verdadeira surpresa”, diz Chesneau. “As duas estrelas estão tão próximas que se tocam e todo o sistema parece um amendoim gigantesco”.
Os astrônomos usaram uma técnica chamada interferometria para combinar a radiação coletada pelos vários telescópios individuais, criando assim um telescópio virtual gigante de 140 metros de diâmetro. Os novos resultados levaram a equipe a verificar cuidadosamente observações anteriores desta estrela, num período que abange mais de sessenta anos, no intuito de estudar o seu comportamento no passado.
As estrelas hipergigantes amarelas são muito raras, apenas se conhecendo cerca de uma dúzia na nossa Galáxia, o melhor exemplo de uma estrela deste tipo é a Rho Cassiopeiae. Estes objetos, que estão entre as maiores e mais brilhantes estrelas conhecidas, encontram-se numa fase das suas vidas em que são instáveis e por isso mudam muito rapidamente. Devido a esta instabilidade, as hipergigantes amarelas expelem material para o exterior, formando uma atmosfera grande e extensa em torno da estrela.
Apesar da enorme distância a que se encontra da Terra (quase 12.000 anos-luz), esta estrela ainda pode ser vista a olho nu por pessoas com excelente visão. A magnitude visual da HR 5171 A varia entre 6,10 e 7,30 e a estrela pode ser vista na constelação de Centauro. Descobriu-se que a HR 5171 A tem se tornado maior nos últimos 40 anos, arrefecendo à medida que cresce. A evolução desta estrela está sendop de fato observada ao vivo. Apenas algumas estrelas são observadas nesta fase muito breve das suas vidas, momento em que sofrem variações dramáticas de temperatura, originadas pela sua rápida evolução.
Ao analisar os dados da variação do brilho da estrela, através de observações obtidas noutros observatórios, os astrônomos confirmaram que o objeto é um sistema binário de eclipse, com a componente menor passando à frente e atrás da maior, à medida que a orbita. Neste caso, a HR 5171 A tem na sua órbita uma estrela companheira que demora 1.300 dias para dar uma volta completa. A companheira mais pequena é apenas ligeiramente mais quente que a temperatura de superfície de 5.000º Celsius da HR 5171 A.
Chesneau conclui: "A companheira que descobrimos é bastante importante, pois a sua presença pode influenciar o destino da HR 5171 A, ao arrancar-lhe, por exemplo, as camadas exteriores, modificando-lhe assim o processo de evolução”.
Esta nova descoberta põe em destaque a importância de estudar estas estrelas hipergigantes enormes e amarelas de vida curta, podendo ajudar também a compreender melhor o processo de evolução das estrelas de grande massa, de modo geral.

Este trabalho foi descrito no artigo científico intitulado “The yellow hypergiant HR 5171 A: Resolving a massive interacting binary in the common envelope phase”, de Chesneau et al., que será publicado na revista especializada Astronomy & Astrophysics.

Fonte: ESO

Partículas de matéria escura podem ter gerado raios X

Os raios X de um comprimento de onda específico emanados dos núcleos de galáxias próximas e de aglomerados de galáxias poderiam ser sinais de partículas de matéria escura decaindo no espaço, reportaram duas equipes independentes.

fração de raios X emanados da área central da galáxia de Andrômeda

© NASA/CXC/SAO/Chandra (fração de raios X emanados da área central da galáxia de Andrômeda)

Se essa interpretação estiver correta, então a matéria escura poderia consistir de estranhas partículas chamadas de neutrinos estéreis que pesam cerca de 1/100 de um elétron. Contudo, alguns pesquisadores são cépticos.

Por décadas, os astrônomos e os astrofísicos pensaram que alguma parte da misteriosa matéria escura precisava fornecer a gravidade necessária para manter galáxias individuais se afastando. De fato, o atual modelo padrão da cosmologia indica que uma galáxia típica se forma dentro de um vasto aglomerado, ou halo de matéria escura, cuja a gravidade mantém as estrelas juntas, impedindo que elas saiam vagando pelo espaço. Contudo, os cientistas não sabem o que é matéria escura, já que elas nunca foram detectadas por outro modo, a não ser pelo seu efeito na gravidade.

Agora, duas equipes reportaram os possíveis sinais das partículas da matéria escura revelando-a de outra maneira, ou seja, por um decaimento muito lendo dos prótons normais. Ambos os grupos basearam seus estudos em dados obtidos por um dos observatórios espaciais de maior sucesso, o X-ray Multi-Mirror Misson, ou XMM-Newton, da ESA, que foi lançado em Dezembro de 1999 e ainda adquiri dados importantes para o progresso da astronomia. Esra Bulbul, uma astrofísica no Harvard-Smithsonian Center for Astrophysics em Cambridge, Massachusetts, e seus colegas descobriram raios X de uma energia muito específica, de 3,5 keV (quiloelétron volts), brilhando de 73 aglomerados de galáxias, incluindo o Aglomerado Perseus. O grupo de Harvard, também utilizou os dados do observatório de raios X Chandra da NASA, lançado em Julho de 1999.

O estudo está num artigo submetido para o The Astrophysical Journal.

Fonte: Science

Detectado objeto com a aproximação mais rápida do Universo

A maior parte do Universo está fugindo de nós, pois ele está expandindo, afastando a maior parte das outras galáxias.

ilustração de jato emitido no centro da galáxia M87

© NASA (ilustração de jato emitido no centro da galáxia M87)

A luz de galáxias distantes viaja em nossa direção por esse espaço em expansão, que estica sua luz até comprimentos de onda mais longos, ou mais vermelhos. Como resultado, o espectro da maioria das galáxias apresenta um desvio para o vermelho.
Agora astrônomos descobriram acidentalmente o maior desvio para o azul já visto, em uma estrela que um buraco negro gigante pode ter lançado em nossa direção.
Em pequenas distâncias, a gravidade reverteu a expansão do Universo, então modestos desvios para o azul são comuns.
Nem o Sistema Solar e nem a galáxia estão se expandindo. Nem mesmo o Grupo Local, o conjunto de aproximadamente 75 galáxias que inclui a Via Láctea, está em expansão. Na verdade, o maior membro do Grupo Local, a Galáxia de Andrômeda, está vindo em nossa direção: ela tem um desvio para o azul de 300 km/s.
Mas astrônomos identificaram um objeto muito além das fronteiras do Grupo Local, com um desvio para o azul de 1.026 km/s, superando em muito o recorde anterior de 780 km/s estabelecido por uma estrela na Galáxia de Andrômeda. “É sempre divertido fazer essas descobertas”, declara Nelson Caldwell, astrônomo do Centro de Astrofísica Harvard-Smithsonian, que realizou não apenas esta descoberta, mas também a anterior. “E foi totalmente acidental!”
Astrônomos já tinham registrado velocidades maiores quando jatos ou explosões atiravam detritos em nossa direção, mas eles nunca viram o corpo principal de uma estrela, aglomerado estelar ou galáxia exibir um desvio tão extremo para o azul.
Caldwell e seus colegas estavam medindo desvios Doppler de aglomerados estelares ao redor da M87, uma galáxia elíptica gigante localizada no centro do Aglomerado de Virgem, a 54 milhões de anos-luz da Terra.
Ao contrário do Grupo Local, que só tem duas galáxias gigantes, Andrômeda e nossa própria Via Láctea, o aglomerado de Virgem tem dezenas de grandes galáxias. A M87 tem um número enorme de aglomerados estelares muito próximos uns dos outros, chamados de “globulares”.
Enquanto a Via Láctea tem aproximadamente 160 aglomerados globulares conhecidos, a M87 tem cerca de 10 mil. Além disso, o centro da M87 tem um buraco negro que faz o da Via Láctea parecer minúsculo, pesando entre seis e sete bilhões de massas solares, mais de mil vezes as quatro milhões de massas solares do buraco negro que ocupa o centro da Via Láctea.
Em 2005, astrônomos relataram a descoberta de uma “estrela em hipervelocidade” que o buraco negro central da Via Láctea havia arremessado para fora. De acordo com uma ideia proposta há duas décadas, quando um sistema estelar binário chega perto o bastante de um buraco negro, uma estrela cai dentro dele, perdendo uma grande quantidade de energia; para conservar energia, a outra estrela se afasta em alta velocidade.
Um cenário diferente, envolvendo três corpos estelares, pode explicar o que a equipe de Caldwell chamou de “primeiro aglomerado globular em hipervelocidade”.
Se o buraco negro da M87 realmente consistir de dois buracos negros orbitando um ao outro, eles teriam a capacidade de arremessar um aglomerado estelar que se aproximasse demais. A gravidade do aglomerado faz os dois buracos negros se aproximarem um pouco mais um do outro, fazendo com que percam energia orbital que é transferida para o aglomerado estelar. Se esse aglomerado se afastar em nossa direção, ele poderia adquirir um grande desvio para o azul mesmo que a galáxia que o aremessou tenha um desvio para o vermelho de 1.307km/s.

“Esse é um objeto muito interessante”, declara Daniel Batcheldor, astrônomo do Instituto de Tecnologia da Flórida, que não tem afiliação com os pesquisadores. “Nós suspeitamos que, no passado, um buraco negro binário tenha existido no centro da M87, mas não achamos que exista um atualmente”.
Um buraco negro binário pode surgir após a colisão de duas grandes galáxias, cada uma com seus próprios buracos negros. Além disso, essas fusões galácticas explicariam o tamanho colossal da M87. Quando seu buraco negro central ainda tinha a forma de dois buracos negros supermassivos distintos, ele poderia ter expulsado o aglomerado estelar.
Mas Batcheldor declara que o objeto com desvio para o azul poderia ser uma galáxia-anã no lado distante da M87, mergulhando na galáxia, o que explicaria sua alta velocidade em nossa direção.
Observações adicionais serão fundamentais. “Para realmente determinar se o aglomerado foi ejetado da M87, nós precisamos saber sua distância”, explica Caldwell. O telescópio espacial Hubble pode vislumbrar as estrelas mais brilhantes do aglomerado, que revelarão sua distância. Se estiverem mais perto que a M87, o cenário de ejeção ganharia apoio.
Apesar de seu extremo desvio para o azul o objeto não nos atingirá, porque certamente tem algum movimento lateral. Mas seu futuro será solitário. “Esse objeto acabará saindo do Aglomerado de Virgem, e então ficará entre aglomerados galácticos”, observa Caldwell. “Se ele realmente tiver sido ejetado por algum mecanismo de buracos negros binários, então provavelmente devem haver mais alguns deles por lá. Com certeza nós vamos continuar procurando”.

Um artigo do trabalho foi enviado para o periódico The Astrophysical Journal Letters.

Fonte: Scientific American

terça-feira, 11 de março de 2014

No coração da Nebulosa da Roseta

No coração da Nebulosa da Roseta, localiza-se um brilhante aglomerado aberto de estrelas que ilumina a nebulosa.

Nebulosa da Roseta

© Don Goldman (Nebulosa da Roseta)

As estrelas da NGC 2244 se formaram do gás ao redor a poucos milhões de anos atrás. A imagem acima foi feita em Janeiro de 2014 usando múltiplas exposições e cores muito específicas oriundas do enxofre (vermelho), hidrogênio (verde) e oxigênio (azul), e captura a região central com detalhes impressionantes. Um vento quente das partículas flui para longe do aglomerado de estrelas e contribui para uma complexa mistura de filamentos de gás e poeira enquanto vagarosamente evacua o centro do aglomerado. O centro da nebulosa da Roseta mede cerca de 50 anos-luz de diâmetro, localiza-se a cerca de 4.500 ano-luz de distância, e é visível com binóculos quando apontados para a constelação do Unicórnio (Monoceros).

Fonte: NASA

segunda-feira, 10 de março de 2014

Matéria escura gera raios gama no centro galáctico?

O que está criando os raios gama no centro da nossa galáxia?

emissão de raios gama do centro galáctico

© Fermi Space Telescope (emissão de raios gama do centro galáctico)

Uma das respostas é que seja a elusiva matéria escura. Nos últimos anos o telescópio espacial Fermi da NASA tem imageado o centro da nossa galáxia em raios gama. Análises repetidas e detalhadas indicam que a região ao redor do centro galáctico parece ser muito brilhante para ser gerada somente pelas fontes de raios gama conhecidas. Uma imagem bruta da região do Centro Galáctico em raios gama é mostrada acima na esquerda, enquanto que a imagem da direita tem todas as fontes conhecidas subtraídas, deixando um excesso inesperado. Um modelo hipotético que parece se ajustar ao excesso envolve um tipo de matéria escura conhecida como WIMPs (Weakly Interacting Massive Particles), que pode estar colidindo com ela própria para criar os raios gama detectados. Essa hipótese é controversa, e os debates e investigações mais detalhadas estão a caminho. Encontrar a natureza da matéria escura é uma das grandes questões da ciência moderna, como previamente esse tipo incomum de matéria cosmologicamente pervasiva tem se mostrado somente através da gravitação.

Fonte: NASA

sábado, 8 de março de 2014

Magnetismo explana o mistério dos discos de formação de planetas

Os astrônomos dizem que tempestades magnéticas no gás orbitando jovens estrelas podem explicar um mistério que tem persistido desde antes de 2006.

loops magnéticos carregam gás e poeira no disco de formação de planetas

© NASA/JPL-Caltech (loops magnéticos carregam gás e poeira no disco de formação de planetas)

Os pesquisadores, usaram o telescópio espacial Spitzer da NASA para estudar estrelas em desenvolvimento que tiveram um momento complicado para entender por que as estrelas emitem mais luz infravermelha do que o que era esperado. Os discos de formação de planetas, que circulam as jovens estrelas são aquecidos pela luz das estrelas e brilham na luz infravermelha, mas o Spitzer detectou uma luz infravermelha adicional vindo de uma fonte desconhecida.

Uma nova teoria, com base em modelos tridimensionais da formação de discos de planetas sugere a resposta: O gás e a poeira suspensa acima dos discos em gigantescos loops magnéticos como os vistos no Sol, absorvem a luz das estrelas e brilha intensamente na luz infravermelha.

“Se você pudesse de alguma maneira permanecer num desses discos de formação de planetas e olhar para a estrela no centro, através da atmosfera do disco, você poderia ver o que se pareceria com o pôr-do-Sol”, disse Neal Turner do Laboratório de Propulsão a Jato da NASA, em Pasadena, na Califórnia.

Os novos modelos descrevem melhor como o material de formação de planetas ao redor das estrelas é agitado, forjando seu caminho para a geração de futuros planetas, asteroides e cometas.

Embora a ideia das atmosferas magnéticas nos discos de formação de planetas não seja nova, essa é a primeira vez que integraram isso ao mistério do excesso de luz infravermelha observado. De acordo com Turner e seus colegas, as atmosferas magnéticas são similares àquelas que ocorrem na superfície do nosso Sol, onde linhas do campo magnético em movimento geram tremendas proeminências solares em grandes loops.

As estrelas nascem a partir do colapso de pacotes de enormes nuvens de gás e poeira, em rotação à medida que eles mergulham sob a força da gravidade. À medida que a estrela cresce de tamanho, mais material cai da nuvem, e a rotação achata esse material num disco tubulento. No final, planetas se aglomeram na parte de fora desse material.

Na década de 1980, a missão Infrared Astronomical Satellite, um projeto conjunto que incluía a NASA, começou a encontrar mais luz infravermelha do que era esperado ao redor das estrelas jovens. Usando dados de outros telescópios, os astrônomos notaram a presença de discos empoeirados do material de formação de planetas. Mas eventualmente tem se tornado claro que os discos sozinhos não eram suficientes para gerar a luz infravermelha extra, especialmente no caso das estrelas com algumas vezes a massa do Sol.

Uma teoria introduziu a ideia de que ao invés de um disco, as estrelas eram circundadas por um gigantesco halo empoeirado, que interceptou a luz visível da estrela e irradiou novamente nos comprimentos de onda do infravermelho. Então, recentes observações feitas com telescópios baseados em Terra, sugerem que tanto um disco e um halo foram necessários. Finalmente, modelos computacionais tridimensionais da turbulência nos discos mostram que os discos devem ter uma superfície nebulosa, com camadas de gás de baixa densidade suportando campos magnéticos, similares as proeminências solares que suportam o campo magnético do Sol.

O novo trabalho junta todos esses pedaços calculando como a luz das estrelas cai através do disco e de sua atmosfera nebulosa. O resultado é que a atmosfera absorve e re-irradia uma quantidade suficiente de toda a luz infravermelha extra.

“O material interceptado pela luz da estrela não localiza-se no halo, e nem no disco tradicional, mas num disco de atmosfera suportado por campos magnéticos”, disse Turner. “Essas atmosferas magnetizadas foram previstas de se formarem à medida que o disco dirige gás para dentro se chocando com a estrela em crescimento”.

Nos próximos anos, os astrônomos testarão essas ideias sobre a estrutura dos discos atmosféricos usando gigantescos telescópios baseados em Terra de forma integrada como interferômetros. Um interferômetro combina e processa dados de múltiplos telescópios para mostrar detalhes mais nítidos do que um telescópio pode fazer sozinho. Os espectros do gás turbulento nos discos também virão do telescópio SOFIA da NASA, do Atacama Large Millimeter/submillimeter Array (ALMA), no Chile, e do telescópio espacial James Webb da NASA depois de seu lançamento em 2018.

Fonte: NASA

A primeira medição direta da rotação de um buraco negro

Utilizando o observatório de raios X Chandra da NASA e o XMM-Newton ESA astrônomos analisaram um buraco negro supermassivo localizado a 6 bilhões de anos-luz da Terra que está girando muito rapidamente.

quasar RX J1131

© Chandra/Hubble (quasar RX J1131)

Esta primeira medição direta da rotação de um buraco negro tão distante é um avanço importante para a compreensão de como os buracos negros crescem ao longo do tempo. Os buracos negros são definidos por apenas duas características simples: massa e rotação. Embora os astrônomos tenham sido capazes de medir as massas dos buracos negros de forma muito eficaz, determinar sua velocidade de rotação é algo muito mais difícil.

Na última década, os astrônomos têm buscado formas de estimar a rotação de buracos negros em distâncias superiores a vários bilhões de anos-luz observando a região em torno deles naquela época. No entanto, a determinação das rotações destes buracos negros remotos envolve vários percursos que dependem uns dos outros. A equipe de Rubens Reis, da Universidade de Michigan, conseguiu finalmente determinar de modo preciso da rotação do buraco negro que produz um quasar extremamente brilhante conhecido como RX J1131-1231 ou simplesmente RX J1131. Por causa do alinhamento fortuito, a distorção do espaço-tempo pelo campo gravitacional de uma galáxia elíptica gigante localizada entre o quasar e a Terra atua como uma lente gravitacional que amplia a luz do quasar.

A lente gravitacional, prevista por Albert Einstein, oferece uma rara oportunidade de estudar a região mais interna de quasares distantes, agindo como um telescópio natural e ampliando a luz dessas fontes. “Devido a esta lente gravitacional, fomos capazes de obter informações muito detalhadas sobre o espectro de raios X do RX J1131″, disse o co-autor Mark Reynolds, também de Michigan. “Por sua vez, isso nos permitiu obter um valor muito preciso para o quão rápido o buraco negro está girando.” Os resultados revelarem que o buraco negro está girando aproximadamente na metade da velocidade da luz, ou seja, 150 mil quilômetros por segundo.

Um artigo foi publicado na revista Nature.

Fonte: NASA