sexta-feira, 4 de abril de 2014

Novas evidências de oceano sob a crosta de Encélado

Novas evidências confirmam que um oceano de água líquida se esconde sob a superfície congelada de uma das luas de Saturno, Encélado.

Encélado

© Cassini (Encélado)

De acordo com cientistas, a presença de água eleva a posição de Encélado entre os locais do Sistema Solar para a busca de vida extraterrestre.
Encélado intriga pesquisadores desde 2005 quando a sonda Cassini, da NASA, descobriu plumas ricas em água no polo sul da lua, levantando a possibilidade de estarem escapando de um mar líquido subterrâneo. Agora essa mesma sonda acabou de apoiar a hipótese oceânica ao medir o campo gravitacional de Encélado.
Cientistas monitoraram cuidadosamente como a lua desviava a Cassini de seu curso e determinaram que Encélado deve ter mais massa em seu polo sul do que aparenta. Os pesquisadores observaram que como a água líquida é mais densa que o gelo, um oceano subterrâneo poderia contribuir com essa massa oculta. “É muito difícil encontrar uma explicação para esses dados que não envolva uma espessa camada de água líquida sob o gelo” declara David Stevenson, cientista planetário do Instituto de Tecnologia da Califórnia.
Ainda que os dados gravitacionais não tragam provas de que o líquido é água, ela é a explicação mais provável por ser farta em Encélado, mesmo sendo vista principalmente na forma de gelo, e porque rochas não produziriam o padrão gravitacional observado, explica Stevenson.
Ainda que plumas pudessem se formar com o derretimento do gelo da superfície, uma conexão com uma fonte de água subterrânea também é provável. E o fato de as plumas de Encélado se originarem em seu polo sul, a mesma localização do suposto oceano, é outro fator em favor da explicação do oceano aquático. “Esses novos resultados são como uma história de detetive. Encontrar impressões digitais confirma a hipótese de motivo e oportunidade”, compara Larry Esposito, cientista planetário da University of Colorado Boulder, que não se envolveu no estudo.
O próprio Stevenson admite seu ceticismo inicial. “Antes desses resultados não estava claro que Encélado tinha um oceano”, contou Stevenson a jornalistas durante uma teleconferência na quarta-feira. “É possível produzir água simplesmente esfregando blocos de gelo uns contra os outros, assim, não era possível concluir que existia um volume enorme de água. Agora sabemos que existe”.
Os dados da Cassini implicam um oceano com cerca de 10 quilômetros de profundidade abaixo da superfície, cobrindo uma área quase do tamanho do Lago Superior, o maior dos Grandes Lagos americanos, com mais de 82 mil km². Ele ficaria enterrado sob aproximadamente 50 quilômetros de gelo. Teoricamente, um reservatório desse tipo poderia abrigar alguma forma de vida que se acredita depender de água líquida. “Existem organismos terrestres que ficariam perfeitamente confortáveis nesse ambiente” observou Jonathan Lunine, coautor do estudo e cientista planetário da Cornell University. “Isso torna o interior de Encélado um local muito atraente para a busca de vida”.
Encélado não é o único corpo do Sistema Solar que pode abrigar um oceano subterrâneo. Acredita-se que Europa, uma das luas de Júpiter é outro alvo das buscas por vida extraterrestre, contenha um oceano global abaixo do gelo de sua superfície, e outros satélites jovianos, Calisto e Ganimedes, também apresentam evidências de mares subterrâneos. Enquanto o oceano de Ganimedes provavelmente fica abaixo de uma camada mais profunda de gelo, a água de Encélado ficaria sobre o núcleo de silicato da lua. De acordo com Lunine, como o silicato pode fornecer alguns dos compostos químicos necessários para a vida, como sais, fósforo e enxofre, o arranjo poderia oferecer a chance para que esses compostos se misturem com a água líquida e produzam vida.
Para realizar as últimas descobertas, os pesquisadores precisaram rastrear cuidadosamente os movimentos da Cassini, monitorando mudanças minúsculas na frequência do sinal enviado de volta para a Terra, chamadas de desvios Doppler. “É a mesma coisa que estão usando para o avião da Malásia, mas nós conseguimos fazer isso com mais precisão”, declara Stevenson.
Após coletar dados durante três passagens da Cassini nas proximidades de Encélado, cientistas puderam estimar o campo gravitacional da lua com precisão suficiente para determinar que existe alguma massa adicional sob sua superfície. “Se isso estiver correto, teremos novas informações importantes sobre o que pode estar acontecendo abaixo das plumas”, observa Matthew Hedman, cientista planetário da University of Idaho, que não se envolveu na pesquisa.
“Uma pergunta importante que precisa de resposta é: Como um oceano desses se conecta à superfície para produzir plumas?”. Também não se sabe porque o polo norte de Encélado até agora não apresenta sinais de atividade de plumas, ou de um oceano. Cientistas acreditam que marés gravitacionais de Saturno poderiam estar aquecendo o interior da lua, derretendo o gelo para formar o oceano. Esse aquecimento provavelmente seria maior nos polos. “Eu não sei porque isso só acontece no sul”, admite Stevenson.
As novas evidências e as questões que elas levantam só estão deixando os cientistas mais ansiosos para dedicar parte do tempo restante da Cassini em Saturno ao estudo de Encélado. A sonda chegou ao planeta dos aneis em 2004, e deve sofrer uma morte espetacular ao mergulhar na atmosfera de Saturno em 2017. Antes disso, a Cassini tem mais três sobrevoos de Encélado planejados. Com sorte, mais descobertas serão feitas.

Fonte: Science e Scientific American

quinta-feira, 3 de abril de 2014

O manto terrestre fornece indícios sobre a idade da Lua

Pesquisadores obtiveram a melhor estimativa para a idade da data de nascimento da nossa Lua, um evento que aconteceu cerca de 100 milhões de anos depois do surgimento do Sistema Solar.

ilustração do impacto da Terra com Theia

© NASA/JPL-Caltech (ilustração do impacto da Terra com Theia)

Essa nova descoberta sobre a origem da Lua pode ajudar a resolver um mistério sobre por que a Lua e a Terra aparecem virtualmente idênticas em sua constituição.

Os cientistas têm sugerido que a Lua se formou a 4,5 bilhões de anos atrás por uma gigantesca colisão entre um objeto do tamanho de Marte, chamado de Theia, uma colisão que teria derretido boa parte da Terra. Esse modelo sugere que mais de 40% da Lua foi feita de detritos gerados por esse corpo que se chocou com a Terra. A teoria vigente até então sugeria que a Terra teria experimentado alguns impactos gigantescos durante a sua formação, com o impacto que formou a Lua sendo o último.

Contudo, os pesquisadores suspeitam que Theia era quimicamente diferente da Terra. Em contraste, os estudos recentes revelaram que a Lua e a Terra aparecem muito parecidas quando se analisa as versões dos elementos chamados de isótopos, mais do que é sugerido pelo modelo atual de impacto.

“Isso significa que no nível atômico, a Terra e a Lua são corpos idênticos”, diz o líder do estudo Seth Jacobson, um cientista planetário do Observatório de la Côte d’Azur em Nice, na França. “Essa nova informação desafia a teoria do impacto gigantesco para a formação lunar”.

Ninguém contestou seriamente um impacto como sendo o cenário mais provável para a formação da Lua, disse Jacobson. Entretanto, o fato da Terra e da Lua serem virtualmente idênticas no nível atômico colocou as exatas circunstâncias da colisão em questão.

Agora, com uma melhor definição de quando a Lua se formou, Jacobson e seus colegas podem ajudar a explicar por que a Lua e a Terra são corpos misteriosamente idênticos.

Os esforços feitos até hoje para definir uma data para a formação da Lua propuseram uma grande variedade de idades. Algumas teorias sugerem um evento que tenha ocorrido 30 milhões de anos depois da formação do Sistema Solar, enquanto outros sugerem que esse evento tenha ocorrido mais de 50 milhões de anos e possivelmente mais de 100 milhões de anos, depois da formação do Sistema Solar.

Para ajudar a resolver esse mistério, Jacobson e seus colegas simularam o crescimento dos planetas rochosos do Sistema Solar – Mercúrio, Vênus, Terra e Marte – a partir do disco protoplanetário de milhares de blocos planetários orbitando o Sol.

Analisando como esses planetas se formaram e cresceram a partir de mais de 250 simulações computacionais, os pesquisadores descobriram que se o impacto que formou a Lua ocorreu antes, a quantidade de material acrescido na Terra posteriormente seria maior. Se o impacto ocorreu depois, a quantidade seria menor.

Pesquisas anteriores calcularam a quantidade de material acrescido na Terra depois da formação da Lua. Essas estimativas são baseadas em como elementos como o irídio e a platina mostram uma forte tendência de se mover no núcleo da Terra. Após cada impacto gigantesco a Terra nascente era sustentada, esses elementos teriam lixiviado o manto da Terra e aglutinado com um material mais pesado rico em ferro destinado a afundar no núcleo da Terra.

Após o último gigantesco impacto que formou a Lua, o manto deve ter sido quase que completamente despido de irídio, platina e seus elementos primos. Esses elementos estão ainda presentas no manto, mas somente em pequenas quantidades, que sugerem que somente uma pequena quantidade de material foi acrescido na Terra depois da formação da Lua.

Os pesquisadores calcularam que o impacto que formou a Lua deve ter ocorrido cerca de 95 milhões de anos depois da formação do Sistema Solar, com uma incerteza para mais ou para menos de 32 milhões de anos.

“Um evento tardio de formação da Lua, como sugerido pelo nosso trabalho, é mais consistente com o fato da Terra e da Lua, serem corpos idênticos”, disse Jacobson.

Em adição, análises recentes propõem que o impacto que criou a Lua necessita de uma colisão mais rápida e mais energética do que se sugeria anteriormente. Isso faz sentido se o impacto ocorreu relativamente mais tarde com um disco protoplanetário mais velho, como sugerem as descobertas.

“Discos mais velhos tendem a ser dinamicamente mais ativos, já que existem poucos corpos deixados no disco para que a energia seja distribuída entre eles”, disse Jacobson.

Essas novas descobertas levantam um novo quebra-cabeça. Enquanto elas sugerem que a Lua e a Terra se formaram juntas aproximadamente 100 milhões de anos depois do Sistema Solar ter surgido, evidências de meteoritos de Marte, sugerem que ele se formou poucos milhões de anos depois do surgimento do Sistema Solar.

“Isso significa que a Terra e Marte se formaram em escalas de tempo bem diferentes, com Marte se formando muito mais rápido do que a Terra”, disse Jacobson. “Como pode ser isso? É só uma questão de tamanho? Localização? E sobre Mercúrio e Vênus? Eles cresceram em escala de tempo similar ao da Terra ou similar ao de Marte? Eu acho que essas são algumas das questões realmente importantes que nós, como uma comunidade de cientistas planetários, iremos focalizar no futuro”.

Os detalhes das descobertas estão na edição de Abril da revista Nature.

Fonte: Observatoire de la Côte d’Azur

quarta-feira, 2 de abril de 2014

Assassina em série galáctica

Esta nova imagem obtida pelo telescópio MPG/ESO de 2,2 metros situado no Observatório de La Silla do ESO, mostra duas galáxias muito contrastantes: NGC 1316 e a sua companheira menor NGC 1317 (à direita).

as galáxias contrastantes NGC 1316 e NGC 1317

© ESO (as galáxias contrastantes NGC 1316 e NGC 1317)

Estas duas galáxias encontram-se muito próximas uma da outra, mas têm histórias muito distintas. A pequena espiral NGC 1317 tem tido uma vida calma, mas NGC 1316 já engoliu várias outras galáxias ao longo de uma história violenta e mostra bem suas cicatrizes de guerra.

Diversos indícios na estrutura da galáxia NGC 1316 revelam que o seu passado foi turbulento. Por exemplo, o objeto apresenta algumas faixas incomuns de poeira, situadas no interior de um envelope de estrelas muito maior, e uma população de aglomerados estelares globulares particularmente pequenos. Estes fatos sugerem que esta galáxia pode ter engolido uma galáxia em espiral rica em poeira há cerca de três bilhões de anos atrás.

faixas de poeira na galáxia NGC 1316

© Hubble (faixas de poeira na galáxia NGC 1316)

Vêem-se também caudas de maré muito tênues em torno da galáxia, restos e envelopes de estrelas que foram arrancadas das suas posições originais e lançadas para o espaço intergaláctico, resultado de complexos efeitos gravitacionais nas órbitas das estrelas quando outra galáxia se aproxima demais. Todos estes sinais apontam para um passado violento durante o qual a NGC 1316 anexou outras galáxias e sugerem ainda que este comportamento perturbador continua.
A NGC 1316 situa-se  a cerca de 60 milhões de anos-luz de distância na constelação da Fornalha. Tem também o nome de Fornax A, refletindo o fato de ser a mais brilhante fonte de emissão rádio na constelação, é na realidade a quarta fonte rádio mais brilhante em todo o céu. Estes valores correspondem a uma frequência rádio de 1.400 MHz, para outras frequências a ordem é diferente. Esta emissão rádio deve-se ao material que está caindo em direção ao buraco negro de massa extremamente elevada situado no centro da galáxia, ao qual tem sido fornecido, muito provavelmente, combustível adicional devido às interações com outras galáxias.
Esta nova imagem muito detalhada foi criada a partir de muitas imagens individuais do arquivo ESO. O objetivo das observações originais era revelar estes atributos mais tênues e estudar as perturbações neste interessante sistema.
A nova imagem mostra também uma janela para o Universo longínquo, para muito além das galáxias em interação que se vêem em primeiro plano. A maioria dos pontos tênues e difusos da imagem são galáxias muito mais distantes, existindo uma concentração particularmente densa à esquerda da NGC 1316.

Fonte: ESO

segunda-feira, 31 de março de 2014

Ampliando o Universo distante

Os aglomerados de galáxias são grandes grupos de galáxias unidos pela gravidade, constituindo uma das estruturas mais massivas que podem ser encontradas no Universo.

aglomerado de galáxias MACS J0454.1-0300

© Hubble (aglomerado de galáxias MACS J0454.1-0300)

Essa imagem feita pelo telescópio espacial Hubble revela um desses aglomerados, conhecido como MACS J0454.1-0300. Cada um dos pontos brilhantes vistos na imagem é uma galáxia, e cada uma delas é o lar de milhões e até mesmo bilhões de estrelas.

Os astrônomos determinaram a massa do MACS J0454.1-0300 em torno de 180 trilhões de vezes a massa do Sol. Aglomerados como esse são tão massivos que a sua gravidade pode até mesmo alterar o comportamento do espaço ao seu redor, curvando a trajetória da luz à medida que ela passa por ele, algumas vezes amplificando e agindo como uma lente de ampliação. Graças a esse efeito, é possível ver objetos que estão muito distantes de nós e que em outra situação não seriam observados pois são muito apagados para serem detectados.

Nesse caso, alguns objetos aparecem de forma alongada e são vistos como arcos que parecem varrer a parte esquerda da imagem. Esses objetos são galáxias localizadas bem mais distante que o aglomerado, suas imagens foram amplificadas, mas também distorcidas, à medida que a luz passa através do aglomerado. Esse processo, conhecido como lente gravitacional, é uma ferramaneta muito valiosa para que os astrônomos possam observar os objetos mais distantes do Universo.

Esse efeito será usado de maneira eficiente com o início do programa Frontier Fields do Hubble no decorrer dos próximos anos, que tem como objetivo explorar objetos bem distantes localizados além das lentes dos aglomerados, similares ao MACS J0454.1-0300, para investigar como as estrelas e as galáxias se formaram e se desenvolveram no início do Universo.

Fonte: NASA

sábado, 29 de março de 2014

Versão 3.10 do programa Cartes du Ciel

Lançada nova versão 3.10 estável do ótimo software astronômico Cartes du Ciel. Ele é gratuito e está disponível em 32 e 64 bits para os sistemas operacionais Windows, Mac OS X e Linux.

M101 com dados do Observatório Virtual

© Cartes du Ciel (M101 com dados do Observatório Virtual)

O software astronômico Cartes du Ciel permite desenhar cartas celestes através de dados de 16 catálogos de estrelas, nebulosas e galáxias; além de mostrar a posição dos planetas, asteroides e cometas. Ele executa a simulação de eclipses e possibilita o controle de telescópios.

As novas funções são:

  • Adicionada a capacidade de exibir uma imagem panorâmica do horizonte. A imagem deve ser em PNG ou BMP de qualquer tamanho representando um panorama a 360° com uma projeção equiretangular. O horizonte deve estar exatamente na altura do meio da imagem. A área do céu deve ser definida transparente (# FF00FF para BMP). O lado esquerdo da imagem é a direção leste. Se for usada outra orientação também deve-se fornecer o ângulo de deslocamento.
  • Interoperabilidade VO SAMP, permite enviar e receber posição com um clique, imagens FITS, tabelas VO, as seleções de linha de tabelas VO de outro aplicativo como o Aladin ou Topcat.
  • Adicionado suporte para JPL DE430 e DE431, agora é possível visualizar a localização de planetas entre 13000BC e 17000AD.
  • Novo cálculo para os satélites planetários, adicionado Phoebe, Triton, Nereida, Caronte e 33 satélites fracos.
  • Opção de cor para Catgen do catálogo de nebulosas.
  • Opção URL de atualização para Catgen de catálogo de texto.
  • Arquivos baixados de imagens DSS.
  • Exibir imagens com WCS de arquivo FITS.
  • Adicionada etiquetas com nome da imagem FITS.
  • Painel Calendário Crepúsculo também mostram informações de noites sem Lua.
  • Adicionado um botão no calendário para exibir os cometas mais brilhantes em primeiro lugar.
  • Adicionado atalhos Ctrl+L e Shift+Ctrl+L para mudar a legenda do gráfico.
  • Adicionado um botão para mudar o comportamento do botão esquerdo do mouse de zoom para se mover.
  • Adicionado funções da lista de Observação.
  • Nova opção para mascarar o gráfico do lado de fora da ocular em geral.
  • Novo cabeçalho/rodapé de impressão.
  • Capacidade para definir mais de 10 oculares ou campos CCD.
  • Mais opções para selecionar coluna de catálogo VO.
  • Documentação está agora disponível em formato PDF.

As correções foram:

  • Melhor transparência imagem/mapa.
  • Mais opções para mapeamento do tom da imagem.
  • Processamento completo de 16 bits para fotos.
  • Adicionado orientação da bússola.
  • Novo ponteiro simplificado em vez de bússola.
  • Símbolo Galaxy depende da luminosidade também no modo de linha.
  • Tamanho da etiqueta DSO depende da magnitude.
  • Ajustado varobs_lpv_bulletin para usar o novo formato de boletim csv.

Eu traduzi para o idioma português o programa, que foi desenvolvido por Patrick Chevalley, e o download pode ser efetuado pelo meu site Cometografia.

Fonte: Cosmo Novas

Discos de transição ao redor de estrelas jovens

Uma estrela normalmente nasce com um disco de gás e poeira ao seu redor, a parte remanescente em rotação de uma nuvem muito maior de material original.

imagem da nuvem escura em Lupus formando estrelas jovens

© ESO (imagem da nuvem escura em Lupus formando estrelas jovens)

À medida que a estrela começa a brilhar, planetas se desenvolvem a partir dos grãos de poeira no disco à medida que eles permanecem juntos e crescem. Embora a grande maioria de estrelas muito jovens mostrem evidências diretas desses discos circunestelares, em somente poucos casos esses discos têm sido imageados diretamente, ou estudados em detalhes, devido a vários fatores, como por exemplo, seus tamanhos reduzidos no céu (muito menores do que o borrão atmosférico das estrelas), e na maioria das situações eles são mais apagados do que suas estrelas progenitoras. A descoberta de exoplanetas ao redor de outras estrelas induz a aumentar a crença das ideias sobre os discos, e adiciona a necessidade para um melhor entendimento dos detalhes da formação do disco, sua estrutura e sua evolução.

Discos jovens são conhecidos por emitir nos comprimentos de onda do infravermelho, pois eles estão sendo aquecidos pela estrela a temperaturas acima da gelada poeira do ambiente interestelar. Os astrônomos usam as cores particulares da estrela e do sistema de disco para caracterizar as propriedades dos discos jovens. Depois de aproximadamente cinco milhões de anos, contudo, quase todas as estrelas perdem a evidência da poeira quente circunstelar, sugerindo que a maior parte dos discos (ou no mínimo ao redor de estrelas do tamanho do Sol) desapareceram nesse período de tempo: o material do disco tem acrescido em uma estrela ou convertido em planetas ou corpos de tamanho sub–planetários, ou até mesmo desaparecem pela evaporação ou pelos ventos. Os assim chamados discos de transição, preenchem o vazio entre os pontos da evolução dos discos: Eles ainda não tinham sido dispersados, mas embora eles estejam presentes emitem levemente no infravermelho, em temperaturas mais frias.

Os astrônomos do Harvard-Smithsonian Center for Astrophysics (CfA) Sean Andrews e David Wilner, juntamente com uma grande equipe de colaboradores, usaram o Submillimeter Array (SMA) para pesquisar o disco de transição ao redor da Sz91, uma estrela jovem com cerca da metade da massa do Sol, localizada a aproximadamente 600 anos-luz de distância. A cor dessa emissão infravermelha é característica do disco de transição, e os cientistas queriam tentar usar as capacidades do SMA para obter uma imagem do disco que parece estar perto do fim de sua existência.

Eles tiveram sucesso. A equipe diretamente imageou o disco, e descobriu que ele se parece mais como um anel do que como um disco, com a poeira com um raio interno de 65 UA, e um disco externo com um raio de 170 UA, e o gás girando ao redor da estrela a 420 UA. A massa do disco é relativamente grande, aproximadamente a mesma massa de Júpiter. Foi notado que a emissão infravermelha também tem um componente quente, em torno de 180 kelvin, consistente com o que está vindo de um fino anel, dentro de um vazio do disco e somente a 2,3 UA da estrela, ou talvez de um planeta quente dentro desse vazio. Os resultados confirmam modelos prévios do objeto mas os estendem, e permitem que os astrônomos possam concluir que essa estrela provavelmente está num estágio em que ela está quase que completando a formação do planeta.

Um artigo intitulado "High-Resolution Submillimeter and Near-Infrared Studies of the Transition Disk Around Sz 91," Takashi Tsukagoshi et al., foi publicado no The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

A cauda azul de uma galáxia espiral

A galáxia espiral ESO 137-001 vaga através do aglomerado maciço de galáxias Abell 3627 a cerca de 220 milhões de anos-luz de distância.

galáxia ESO 137-001

© Hubble/Chandra (galáxia ESO 137-001)

A galáxia distante é vista nesta imagem colorida composta pelos telescópios espaciais Hubble e Chandra entre as estrelas de primeiro plano da Via Láctea na direção da constelação Triangulum Australe.

À medida que a espiral imprime uma velocidade de quase 7 milhões de quilômetros por hora, o seu gás e a sua poeira são  arrancados quando encontram a pressão de calor do próprio aglomerado, o tênue meio interestelar do aglomerado vence a gravidade da galáxia. Evidente nos dados perto da luz visível do Hubble, pode-se ver aglomerados estelares brilhantes se formando no material que é arrancado, criando os rastros azuis. Os dados de raios X do Chandra mostram enormes extensões de gás arrancado aquecido, como difusas trilhas azuis que se estendem por cerca de 400 mil anos-luz, em direção ao canto inferior esquerdo da imagem. A perda significante de gás e poeira fará com que a formação de novas estrelas seja algo difícil de ocorrer nessa galáxia. Uma galáxia elíptica amarelada, carente de estrelas em formação e de poeira e gás, aparece logo a direita da galáxia ESO 137-001 na imagem acima.

Fonte: NASA

quinta-feira, 27 de março de 2014

Novo planeta anão foi descoberto nos confins do Sistema Solar

Foi encontrado um novo planeta anão além da órbita de Plutão, sugerindo que essa distante região contenha milhões de objetos ainda não descobertos, incluindo, talvez, um mundo maior que a Terra.

ilustração do planeta anão Sedna

© NASA/JPL-CALTECH (ilustração do planeta anão Sedna)

O novo corpo celeste descoberto, chamado de 2012 VP113, se junta ao planeta anão Sedna, como um residente confirmado, de uma imensa região inexplorada, chamada de Nuvem de Oort Interna. Além do mais, tanto o 2012 VP113 como o Sedna, podem ter sido colocados em suas longas órbitas por um planeta ainda maior que permanece invisível nas frígidas profundezas do Sistema Solar.

“Esses dois objetos são somente a ponta do iceberg”, disse o co-autor do estudo Chadwick Trujillo, do Observatório Gemini, no Havaí. “Eles existem em uma parte do Sistema Solar que nós normalmente pensávamos que era praticamente vazia de qualquer matéria. E assim, eles nos mostram como nós na verdade sabemos pouco sobre o nosso Sistema Solar”.

Por algumas décadas, os astrônomos têm dividido nosso Sistema Solar em três partes principais: uma zona interna, contendo os planetas rochosos, como a Terra e Marte; um reino intermediário abrigando os gigantes gasosos como Saturno, Júpiter, Urano e Netuno; e uma região externa, chamada de Cinturão de Kuiper, populada por mundos distantes e congelados como Plutão.

A descoberta de Sedna, em 2003, deu uma pista de que esse mapa estava incompleto. Sedna, que tem cerca de 1.000 quilômetros de diâmetro, possui uma órbita incrivelmente elíptica, não chegando mais perto do Sol, do que 76 Unidades Astronômicas (UA) e atingindo o ponto mais distante de sua órbita a 940 UA. Isso coloca Sedna nas fronteiras mais distantes do nosso Sistema Solar. Por comparação, a órbita de Plutão varia entre 29 e 49 UA.

E agora, os astrônomos sabem que o Sedna não está sozinho. Trujillo e Scott Sheppard, do Carnegie Institute for Science de Washington, descobriram o 2012 VP113 usando a Dark Energy Camera, que está instalada no telescópio de 4 metros no Observatório Inter-Americano de Cerro Tololo, no Chile.

Observações subsequentes feitas com o telescópio Magalhães de 6,5 metros no Observatório de Las Campanas, também no Chile, ajudaram a Trujillo e Sheppard determinarem os detalhes da órbita do 2012 VP113 e aprenderem um pouco mais sobre o objeto.

O corpo atinge seu ponto mais próximo do Sol a 80 UA, e no ponto mais distante atinge 452 UA. Com cerca de 450 km de diâmetro, o 2012 VP113 é grande o suficiente para ser qualificado como um planeta anão, se ele for composto primariamente de gelo, de acordo com os pesquisadores. Por definição, planetas anões precisam ser grandes o suficiente para que sua gravidade os moldem na forma esférica, a massa necessária para que isso aconteça depende da composição do objeto.

Objetos distantes como o Sedna e o 2012 Vp113 são incrivelmente difíceis de serem identificados, os astrônomos só têm essa chance, quando os objetos se aproximam do Sol.

Com base na porção do céu que os cientistas pesquisaram, Trujillo e Sheppard, estimam que cerca de 900 corpos maiores que o Sedna, possam existir na Nuvem de Oort Interna. A verdadeira Nuvem de Oort é uma concha congelada ao redor do Sistema Solar que começa talvez a 5.000 UA do Sol e contém trilhões de cometas.

A população de objetos da Nuvem de Oort Interna, de fato, pode exceder a do Cinturão de Kuiper, e exceder também a população de objetos localizados entre Marte e Júpiter.

“Alguns desses objetos da Nuvem de Oort Interna poderiam rivalizar em tamanho com Marte, ou até mesmo com a Terra”, disse Sheppard. “Isso pode ocorrer pois muitos dos objetos da Nuvem de Oort Interna estão tão distantes que mesmo os maiores são muito apagados para serem observados com a tecnologia atual.

Os astrônomos não sabem muito até agora sobre a origem ou a história evolucionária do Sedna e do 2012 VP113. Os objetos podem ter se formado mais perto do Sol, por exemplo, antes de terem sido empurrados pelas interações gravitacionais por outras estrelas, talvez irmãs gêmeas do aglomerado onde o Sol nasceu. Outra hipótese é que os objetos podem ser corpos alienígenas que o Sol arrancou de outro sistema durante um encontro estelar.

Também é possível que o 2012 VP113 e seus vizinhos tenham sido chutados do Cinturão de Kuiper para a Nuvem de Oort Interna quando um grande planeta foi iniciado a muito tempo atrás. Esse planeta pode ter sido ejetado completamente do Sistema Solar, ou ele ainda pode estar lá, num local ainda mais distante, esperando para ser descoberto.

De fato, certas características das órbitas de Sedna e do 2012 VP113 e de alguns dos objetos mais distantes do Cinturão de Kuiper são consistentes com a presença contínua de um grande e extremamente distante perturbador. É possível que um planeta com aproximadamente 10 vezes mais massa que a Terra, localizado a centenas de UA do Sol, esteja orientando esses corpos em suas órbitas atuais.

Essa suposição é distante de uma prova de que um Planeta X, não descoberto, exista de verdade, diz Trujillo. Mas ele disse que a porta está aberta, observando que um corpo com massa semelhante à da Terra, e localizado a 250 UA do Sol, provavelmente não seria detectável atualmente.

“Isso levanta a possibilidade de que posa existir algo lá com uma massa significante, massa igual ou superior, à massa da Terra, que nós desconhecemos totalmente”, completa ele.

Isso se tornará mais claro, à medida que mais objetos da Nuvem de Oort Interna sejam descobertos, permitindo que os astrônomos coloquem mais restrições na origem e na evolução orbital desses corpos distantes e gelados.

“Eu acredito que seja difícil desenharmos conclusões definitivas a partir de dois objetos”, disse Trujillo. “Se nós tivermos 10 objetos identificados na Nuvem de Oort Interna, então nós podemos realmente começar a dizer algo mais detalhado sobre os cenários de formação”.

Fonte: Discovery e Nature

A busca por sementes de buracos negros

Como cresce um buraco negro supermassivo com um milhão até um bilhão de vezes da massa do Sol?

galáxia NGC 4395

© NASA/JPL-Caltech (galáxia NGC 4395)

Os astrônomos não sabem a resposta, mas um novo estudo usando dados do WISE (Wide-field Infrared Survey Explorer) da NASA, tem apontado para o que pode ser a semente cósmica de um buraco negro que irá aflorar. Os resultados estão ajudando os cientistas a juntarem as peças da evolução de buracos negros supermassivos, poderosos objetos que dominam o coração de todas as galáxias.

Fazer crescer um buraco negro não é algo fácil como uma planta, que tem sua semente plantada no solo, e regando ela germina. Os objetos massivos são densas coleções de matéria que são literalmente, buracos sem fundo, de onde nada consegue escapar. Eles aparecem numa grande variedade de tamanhos. Os menores, são poucas vezes mais massivos que o Sol, e se formam a partir de estrelas que explodem. Os maiores, são bilhões de vezes mais massivos que o Sol, e crescem junto com as galáxias que os abrigam ao longo do tempo, no fundo de seus interiores. Mas como esse processo funciona, é ainda um mistério.

Pesquisadores usando o WISE analisam essa questão procurando por buracos negros em galáxias anãs. Essas galáxias não passam por muita mudança, assim elas são mais serenas do que suas contrapartidas mais pesadas. De alguma maneira, elas lembram os tipos de galáxias que podem ter existido quando o Universo era jovem, e assim elas oferecem uma pista sobre os berçários de buracos negros.

Nesse novo estudo, usando dados de todo o céu, obtidos pelo WISE na luz infravermelha, centenas de galáxias anãs foram descobertas onde os buracos negros enterrados podem estar escondidos. A luz infravermelha, o tipo de luz que o WISE coleta, pode atravessar a poeira, diferente da luz visível, assim ela é melhor para encontrar buracos negros escondidos e empoeirados. Os buracos negros das galáxias anãs podem ser em torno de 1.000 a 10.000 vezes mais massivos que o nosso Sol, maior do que se esperava para essas galáxias pequenas.

“Nossas descobertas sugerem que as sementes originais dos buracos negros supermassivos já sejam muito massivas”, disse Shobita Satyapal, da George Mason University.

Daniel Stern, um astrônomo especializado em buracos negros no Laboratório de Propulsão a Jato da NASA em Pasadena, na Califórnia, que não fez parte do estudo, disse que a pesquisa demonstra o poder de uma pesquisa de todo o céu como o WISE para encontrar os buracos negros mais raros. “Embora seja necessário mais pesquisa para confirmar se as galáxias anãs são de fato dominadas por buracos negros que se alimentam ativamente, isso é exatamente para o que o WISE foi desenhado: encontrar objetos interessantes que se destacam”.

As novas observações argumentam contra um popular teoria sobre o crescimento de buracos negros, que diz que os objetos ganham massa por meio das colisões de galáxias. Quando o nosso Universo era jovem, era mais provável que as galáxias se chocassem e se fundissem. É então possível, nesse cenário, que os buracos negros dessas galáxias se fundissem também ganhando massa.

A descoberta de buracos negros de galáxias anãs que são maiores do que o esperado, sugere que as fusões de galáxias não eram necessárias para criar grandes buracos negros. As galáxias anãs não têm um uma história de fusões galácticas, e mesmo assim seus buracos negros são relativamente grandes.

Ao invés disso, os buracos negros supermassivos podem ter se formado no Universo primordial. Ou, eles podem ter crescido de maneira harmoniosa com suas galáxias hospedeiras, alimentando-se do gás ao redor.

“Nós ainda não sabemos como os buracos negros monstruosos que residem no centro das galáxias se formaram”, disse Satyapal. “Mas encontrar grandes buracos negros em galáxias pequenas nos mostra que grandes buracos negros precisam de alguma maneira terem sido criados, no início do Universo, antes de galáxias se colidirem”.

Um artigo foi publicado na edição de Março de 2014 do Astrophysical Journal.

Fonte: NASA

quarta-feira, 26 de março de 2014

Primeiro sistema de anéis descoberto em torno de um asteroide

Observações obtidas em diversos locais da América do Sul, incluindo o Observatório de La Silla do ESO, levaram à descoberta surpreendente de que o asteroide distante Chariklo se encontra rodeado por dois anéis densos e estreitos.

ilustração dos anéis que rodeiam Chariklo

© ESO (ilustração dos anéis que rodeiam Chariklo)

Este é o menor objeto já descoberto com anéis, e apenas o quinto corpo no Sistema Solar - depois dos planetas gigantes Júpiter, Saturno, Urano e Netuno - com esta caraterística. A origem dos anéis permanece um mistério, no entanto pensa-se que podem ser o resultado de uma colisão que criou um disco de detritos.

Além dos anéis de Saturno, que são um dos mais bonitos espetáculos no céu, outros anéis, menos proeminentes, também foram encontrados em torno dos outros planetas gigantes. Apesar de buscas cuidadosas, nunca se encontraram anéis em volta de outros objetos menores do Sistema Solar. Todos os objetos que orbitam em torno do Sol e que são muito pequenos, ou seja, que não possuem massa suficiente para que a sua própria gravidade lhes dê uma forma praticamente esférica, são definidos pela União Astronômica Internacional  (IAU) como sendo corpos menores do Sistema Solar. Esta classe inclui atualmente a maioria dos asteroides do Sistema Solar, os objetos próximos da Terra, os asteroides troianos de Marte e Júpiter, a maioria dos Centauros, a maioria dos objetos Trans-Netunianos e os cometas. Informalmente, os termos asteroide e corpo menor são frequentemente usados para indicar a mesma coisa.

Agora, observações do longínquo asteroide Chariklo, feitas quando este passava em frente a uma estrela, mostraram que ele também se encontra rodeado por dois anéis estreitos.
“Não estávamos à procura de anéis, nem pensávamos que pequenos corpos como o Chariklo os poderiam ter, por isso esta descoberta, e a quantidade extraordinária de detalhes que obtivemos do sistema, foi para nós uma grande surpresa!”, diz Felipe Braga-Ribas (Observatório Nacional/MCTI, Rio de Janeiro, Brasil), que preparou a campanha de observações e é o autor principal do novo artigo científico que descreve estes resultados.
Chariklo é o maior membro de uma classe de objetos conhecidos por Centauros, que orbitam o Sol entre Saturno e Urano, no Sistema Solar externo. Os Centauros são pequenos corpos com órbitas instáveis no Sistema Solar exterior, que atravessam as órbitas dos planetas gigantes. Como as suas órbitas são frequentemente perturbadas, espera-se que permaneçam nestas órbitas apenas alguns milhões de anos. Os Centauros diferem dos muito mais numerosos corpos do Cinturão de Asteroides, situado entre as órbitas de Marte e Júpiter, e podem ter vindo da região do Cinturão de Kuiper. O seu nome deriva dos centauros míticos porque, tal como eles, partilham algumas características de duas espécies diferentes, neste caso cometas e asteroides. Chariklo parece ser mais como um asteroide, não se tendo descoberto nele qualquer atividade cometária.

Previsões da sua órbita mostraram que passaria em frente da estrela UCAC4 248-108672 no dia 3 de junho de 2013, quando observado a partir da América do Sul. Assim, com o auxílio de telescópios em sete sítios diferentes, incluindo o telescópio dinamarquês de 1,54 metros e o telescópio TRAPPIST, ambos situados no Observatório de La Silla do ESO, no Chile, os astrônomos puderam observar a estrela desaparecer durante alguns segundos, momento em que a sua luz foi bloqueada pelo Chariklo, num fenômeno conhecido por ocultação. Esta é a única maneira de saber o tamanho e forma exatos de um objeto tão remoto - Chariklo tem apenas 250 quilômetros de diâmetro e encontra-se a mais de um bilhão de quilômetros de distância. Mesmo com os melhores telescópios, um objeto tão pequeno e distante aparece apenas como um tênue ponto de luz.
No entanto, eles acabaram descobrindo muito mais do que esperavam. Alguns segundos antes, e também alguns segundos depois, da ocultação principal ainda houveram duas quedas de luz, ligeiras e muito curtas, no brilho aparente da estrela. Os anéis de Urano e os arcos de anel em torno de Netuno foram descobertos de forma semelhante, durante ocultações em 1977 e 1984, respectivamente; onde os telescópios do ESO estiveram também envolvidos na descoberta dos anéis de Netuno.

Algo em torno de Chariklo estava bloqueando a luz! Ao comparar as observações feitas nos diversos locais, a equipe pôde reconstruir não apenas a forma e o tamanho do objeto propriamente dito, mas também a espessura, orientação, forma e outras propriedades dos anéis recém descobertos.
A equipe descobriu que o sistema de anéis é composto por dois anéis bastante confinados, com apenas sete e três quilômetros de largura, respectivamente, separados entre si por um espaço vazio de nove quilômetros, e tudo isto em torno de um pequeno objeto que orbita além da órbita de Saturno.
“Acho extraordinário pensar que fomos capazes de detectar, não apenas o sistema de anéis, mas também precisar que este sistema é constituído por dois anéis claramente distintos”, acrescenta Uffe Gråe Jørgensen (Instituto Niels Bohr, Universidade de Copenhague, Dinamarca), integrante da equipe. “Tento imaginar como será estar sobre a superfície deste corpo gelado, tão pequeno que um carro esportivo veloz poderia atingir a velocidade de escape e lançar-se no espaço, e olhar para cima para um sistema de anéis com 20 quilômetros de largura e situado 1.000 vezes mais próximo do que a Lua está da Terra”. A velocidade de escape é cerca de 350 km/h!
Embora muitas questões permaneçam ainda sem resposta, os astrônomos pensam que este tipo de anel deve ter se formado a partir dos restos deixados depois de uma colisão. Os restos teriam ficado confinados como dois estreitos anéis devido à presença de pequenos satélites, que supostamente existirão.
“Por isso, além dos anéis, é provável que Chariklo tenha também, pelo menos, um pequeno satélite à espera de ser descoberto”, acrescenta Felipe Braga Ribas.
Os anéis poderão mais tarde dar origem à formação de um pequeno satélite. Tal sequência de eventos, a uma escala muito maior, pode explicar a formação da nossa própria Lua nos primeiros dias do Sistema Solar, assim como a origem de muitos outros satélites em órbita de planetas e asteroides.
Os líderes do projeto deram aos anéis os nomes informais de Oiapoque e Chuí, dois rios que se encontram próximos dos extremos norte e sul do Brasil, respectivamente. Estes nomes são apenas para uso informal, os nomes oficiais serão atribuídos mais tarde pela IAU, segundo regras pré-estabelecidas.

Este trabalho foi descrito no artigo científico intitulado “A ring system detected around the Centaur (10199) Chariklo”, de F. Braga-Ribas et al., cujos novos resultados foram publicados hoje (online) na revista Nature.

Fonte: ESO

Uma nebulosa de reflexão na constelação de Órion

Um brilho azul estranho e colunas sinistras de poeira escura destacam a M78 e outra nebulosa de reflexão brilhante na constelação de Órion.

nebulosa de reflexão M78

© Ian Sharp (nebulosa de reflexão M78)

O pó escuro filamentar não só absorve a luz, mas também reflete a luz de várias estrelas azuis brilhantes que se formaram recentemente na nebulosa. Das duas nebulosas de reflexão na foto acima, a mais famosa é a M78, no centro da imagem, enquanto a NGC 2071 pode ser vista no canto inferior esquerdo. O mesmo tipo de dispersão que colore o céu diurno aumenta ainda mais a cor azul. A M78 tem cerca de cinco anos-luz de diâmetro, está a cerca de 1.600 anos-luz de distância, e é visível através de um pequeno telescópio. A M78 pertence ao maior complexo da nuvem molecular de Órion que contém a grande Nebulosa de Órion e a Nebulosa Cabeça de Cavalo.

Fonte: NASA

A poeira cósmica que envolve a Nebulosa de Órion

O que existe ao redor de um berçário cósmico, onde estrelas estão se formando? No caso da Nebulosa de Órion, a poeira.

Nebulosa de Órion

© Robert Fields (Nebulosa de Órion)

O campo inteiro de Órion, localizado a cerca de 1.600 anos-luz de distância da Terra, está inundado com intrigantes e pitorescos filamentos de poeira. Opaca com relação a luz visível, a poeira é criada na atmosfera externa de estrelas massivas frias e expelida por fortes ventos de partículas. O Trapézio e outros aglomerados de formação de estrelas estão mergulhados na nebulosa. Os filamentos de poeira ao redor da M42 e da M43 aparecem em cinza na imagem acima, enquanto que o gás central brilhante é destacado em marrom e azul. Durante os próximos milhões de anos, a maior parte da poeira de Órion irá vagarosamente ser destruída pelas muitas estrelas que estão agora em formação, ou dispersada na galáxia.

Fonte: NASA

segunda-feira, 24 de março de 2014

Estrela destemida sobrevive à explosão de supernova

Quando uma estrela maciça fica sem combustível, ela entra em colapso e explode como uma supernova.

imagem composta em raios X e no óptico do DEM L241

© NASA/NOAO (imagem composta em raios X e no óptico do DEM L241)

Embora estas explosões são extremamente poderosas, é possível que uma estrela companheira suporte a explosão. Uma equipe de astrônomos usando o observatório de raios  X Chandra da NASA e outros telescópios encontrou evidências para um desses sobreviventes.

Esta intrépida estrela está num campo de destroços da explosão estelar, também chamada de remanescente de supernova, localizada em uma região HII chamado DEM L241. Uma região HII é criada quando a radiação de estrelas quentes e jovens despojam os elétrons de átomos de hidrogênio neutro (HI) para formar nuvens de hidrogênio ionizado (HII). Esta região HII está localizada na Grande Nuvem de Magalhães, uma pequena galáxia companheira da Via Láctea.

Uma nova imagem composta da DEM L241 contém dados do Chandra (roxo), que descreve o remanescente de supernova. O restante permanece quente e, portanto, emite raios X brilhantes durante milhares de anos depois que explosão original ocorreu. Também estão incluídos nesta imagem dados ópticos da Magellanic Cloud Emission Line Survey (MCELS) obtidos de telescópios terrestres no Chile (amarelo e ciano), na registra a emissão HII produzida pelo DEM L241. Dados ópticos adicionais do Digitized Sky Survey (branco) também estão incluídos, mostrando estrelas no campo de visão.

R. Davies, K. Elliott, e J. Meaburn, cujas iniciais de seus sobrenomes foram combinadas para dar o nome do objeto DEM L241, em 1976. Os dados recentes do Chandra revelaram a presença de uma fonte de raios X pontual no mesmo local de uma jovem estrela massiva dentro do remanescente de supernova remanescente.

Os astrônomos podem analisar os detalhes dos dados do Chandra para recolher pistas importantes sobre a natureza das fontes de raios X. Por exemplo, quão brilhantes são os raios X são, como eles mudam ao longo do tempo, e como eles são distribuídos em toda a gama de energia que Chandra observa.

Neste caso, os dados sugerem que a fonte é uma componente de um sistema binário. Em um par tão celestial, seja uma estrela de nêutrons ou um buraco negro (formada quando a estrela foi supernova) está em órbita com uma estrela muito maior do que o nosso Sol. À medida que orbitam um ao outro, a estrela de nêutrons ou um buraco negro denso puxa o material para longe da sua estrela companheira através do vento de partículas que flui longe de sua superfície. Se esse resultado for confirmado, DEM L241 seria apenas o terceiro binário, contendo tanto uma estrela massiva e uma estrela de nêutrons ou um buraco negro, já encontrado no rescaldo de uma supernova.

Os dados de raios X do Chandra também mostram que o interior do supernova é enriquecido em oxigênio, neônio e magnésio. Este enriquecimento e a existência da estrela maciça implica que a estrela que explodiu tinha uma massa maior do que 25 vezes, para talvez até 40 vezes, a do Sol.

Observações ópticas com telescópio de 1,9 metros do Observatório Astronômico Sul Africano mostra que a velocidade da estrela maciça está mudando e que orbita em torno da estrela de nêutrons ou um buraco negro com um período de dezenas de dias. A medição detalhada da variação de velocidade da estrela maciça companheira deve fornecer uma prova definitiva da existência ou não do binário contendo um buraco negro.

Evidências indiretas já existem em outros remanescentes de supernovas que foram formados pelo colapso de uma estrela para gerar um buraco negro. No entanto, se a estrela em colapso no DEM L241 acabar por ser um buraco negro, isto forneceria a evidência mais contundente ainda para um evento tão catastrófico.

O que o futuro reserva para este sistema?

Se o pensamento mais recente estiver correto, a estrela maciça será destruída em uma explosão de supernova daqui a alguns milhões de anos. Quando isso acontecer, ela pode formar um sistema binário que conterá duas estrelas de nêutrons ou uma estrela de nêutrons e um buraco negro, ou até mesmo um sistema com dois buracos negros.

Um artigo descrevendo os resultados foi publicado no The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

sexta-feira, 21 de março de 2014

Hubble espreita o coração de uma galáxia Seyfert

A nova imagem abaixo obtida pelo telescópio espacial Hubble focaliza a NGC 5793, uma galáxia espiral localizada a mais de 150 milhões de anos-luz de distância na constelação de Libra.

galáxia NGC 5793

© Hubble (galáxia NGC 5793)

Esta galáxia tem duas características particularmente marcantes: uma bela faixa de poeira e um centro intensamente brilhante, muito mais luminoso do que a nossa própria galáxia, ou mesmo aqueles da maioria das galáxias espirais que observamos.
A NGC 5793 é uma galáxia Seyfert. Estas galáxias têm centros incrivelmente luminosos que são causadados por famintos buracos negros supermassivos, com cerca de bilhões de vezes do tamanho do Sol, que absorvem o gás e a poeira de seus arredores.
Esta galáxia é de grande interesse para os astrônomos por muitas razões. Por um lado, ela aparece para abrigar objetos conhecidos como maser. Considerando que lasers emitem luz visível, os masers emitem radiação de microondas. O termo "maser" vem do acrônimo Microwave Amplification by Stimulated Emission of Radiation. A emissão maser é causada por partículas que absorvem a energia próxima e re-emitem na região de microondas do espectro eletromagnético.
Os masers que ocorrem naturalmente, como os observados na NGC 5793, podem nos dizer muito sobre o seu ambiente; observamos esses tipos de maser em áreas onde as estrelas estão se formando. Na NGC 5793 também há intensos mega-masers, que são milhares de vezes mais luminosos que o Sol.

Fonte: NASA

O maior censo de poeira cósmica em galáxias locais foi concluído

O maior censo de poeira cósmica em galáxias locais foi concluído usando dados do observatório espacial Herschel da ESA, facultando um enorme legado à comunidade científica.

censo de galáxias em infravermelho

© Herschel (censo de galáxias em infravermelho)

Os grãos de poeira cósmica são um ingrediente pequeno mas fundamental na receita de gás e poeira da criação de estrelas e planetas. Mas, apesar da sua importância, o nosso conhecimento das propriedades da poeira em galáxias além da Via Láctea é incompleto.

Algumas das questões fundamentais incluem a forma como a poeira varia consoante o tipo de galáxia, e como pode afetar o nosso conhecimento da evolução galáctica.

Antes de concluir as suas observações em Abril de 2013, o Herschel forneceu o maior levantamento da poeira cósmica, abrangendo uma ampla gama de galáxias próximas localizadas entre 50 e 80 milhões de anos-luz da Terra.

O catálogo contém 323 galáxias com vários tipos de formação estelar e diferentes composições químicas, observadas com os instrumentos do Herschel em comprimentos de onda do infravermelho distante e submilimétrico.

As galáxias são organizadas conforme o seu conteúdo de poeira, as mais ricas estão à esquerda e em cima e as mais pobres em baixo e à direita.

As galáxias ricas em poeira são geralmente espirais ou irregulares, ao passo que as pobres em poeira são geralmente elípticas. As cores azuis e vermelhas representam regiões mais frias e quentes da poeira, respectivamente.

A poeira é suavemente aquecida ao longo de uma gama de temperaturas pela combinação da luz de todas as estrelas em cada galáxia, com a poeira mais quente concentrada em regiões onde as estrelas nascem.

censo de galáxias no visível

© SDDS (censo de galáxias no visível)

Para comparação, as galáxias também são apresentadas no visível, em imagens obtidas pelo SDSS (Sloan Digital Sky Survey). Aqui, o azul corresponde a estrelas jovens, ou seja, estrelas massivas e quentes que queimam o seu combustível muito rapidamente e, portanto, são de curta duração. Por outro lado, as estrelas vermelhas são mais velhas, ou seja, menos massivas e mais frias e, portanto, vivem mais tempo.

As observações do Herschel permitem com que os astrônomos determinem a quantidade de luz emitida pela poeira em função do comprimento de onda, fornecendo um meio para estudar as propriedades físicas da poeira.

Por exemplo, uma galáxia que forma estrelas a uma maior velocidade deve ter estrelas mais maciças e quentes e, assim, a poeira na galáxia também deve ser mais quente. Por sua vez, isto significa que uma maior percentagem da luz emitida pela poeira deve ter comprimentos de onda mais curtos.

No entanto, os dados mostram maiores variações do que o esperado de uma galáxia para outra apenas com base nas taxas de formação estelar, o que implica que outras propriedades, tais como o enriquecimento químico, também desempenham um papel importante.

Ao investigar estas correlações e dependências, o estudo fornece um ponto de referência local, para quantificar o papel desempenhado pela poeira na evolução galáctica ao longo da história do Universo.

Os dados vão complementar observações feitas por outros telescópios, como o ALMA (Atacama Large Millimeter Array) no Chile, o que permitirá com que seja analisada a poeira em galáxias à beira do Universo observável.

Fonte: ESA e Royal Astronomical Society