quarta-feira, 6 de maio de 2015

Buracos negros pode ingerir doses excessivas de matéria

De acordo com um novo estudo usando o observatório de raios X Chandra da NASA, um grupo de buracos negros gigantes e invulgares pode estar consumindo quantidades excessivas de matéria.

ilustração de um quasar

© NASA/CXC/M. Weiss (ilustração de um quasar)

Esta descoberta pode ajudar os astrônomos a compreender como os maiores buracos negros foram capazes de crescer tão rapidamente no início do Universo.

Os astrônomos já sabem há algum tempo que os buracos negros supermassivos, com massas que variam de milhões a bilhões de vezes a massa do Sol e que residem nos centros das galáxias, podem devorar enormes quantidades de gás e poeira que caem na sua atração gravitacional. À medida que a matéria colapsa na direção destes buracos negros, brilha de tal maneira que podem ser vistos a bilhões de anos-luz de distância. Estes buracos negros extremamente vorazes são denomonados quasares.

Este novo resultado sugere que alguns quasares são ainda mais adeptos a devorar material do que os cientistas pensavam.

"Mesmo para os consumidores famosos e prodigiosos de material, estes buracos negros gigantes parecem estar se alimentando a taxas enormes, pelo menos cinco a dez vezes mais depressa do que os quasares típicos," afirma Bin Luo da Universidade Estatal da Pensilvânia, EUA, que liderou o estudo.

três quasares ncluídos no estudo

© NASA/CXC/Penn State/B. Luo (três quasares ncluídos no estudo)

Luo e colegas examinaram dados do Chandra para 51 quasares localizados a distâncias entre 5 mil e 11,5 bilhões de anos-luz da Terra. Estes quasares foram selecionados porque tinham uma emissão invulgarmente fraca de certos átomos, especialmente carbono, em comprimentos de onda ultravioletas. Neste novo estudo descobriu-se que cerca de 65% dos quasares são muito mais tênues em raios X, em média cerca de 40 vezes, do que os quasares normais.

As fracas emissões ultravioletas e os fluxos de raios X destes objetos podem ser pistas importantes para a questão de como um buraco negro supermassivo puxa matéria. As simulações de computador mostram que, a taxas baixas, a matéria rodopia em direção ao buraco negro num disco fino. No entanto, se a taxa de entrada é elevada, o disco pode inchar consideravelmente devido à pressão da radiação alta, formando um toróide ou "rosquinha" que rodeia a parte interior do disco.

"Este quadro encaixa com os nossos dados," afirma Jianfeng Wu do Centro Harvard-Smithsonian para Astrofísica em Cambridge, no estado americano de Massachusetts. "Se um quasar é incorporado numa espessa estrutura de gás e poeira em forma toroidal, absorverá grande parte da radiação produzida mais perto do buraco negro e impede-a de atingir o gás localizado mais para fora, resultando numa emissão atômica mais fraca no ultravioleta e em raios X."

O equilíbrio normal entre a atração gravitacional e a pressão externa da radiação também será afetado.

"Seria emitida mais radiação numa direção perpendicular ao disco espesso, ao invés de ao longo do disco, permitindo com que o material caia a taxas mais elevadas," afirma Niel Brandt, também da Universidade Estatal da Pensilvânia.

A conclusão importante é que estes quasares de "disco espesso" podem abrigar buracos negros que crescem a um ritmo extraordinariamente rápido. Os estudos anteriores e os atuais, por equipes diferentes, sugerem que estes quasares poderiam ter sido mais comuns no início do Universo, apenas cerca de bilhões de anos após o Big Bang. Este crescimento rápido pode também explicar a existência de buracos negros enormes ainda mais antigos.

O artigo que descreve estes resultados será publicado na revista The Astrophysical Journal e está disponível online.

Fonte: NASA

terça-feira, 5 de maio de 2015

Anomalias gravitacionais de Mercúrio

O que é isso sob a superfície de Mercúrio?

gravidade em Mercúrio

© NASA/Goddard Space Flight Center (gravidade em Mercúrio)

A espaçonave robótica MESSENGER, que estava na órbita do planeta Mercúrio pelos últimos quatro anos, havia transmitido seus dados de volta à Terra com ondas de rádio de energia muito precisa. A gravidade do planeta, no entanto, alterou ligeiramente essa energia quando medida na Terra, o que permitiu a reconstrução de um mapa de gravidade com uma precisão sem precedentes.

Na imagem acima as anomalias gravitacionais são mostradas em cores falsas e sobrepostas sobre uma imagem da superfície cheia de crateras do planeta. As tonalidades vermelhas indicam áreas de gravidade ligeiramente maior, que indicam áreas que devem ter matéria invulgarmente densa sob a superfície. A área central é a Bacia Caloris, uma enorme bacia de impacto medindo cerca de 1.500 quilômetros de diâmetro.

Na semana passada, depois de completar a sua missão e com pouco combustível, a MESSENGER chocou-se intencionalmente na superfície de Mercúrio.

Fonte: NASA

A peculiar assimetria da galáxia NGC 949

A imagem abaixo representa a visão mais clara até hoje da galáxia conhecida como NGC 949, que localiza-se a mais de 30 milhões de anos-luz de distância na constelação do Triangulum.

NGC 949

© Hubble (NGC 949)

A galáxia tem uma forma incomum, que a deixa mais obscura devido à sua inclinação. Do nosso ponto de vista, é difícil discernir exatamente que tipo de galáxia a NGC 949 é, mas ela é certamente uma galáxia de disco de algum tipo, mais provavelmente uma galáxia espiral.

A NGC 949 foi descoberta pela primeira vez por William Herschel, no dia 21 de Setembro de 1786, usando um telescópio refletor de 18,7 polegadas. A galáxia foi um dos cerca de 300 objetos catalogados por Herschel como nebulosas, durante a sua intensa e sistemática pesquisa do céu profundo, os resultados desse catálogo eventualmente formaram o chamado New General Catalogue (NGC).

Feita pela Advanced Camera for Surveys (ACS) do telescópio espacial Hubble, essa nova imagem mostra detalhes extraordinários. Esses detalhes permitem que nós possamos ver o estranho alinhamento assimétrico nas linhas de poeira escura que serpenteia a galáxia. A metade superior direita da galáxia aparece consideravelmente mais marmorizada com poeira nessa imagem, uma observação curiosa explicada pelas estrelas que tendem a se localizar em pontos favoráveis em direção ao centro da galáxia, e a poeira que invariavelmente reside ao longo do plano galáctico.

Quando uma galáxia é inclinada como a NGC 949, algumas regiões – nesse caso a parte superior direita – são voltadas para nós e a luz das estrelas que nós observamos nessas regiões viajam através de uma camada maior de poeira. Isso faz com que a luz apareça avermelhada; o resultado do mesmo processo que dá à luz do Sol uma tonalidade avermelhada perto do horizonte, ou até mesmo desapareça totalmente, fazendo com que a poeira apareça mais proeminente nesse lado da galáxia.

Na parte inclinada para longe de nós, a luz das estrelas tem que passar por menos poeira até chegar aos nossos olhos, assim ela parece mais brilhante e a poeira é menos proeminente. Se fosse possível ver a NGC 949 do lado oposto, o alinhamento aparente da poeira seria reverso.

A vantagem científica desse efeito foi recentemente apresentada de maneira estilosa no chamado mosaico M31 PHAT, que permitiu aos astrônomos produzirem um mapa tridimensional parcial da M31, quatro vezes mais claro do que se havia tentado anteriormente.

Fonte: ESA

Descoberto pulsar com a órbita mais ampla

Cerca de 2.300 pulsares são conhecidos por cientistas, e apenas 10% deles estão em sistemas binários. A grande maioria destes são encontrados orbitando anãs brancas.

ilustração de um pulsar ao redor de uma estrela de nêutrons

© NRAO/B. Saxton (ilustração de um pulsar ao redor de uma estrela de nêutrons)

E apenas alguns raros pulsares estão em órbita de estrelas de nêutrons ou estrelas semelhantes ao Sol. A razão para esta escassez de sistemas de estrelas de nêutrons, é o processo pelo qual os pulsares e as estrelas de nêutrons se formam.
O pulsar recém-descoberto, PSR J1930-1852, faz parte de um sistema binário, com base nas diferenças em sua frequência de rotação entre a detecção original e observações de acompanhamento. 
Observações através de telescópios ópticos não revelaram nenhuma companheira visível, o que teria sido vista claramente se fosse uma estrela anã branca ou estrela da sequência principal.
"Dada a falta de quaisquer sinais visíveis e a revisão cuidadosa do período do pulsar, concluímos que a companheira mais provável era outra estrela de nêutrons", disse Joe Swiggum, um estudante de pós-graduação na Universidade de West Virginia, em Morgantown.
Outras observações revelaram que as duas estrelas de nêutrons têm a mais ampla separação já observada em um sistema binário de estrelas de nêutrons.
Alguns pulsares em sistemas binários de estrelas de nêutrons estão tão perto de sua companheira que suas trajetórias orbitais são comparáveis ​​ao tamanho do Sol e eles executam uma órbita completa em menos de um dia.

localização do pulsar PSR J1930-1852

© J. K. Swiggum (pulsar PSR J1930-1852)

O pulsar PSR J1930-1852 tem o mais longo período de rotação (185 ms) e período orbital (45 dias) ainda medido entre os pulsares conhecidos em sistemas binários de estrelas de nêutrons. Sua trajetória orbital se estende por cerca de 52.000 mil quilômetros.
"Sua órbita é mais de duas vezes maior que a de qualquer sistema binário de estrelas de nêutrons anteriormente conhecido", disse Swiggum.

Os parâmetros do pulsar fornecerá pistas valiosas sobre como um sistema como esse poderia ter se formado. Descobertas de sistemas discrepantes como o PSR J1930-1852 propiciará uma imagem mais nítida de toda a gama de possibilidades de evolução do binário.

Um artigo foi aceito para publicação no Astrophysical Journal.

Fonte: National Radio Astronomy Observatory

segunda-feira, 4 de maio de 2015

Um buraco no céu

Em vez de mostrarem objetos espetaculares, algumas das imagens mais surpreendentes do Universo focam-se no vazio.

LDN1774

© ESO (LDN1774)

Esta nova imagem mostra no seu centro tentáculos escuros serpenteando para o exterior de um buraco vazio e escuro do espaço, e particularmente proeminente contra o resto da imagem que se apresenta densa de estrelas brilhantes amarelas e vermelhas.
Na realidade não se trata de um buraco no cosmos nem de um espaço vazio no céu. As regiões escuras são constituídas por poeira espessa e opaca que se encontra entre nós e o campo de estrelas por trás. Esta poeira obscurante faz parte de uma nuvem molecular escura, um objeto que consiste em regiões frias e densas onde enormes quantidades de poeira e gás molecular se misturam e bloqueiam a radiação visível emitida por estrelas mais distantes.
Ainda não é completamente claro como é que estas nuvens se formam, mas pensa-se que sejam as fases muito iniciais da formação estelar;  no futuro, a nuvem que se vê na imagem pode perfeitamente colapsar sobre si própria e dar origem a um novo sistema estelar.
Embora a nuvem nesta imagem seja uma residente relativamente anônima do Universo próximo, catalogada como LDN1774, um dos exemplos mais famosos de nuvens moleculares é a muito semelhante Barnard 68, que se encontra a cerca de 500 anos-luz de distância. Barnard 68 foi já extensivamente observada pelos telescópios do ESO, tanto no visível como no infravermelho. Nestas diferentes imagens, é possível espreitar para além da poeira cósmica escura usando radiação infravermelha, mas observações no visível tais como as mostradas nesta imagem do VLT não enxergam além desta cortina de poeira.
Esta imagem foi obtida pelo Wide Field Imager, um instrumento montado no telescópio MPG/ESO de 2,2 metros em La Silla, no Chile.

Fonte: ESO

Descoberto um estranho exoplaneta parecido com Saturno

Um grupo internacional de astrônomos, dos EUA, Austrália, Chile, Alemanha e Hungria, descobriram um exoplaneta gasoso gigante, orbitando bem próximo de uma estrela fria e pequena chamada de HATS-6.

exoplaneta gigante gasoso hipotético

© NASA (exoplaneta gigante gasoso hipotético)

A HATS-6, também conhecida como MASS 05523523-1901539, localiza-se a uma distância de cerca de 484 anos-luz de distância da Terra.

Ela é uma estrela anã-M de magnitude 15, que é uma dos tipos de estrelas mais frequente na nossa galáxia.

Embora as estrelas anãs-M sejam comuns, elas não são muito bem entendidas. Por causa delas serem frias, elas também são apagadas, por exemplo, a HATS-6 emite somente 1/12 da luz emitida pelo Sol.

“Nós encontramos uma pequena estrela, com um planeta gigante do tamanho de Júpiter orbitando-a bem próximo. Ele deve ter sido formado mais distante e depois migrado para perto da estrela, mas nossas teorias não podem explicar o que realmente aconteceu”, disse o Dr. George Zhou da Australian National University.

O exoplaneta recém descoberto, denominado de HATS-6b, foi descoberto usando a pesquisa HATSouth, uma rede global de instrumentos fotométricos de campo vasto e totalmente automatizados que buscam por trânsitos de exoplanetas nas suas estrelas.

O HATS-6b, tem o tamanho de Júpiter, e a massa de Saturno, e orbita sua estrela a cada 3,3 dias, a uma distância aproximada de 0,04 UA.

“O planeta tem uma massa similar a Saturno, mas seu raio é similar ao de Júpiter, o que o torna um planeta bem inchado. Pelo fato da sua estrela ser fria, ela não aquece o planeta demais, e isso é bem diferente do que temos observado nos exoplanetas até agora. A atmosfera desse planeta será um interessante ponto a ser estudado no futuro”, disse o Dr. Zhou.

Um artigo que descreve a descoberta publicado no Astronomical Journal.

Fonte: Australian National University

sábado, 2 de maio de 2015

NuSTAR captura possíveis “gritos” de estrelas “zombie”

Perscrutando o coração da Via Láctea, o NuSTAR (Nuclear Spectroscopic Telescope Array) da NASA avistou um brilho misterioso de raios X altamente energéticos que, de acordo com os cientistas, podem ser os "uivos" de estrelas mortas à medida que se alimentam de companheiras estelares.

raios X altamente energéticos captados do centro da Via Láctea

© NuSTAR (raios X altamente energéticos captados do centro da Via Láctea)

O NuSTAR obteve a imagem acima de raios X altamente energéticos (magenta) do centro movimentado da Via Láctea. O círculo mais pequeno mostra o centro da nossa Galáxia, onde a imagem do NuSTAR foi captada.

"Com as imagens do NuSTAR, nós podemos ver um componente completamente novo do centro da nossa Galáxia," afirma Kerstin Perez da Universidade de Columbia em Nova Iorque. "Nós ainda não podemos explicar definitivamente o sinal de raios X, pois é um mistério. Mais trabalho precisa ser executado."

O centro da Via Láctea está repleto de estrelas jovens e velhas, buracos negros mais pequenos e outras variedades de corpos estelares, todos envolvendo o buraco negro supermassivo chamado Sagitário A*.

O NuSTAR, lançado para o espaço em 2012, é o primeiro telescópio capaz de capturar imagens nítidas dessa região frenética em raios X de alta energia. As novas imagens mostram uma região, em torno do buraco negro supermassivo, com aproximadamente 40 anos-luz em diâmetro. As imagens são surpreendentes, revelando uma névoa inesperada de raios X altamente energéticos que domina a atividade estelar habitual.

"Quase tudo o que pode emitir raios X está no Centro Galáctico," afirma Perez. "A área está repleta de fontes de raios X de baixa energia, mas a sua emissão é muito fraca quando a examinamos às energias que o NuSTAR observa. Portanto, o novo sinal destaca-se."

Existem quatro teorias possíveis para explicar o brilho de raios X desconcertante, três das quais envolvem classes diferentes de corpos estelares. Quando as estrelas morrem, não o fazem tranquilamente. Ao contrário de estrelas como o nosso Sol, as estrelas mortas e colapsadas que pertencem a pares estelares, ou binários, podem sugar matéria das suas companheiras. Este processo de alimentação "zombie" varia consoante a natureza da estrela normal, mas o resultado pode ser uma erupção de raios X.

De acordo com uma das teorias, pode estar em funcionamento um tipo de zombie estelar chamado pulsar. Os pulsares são os remanescentes colapsados de estrelas que explodiram como supernovas. Giram extremamente rápido e enviam feixes intensos de radiação. À medida que os pulsares giram, os feixes varrem o céu, por vezes interceptando a Terra como luzes de um farol.

"Podemos estar testemunhando os feixes de uma população, até agora escondida, de pulsares no Centro Galáctico," comenta Fiona Harrison do Instituto de Tecnologia da Califórnia (Caltech) em Pasadena, EUA, e pesquisadora principal do NuSTAR. "Isto significa que há algo muito especial sobre o meio ambiente no centro da nossa Galáxia."

Outros possíveis culpados incluem cadáveres estelares corpulentos chamados anãs brancas, que são os restos colapsados e "queimados" de estrelas não maciças o suficiente para explodir como supernovas. O nosso Sol é uma dessas estrelas e está destinado a tornar-se numa anã branca daqui a aproximadamente cinco bilhões de anos. Dado que estas anãs brancas são muito mais densas do que eram na sua juventude, têm uma gravidade mais forte e podem produzir raios X mais energéticos do que o normal. Outra teoria aponta para pequenos buracos negros que se alimentam lentamente das suas estrelas companheiras, irradiando raios X à medida que o material cai para os seus poços sem fundo.

Alternativamente, a fonte dos raios X de alta energia pode até nem ser um corpo estelar, mas sim uma névoa difusa de partículas carregadas chamadas raios cósmicos. Os raios cósmicos talvez tenham origem no buraco negro supermassivo no centro da Galáxia, à medida que devora material. Quando os raios cósmicos interagem com o gás denso circundante, emitem raios X.

No entanto, nenhuma dessas teorias coincide com o que sabemos de pesquisas anteriores, deixando os astrônomos perplexos.

"Este novo resultado lembra-nos que o Centro Galáctico é um lugar estranho," afirma Chuck Hailey da Universidade de Columbia. "Do mesmo modo que as pessoas se comportam de forma diferente quando andam na rua em vez de ‘enlatados’ numa vagão do metro, os objetos estelares exibem comportamentos estranhos quando amontoados em volumes pequenos perto do buraco negro supermassivo."

A equipe diz que estão planejadas mais observações. Até então, os teóricos vão estar ocupados explorando os cenários ou construindo novos modelos que expliquem o que pode estar emitindo este intrigante brilho de raios X altamente energético.

"Cada vez que construímos telescópios pequenos como o NusTAR, que melhoram a nossa visão do cosmos numa banda de comprimentos de onda em particular, podemos esperar surpresas como esta," conclui Paul Hertz, diretor da divisão de astrofísica na sede da NASA em Washington.

Um novo artigo sobre os achados foi publicado na revista Nature.

Fonte: Jet Propulsion Laboratory

New Horizons detecta possível calota polar em Plutão

Pela primeira vez, imagens da New Horizons da NASA estão revelando regiões claras e escuras à superfície do distante Plutão, o alvo principal do voo rasante da sonda, que terá lugar em meados de julho.

Plutão e Caronte

© NASA/JHU-APL/SwRI (Plutão e Caronte)

A imagem acima mostra o planeta anão Plutão e a sua maior lua, Caronte, que foi obtida pela câmara LORRI (Long Range Reconnaissance Imager) a bordo da sonda New Horizons da NASA no dia 15 de abril. A imagem faz parte de um conjunto obtido entre os dias 12 e 18, à medida que a distância até Plutão diminuía dos 112 milhões de quilômetros para 102 milhões de quilômetros.

Uma técnica chamada deconvolução de imagem aviva as imagens não processadas enviadas para a Terra. Os cientistas da New Horizons interpretaram os dados para revelar que o planeta anão tem marcas grandes à superfície, algumas claras, outras escuras, incluindo uma área brilhante num polo que poderá ser uma calota polar.

"À medida que nos aproximamos do sistema plutoniano começamos a ver características interessantes como uma região brilhante perto do polo visível de Plutão, dando início à grande aventura científica para entender este objeto celeste enigmático," afirma John Grunsfeld, administrador associado do Diretorado de Missões Científicas da NASA em Washington. "À medida que nos aproximamos, cresce o entusiasmo da busca para desvendar os mistérios de Plutão usando dados da New Horizons."

Caronte também foi captada nas imagens de Plutão, girando ao longo da sua órbita de 6,4 dias. Os tempos de exposição de um décimo de segundo usados para criar este conjunto de imagens são demasiado curtos para detectar as outras quatro luas de Plutão, bastante mais pequenas e tênues.

Desde a sua descoberta, em 1930, que Plutão permanece um enigma. Orbita o Sol a mais de 5 bilhões de quilômetros da Terra, e os cientistas têm-se esforçado para discernir quaisquer detalhes à superfície. Estas últimas imagens da New Horizons permitem com que a equipe científica da missão detecte diferenças claras no brilho em toda a superfície de Plutão à medida que gira.

"Depois de viajar mais de nove anos através do espaço, é impressionante ver Plutão, literalmente um ponto de luz a partir da Terra, a tornar-se num lugar real diante dos nossos olhos," afirma Alan Stern, pesquisador principal da New Horizons e do Instituto de Pesquisa do Sudoeste em Boulder, no estado americano do Colorado. "Estas imagens incríveis são as primeiras em que conseguimos ver detalhes, e já estão mostrando que Plutão tem uma superfície complexa."

As imagens que a sonda enviar vão melhorar drasticamente à medida que se aproxima do seu encontro com Plutão durante o mês de julho.

"Nós só podemos imaginar que surpresas serão reveladas quando a New Horizons passar a aproximadamente 12.500 km da superfície de Plutão," comenta Hal Weaver, cientista do projeto da missão e do Laboratório de Física Aplicada da Universidade Johns Hopkins em Laurel, Maryland, EUA.

Fonte: Laboratório de Física Aplicada da Universidade Johns Hopkins

sexta-feira, 1 de maio de 2015

Os Pilares da Criação revelados em 3D

Com o auxílio do instrumento MUSE montado no Very Large Telescope (VLT) do ESO, astrônomos criaram a primeira imagem completa em três dimensões dos famosos Pilares da Criação na Nebulosa da Águia.

imagem colorida composta dos Pilares da Criação

© ESO/MUSE (imagem colorida composta dos Pilares da Criação)

As novas observações mostram como é que os diferentes pilares de poeira deste objeto icônico estão distribuídos no espaço e revelam muitos detalhes novos, incluindo um jato, nunca visto antes, lançado por uma estrela jovem. A radiação intensa e os ventos estelares emitidos pelas estrelas brilhantes do aglomerado associado esculpiram os Pilares da Criação ao longo do tempo e deverão fazer com que estes desapareçam completamente dentro de cerca de três milhões de anos.

A imagem original dos famosos Pilares da Criação foi obtida pelo telescópio tspacial Hubble da NASA/ESA há duas décadas atrás, tendo-se tornado imediatamente uma das imagens mais famosas e evocativas. Desde então, estas nuvens que se estendem ao longo de alguns anos-luz têm impressionado tanto cientistas como o público em geral. O pilar esquerdo, considerado como um objeto completo em toda a sua extensão, tem cerca de quatro anos-luz de comprimento; é o pilar mais comprido e tem cerca de duas vezes a altura do pilar direito.
As estruturas salientes, assim como o aglomerado estelar próximo NGC 6611, fazem parte de uma região de formação estelar chamada Nebulosa da Águia, ou Messier 16 (M16). A nebulosa e os demais objetos associados situam-se a cerca de 7.000 anos-luz de distância da Terra, na constelação da Serpente.
Os Pilares da Criação são um exemplo típico de estruturas em forma de colunas que se desenvolvem em nuvens gigantes de gás e poeira, locais de nascimento de novas estrelas. As colunas surgem quando enormes estrelas azuis-esbranquiçadas do tipo O e B recentemente formadas emitem enormes quantidades de radiação ultravioleta e ventos estelares que sopram a matéria menos densa para longe da sua vizinhança.
As regiões de gás e poeira mais densas podem, no entanto, resistir a essa erosão por mais tempo. Por detrás de tais bolsões de poeira espessa, o material está protegido do brilho intenso e devastador das estrelas tipo O e B. Este “escudo” dá origem a “caudas” ou “trombas de elefante”, as quais observamos sob a forma de pilares de matéria empoeirada e que apontam em sentido contrário às estrelas brilhantes.
O instrumento MUSE mostrou a evaporação constante a que estão sujeitos os Pilares da Criação com um detalhe sem precedentes, revelando a sua orientação.

visualização de dados 3D dos Pilares da Criação

© ESO/M. Kornmesser (visualização de dados 3D dos Pilares da Criação)

O MUSE mostrou que a ponta do pilar da esquerda está virada para nós, por cima de um pilar que na realidade se situa por trás da NGC 6611, ao contrário aos outros pilares. É sobre esta ponta que incide a maior parte da radiação emitida pelas estrelas de NGC 6611 e, consequentemente, parece ser muito mais brilhante do que os pilares da esquerda em baixo, do centro e da direita, cujas pontas apontam na direção contrária, com relação a nós.
Os astrônomos esperam compreender melhor como é que as estrelas jovens do tipo O e B, como as que se encontram na NGC 6611, influenciam a formação das estrelas subsequentes. Estudos numerosos identificaram protoestrelas formando-se no interior destas nuvens, o que faz delas verdadeiros Pilares da Criação. Este novo estudo mostra também evidências de duas estrelas em gestação nos pilares do centro e da esquerda, assim como um jato lançado por uma estrela jovem que escapou de ser detectado até agora.
A formação de mais estrelas em meios como o dos Pilares da Criação é uma verdadeira corrida contra o tempo, uma vez que a radiação intensa emitida pelas estrelas que já brilham continua desfazendo os pilares.
Ao medir a taxa de evaporação dos Pilares da Criação, o MUSE forneceu aos astrônomos uma janela de tempo para além da qual estas estruturas deixam de existir. Os pilares perdem cerca de 70 vezes a massa do Sol a cada um milhão de anos. Com base na sua massa atual, que é cerca de 200 vezes a massa solar, os Pilares da Criação terão uma duração de vida esperada de talvez mais uns três milhões de anos, um piscar de olhos no tempo cósmico. Assim, estas colunas cósmicas icônicas poderiam também chamar-se Pilares da Destruição.

Este trabalho foi descrito no artigo científico intitulado "The Pillars of Creation revisited with MUSE: gas kinematics and high-mass stellar feedback traced by optical spectroscopy" de A. F. McLeod et al., que foi publicado ontem na revista especializada Monthly Notices of the Royal Astronomical Society.

Fonte: ESO

quinta-feira, 30 de abril de 2015

Do outro lado do Sol

Um longo filamento solar se estende através da superfície relativamente calma do Sol nesta imagem telescópica de 27 de abril.

longo filamento solar

© Göran Strand (longo filamento solar)

A imagem em banda estreita negativa ou invertida foi feita na luz dos átomos ionizados de hidrogênio.

Visto na parte superior esquerda, a magnífica cortina de plasma magnetizado se eleva bem acima da superfície e atualmente vai além da borda do Sol. Quão longo é o filamento solar? Tem quase o mesmo comprimento da distância entre a Terra e a Lua, ilustrada pela inserção em escala à esquerda.

Seguindo à direita pelo disco solar um dia depois, o longo filamento entrou em erupção e ergueu-se para longe da superfície do Sol. Monitorado por satélites que vigiam o Sol, uma ejeção de massa coronal também foi expelida a partir do local, mas é esperado que passe longe do nosso planeta.

Fonte: NASA

Encontrado o elo perdido de estranha supernova

A supernova SN2012ap é um elo perdido entre as explosões estelares que geraram explosões de raios gama (GRB) e àquelas que não geraram, disse um grupo de astrônomos liderado pelo Dr. Den Milisavljevic do Harvard-Smithsonian Center for Astrophysics (CfA).

imagens da supernova SN 2012ap e sua galáxia hospedeira NGC 1729

© D. Milisavljevic (imagens da supernova SN 2012ap e sua galáxia hospedeira NGC 1729)

A SN2012ap é uma supernova conhecida como supernova de colapso de núcleo. Ela foi detectada pela primeira vez pela Lick Observatory Supernova Search, com o telescópio de imageamento automático Katzman de 0,76 metros na galáxia NGC 1729 no dia 10 de Fevereiro de 2012.

A SN2012ap está localizada a cerca de 23.150 anos-luz em projeção do centro da NGC 1729 ao longo de um braço espiral na periferia externa da galáxia.

As supernovas de colapso de núcleo ocorrem quando as reações de fusão nuclear no núcleo de uma estrela muito massiva não pode mais fornecer a energia necessária para segurar o núcleo contra o peso das partes externas da estrela. O núcleo então colapsa de forma catastrófica numa estrela de nêutrons super densa ou num buraco negro. O resto do material da estrela é enviado para o espaço numa explosão de supernova.

O tipo mais comum é uma supernova explodir o material da estrela para fora numa bolha aproximadamente esférica que se expande rapidamente, mas numa velocidade menor que a velocidade da luz. Essas explosões não produzem explosões de raios gama.

Numa pequena porcentagem de casos, o material em queda é levado para um disco espiral de vida curta ao redor da nova estrela de nêutrons ou do buraco negro que se formou. Esse disco de acreção gera jatos de material que se movem para fora dos polos do disco a uma velocidade aproximadamente igual à velocidade da luz. Essa combinação de um disco em espiral e seus jatos é chamada de um motor, e esse tipo de explosão produz explosões de raios gama.

ilustração de uma supernova de colapso de núcleo comum

© NRAO/Bill Saxton (ilustração de uma supernova de colapso de núcleo comum)

A imagem acima mostra à esquerda que em uma supernova de colapso de núcleo comum, sem motor central, o material ejetado se expande para fora quase esfericamente. À direita, um forte motor de centro impulsiona jatos de material quase à velocidade da luz e gera uma GRB. O painel central mostra uma supernova SN 2012ap intermediária, com um motor fraco central, jatos fracos, e sem GRB.

Um novo estudo feito pelo Dr. Milisavljevic e seus colegas, mostrou que nem todas as explosões dos motores de supernovas produzem explosões de raios gama. Os cientistas descobriram que a SN 2012ap tem muitas características esperadas naquelas supernovas que produzem uma poderosa explosão de raios gama, embora essa explosão ainda não aconteceu.

“Esse é um resultado marcante que fornece uma ideia fundamental sobre o mecanismo envolvido nessas explosões. Esse objeto preenche o vazio entre as explosões de raios gama e outras supernovas desse tipo, mostrando que um vasto número de atividades é possível nessas explosões”, disse o Dr. Sayan Chakraborti, um membro da equipe, também do Harvard-Smithsonian Center for Astrophysics.

Os resultados foram submetidos para publicação no The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

Uma remodelagem galáctica

A mancha de estrelas no centro dessa imagem feita pelo telescópio espacial Hubble é uma galáxia conhecida como UGC 5797.

galáxia UGC 5797

© Hubble (galáxia UGC 5797)

A UGC 5797 é uma galáxia de linha de emissão, significando que ela está atualmente passando por uma fase de formação ativa de estrelas. O resultado é uma população estelar que está constantemente sendo remodelada à medida que estrelas massivas e azuis se formam. As galáxias com uma prolífica formação de estrelas não são apenas pintadas com uma tonalidade azulada, mas são fundamentais para a continuação do ciclo estelar.

Nessa imagem, a UGC 5797 aparece em frente a um fundo de galáxias espirais. As galáxias espirais possuem uma grande quantidade de poeira e gás, os principais ingredientes para estrelas, e também pertencem a uma classe de galáxias de linha de emissão.

As galáxias espirais possuem uma forma de disco que drasticamente variam em aparência dependendo do ângulo com a qual ela está sendo observada. A coleção de galáxias espirais nessa imagem exibe seu atributo de forma precisa, onde algumas delas são vistas de frente, revelando a estrutura dos braços espirais, enquanto as duas na parte inferior esquerda da imagem estão sendo vistas de lado, aparecendo como linhas planas no céu. Existem muitas galáxias espirais, com uma grande variedade de cores e em diferentes ângulos brilham através dessa imagem, basta dar uma olhada.

Fonte: ESA

quarta-feira, 29 de abril de 2015

Uma galáxia espiral maciça e próxima

A galáxia espiral NGC 2841 é uma das galáxias mais maciças conhecidas.

NGC 2841

© Roberto Colombari (galáxia espiral NGC 2841)

Ela está localizada a cerca de 46 milhões de anos-luz de distância, sendo encontrada na constelação boreal da Ursa Maior.

Esta visão nítida deste magnífico universo-ilha mostra um impressionante núcleo amarelo e disco galáctico. Faixas de poeira, regiões de nascimento de estrelas pequenas e em cor de rosa e os jovens aglomerados de estrelas azuis estão incorporados nos braços espirais enrolados e irregulares. Em contraste, muitas outras espirais apresentam grandes braços deslumbrantes com grandes regiões de nascimento de estrelas.

A NGC 2841 tem um diâmetro de mais de 150.000 anos-luz, ainda maior do que a nossa Via Láctea, e foi captada nesta imagem composta, uma fusão das exposições do telescópio espacial Hubble, com 2,4 metros de diâmetro e na órbita da Terra, e do telescópio Subaru, com 8,2 metros e em solo. Imagens de raios X sugerem que os ventos e as explosões estelares decorrentes criam nuvens de gás quente que se estendem num halo em torno de NGC 2841.

Fonte: NASA

domingo, 26 de abril de 2015

Observada a fusão de um par de buracos negros supermassivos

Quando duas galáxias entram nos estágios finais de fusão, é previsto na teoria que seus buracos negros supermassivos podem formar um binário, ou seja, dois buracos negros em uma órbita tão próxima que são gravitacionalmente ligados um ao outro.

ilustração da fusão de dois buracos negros supermassivos

© NASA (ilustração da fusão de dois buracos negros supermassivos)

Em um novo estudo, astrônomos da Universidade de Maryland (EUA) apresentaram evidências diretas de um quasar pulsante, o que pode comprovar a existência desses buracos negros binários. 

“Estes buracos negros podem estar tão próximos que estão emitindo ondas gravitacionais, que foram previstas pela Teoria da Relatividade Geral de Albert Einstein”, explica Suvi Gezari, também da Universidade de Maryland.

A descoberta pode elucidar a frequência com que os buracos negros se aproximam o suficiente para formar um binário gravitacionalmente ligado, e eventualmente se fundir. Os buracos negros tipicamente devoram matéria, que acelera e se aquece, emitindo energia eletromagnética e criando alguns dos pontos mais luminosos no céu, chamados quasares. Um quasar é composto por um buraco negro supermaciço e a sua região circundante, normalmente localizado no núcleo de uma galáxia. Quando um quasar está ativo, o gás da galáxia é capturado pelo campo gravitacional do buraco negro e forma um disco de acreção em torno dele. O gás nesse disco orbita o buraco negro a alta velocidade, onde o atrito e o intenso campo eletromagnético aquecem-no a temperaturas muito elevadas, provocando a emissão de radiação muito energética como raios gama e raios X. A variabilidade periódica do PSO J334.2028+01.4075 pode ser explicada pelo movimento orbital de dois buracos negros, no centro da galáxia hospedeira, situada a 10,4 bilhões de anos-luz ; o segundo buraco negro poderá ter entrado em órbita do buraco negro do quasar durante uma colisão galáctica. Um tal sistema emitiria uma enorme quantidade de energia sob a forma de ondas gravitacionais e seria um alvo de referência para experiências que tentam detectar diretamente estas ondas, cuja existência é prevista pela Teoria da Relatividade Geral. A sua existência oferece poucas dúvidas à comunidade científica pois foram detectadas indiretamente em sistemas binários formados por pulsares. Quando dois buracos negros orbitam como um binário, absorvem matéria ciclicamente, o que possibilita prever que o quasar binário responderia clareando e escurecendo periodicamente.

Os pesquisadores realizaram uma busca sistemática pelos chamados quasares variáveis usando o Panoramic Survey Telescope and Rapid Response System (Pan-STARRS1) Medium Deep Survey. Este telescópio fica baseado no Havaí, em Haleakala, e fotografa a mesma porção do céu uma vez a cada três dias, recolhendo centenas de dados para cada objeto ao longo de quatro anos. Nestes dados, a equipe de astrônomos encontrou o quasar PSO J334.2028+01.4075, que tem um grande buraco negro de quase 10 bilhões de massas solares e emite um sinal óptico periódico que se repete a cada 542 dias. O sinal do quasar era incomum porque as curvas de luz da maioria dos quasares são arrítmicos. Para verificar a sua descoberta, a equipe de pesquisa executou rigorosos cálculos e simulações e examinou dados adicionais, incluindo dados fotométricos de outros telescópios e sistemas de monitoramento.

simulação da fusão de dois buracos negros supermassivos

© S. Shapiro (simulação da fusão de dois buracos negros supermassivos)

Uma equipe de cientistas liderada por Stuart Shapiro, da Universidade de Illinois Urbana-Champaign, apresentou pela primeira vez simulações da colisão de dois buracos negros supermaciços em 3 dimensões, usando as equações da Teoria da Relatividade Geral, para descrever a interação gravitacional dos corpos, e as equações da magnetohidrodinâmica que descrevem o plasma com elevadas temperaturas dos discos de acreção que envolvem os horizontes de eventos dos buracos negros. Os resultados das simulações foram publicados na revista Nature e apresentados na reunião da American Physical Society que ocorreu recentemente em Baltimore, Maryland (EUA).

“A descoberta de um candidato a sistema compacto binário de buracos negros supermassivos como o PSO J334.2028+01.4075, que parece a uma separação orbital tão pequena, acrescenta ao nosso conhecimento limitado das etapas finais da fusão entre os buracos negros supermassivos”, aponta a estudante de mestrado em astronomia da Universidade de Maryland, Tingting Liu, principal autora da pesquisa. Os pesquisadores planejam continuar procurarando novos quasares variáveis. A partir de 2023, sua pesquisa poderia ser auxiliada pelo telescópio Synoptic Large Telescope Survey. Espera-se que este aparelho possa fazer o levantamento de uma área muito maior, possibilitando identificar a localização de milhares destes buracos negros supermassivos que estão se fundindo no céu noturno.

O trabalho foi publicado na revista The Astrophysical Journal Letters.

Fonte: University of Maryland

sábado, 25 de abril de 2015

O aglomerado de formação estelar Westerlund 2

A tapeçaria brilhante de jovens estrelas ganha vida nessa nova imagem feita pelo telescópio espacial Hubble e lembra a explosão de fogos de artifícios no céu.

aglomerado estelar Westerlund 2

© Hubble (aglomerado estelar Westerlund 2)

Essa vibrante imagem do aglomerado estelar, conhecido como Westerlund 2, foi lançada para celebrar o vigésimo quinto aniversário do Hubble na órbita da Terra e um quarto de século de novas descobertas, imagens impressionantes e uma ciência inigualável. O aglomerado estelar Westerlund 2 foi descoberto na década de 1960 pelo o astrônomo sueco Bengt Westerlund.

No dia 24 de Abril de 1990, o telescópio espacial Hubble foi colado em órbita pelo ônibus espacial Discovery, tornando-se o primeiro telescópio espacial deste tipo. Ele ofereceu uma nova visão do Universo, e durante este tempo tem alcançado e superado todas as expectativas, enviando para a Terra, dados e imagens que têm mudado a maneira com a qual os cientistas entendem o Universo e a percepção que o público tem dele.

região central do aglomerado estelar Westerlund 2

© Hubble (região central do aglomerado estelar Westerlund 2)

Nessa imagem, o centro brilhante do gigantesco aglomerado estelar Westerlund 2 contém cerca de 3.000 estrelas. O aglomerado reside num local estelar muito fértil, conhecido como Gum 29, localizado a cerca de 20.000 anos-luz de distância da Terra, na constelação de Carina.

O berçário estelar é difícil de ser observado pois ele fica envolto por poeira, mas a Wide Field Camera 3 do Hubble consegue espiar através do véu empoeirado usando para isso os seus detectores de radiação infravermelha, dando assim aos astrônomos uma visão clara do aglomerado. A visão nítida do Hubble resolve a densa concentração de estrelas no aglomerado central, que mede somente cerca de 10 anos-luz de diâmetro.

O gigantesco aglomerado de estrelas tem somente dois milhões de anos de vida, mas contém algumas das mais brilhantes, quentes e massivas estrelas já descobertas. Algumas dessas estrelas estão cavando as profundas cavidades no material ao redor, lançando correntes de radiação ultravioleta e fluxos de alta velocidade de partículas carregadas, conhecidos como ventos estelares. Esses ventos, por sua vez estão soprando para longe a nuvem de gás hidrogênio onde as estrelas estavam nascendo e são responsáveis pelas estranhas e maravilhosas formas das nuvens de gás de poeira observadas na imagem.

Os pilares na imagem são compostos de densas concentrações de gás e poeira, e são resistentes à erosão da forte radiação e dos poderosos ventos. Esses monolitos gasosos possuem alguns anos-luz de altura e apontam para a região central do aglomerado. Outras regiões gasosas circundam os pilares, incluindo filamentos escuros de poeira e gás.

Além de esculpir a região gasosa, as brilhantes estrelas podem também ajudar a criar uma nova geração de novas estrelas. Quando o vento estelar atinge as densas paredes de gás, é criada uma onda de choque, que gera uma nova onda de formação de estrelas, ao longo da parede da cavidade. Os pontos vermelhos espalhados através da paisagem cósmica são ricas populações de estrelas em formação que ainda estão embrulhadas nos seus casulos de gás e poeira. Esses fetos estelares ainda não iniciaram em seu interior a fusão do hidrogênio, para então brilharem como estrelas. Contudo a visão do Hubble no infravermelho próximo permite que os astrônomos identifiquem esses bebês estelares. As estrelas azuis brilhantes vistas através da imagem são na sua maioria estrelas de primeiro plano e que não pertencem ao aglomerado.

A região central da imagem, contendo o aglomerado estelar, só é visível pois foi feita uma mistura dos dados em luz visível obtidos pela Advanced Camera for Surveys e pelas exposições em infravermelho próximo feitas pela Wide Field Camera 3. A região ao redor é vista graças às observações feitas na luz visível pela Advanced Camera for Surveys do Hubble.

Essa imagem é um testamento sobre o poder observacional do Hubble, e demonstra que, mesmo com 25 anos de operação, a história do Hubble está longe de acabar. O Hubble está preparando o palco para o seu companheiro o telescópio espacial James Webb, programado para ser lançado em 2018, mas ele não será imediatamente substituído por essa nova maravilha da engenharia, mas sim irão trabalhar em conjunto. Agora, 25 anos depois do seu lançamento, é o momento de celebrar o potencial futuro do Hubble bem como lembrar a sua história marcante.

Fonte: Space Telescope Science Institute