domingo, 28 de agosto de 2016

Uma galáxia que é predominantemente constituída de matéria escura

A galáxia Dragonfly 44 é muito difusa e está localizada a 300 milhões de anos-luz de distância na constelação de Coma.

galáxia Dragonfly 44

© Gemini Observatory/SDSS (galáxia Dragonfly 44)

Ela foi descoberta há um ano pelo astrônomo Dr. Pieter van Dokkum e colegas, da Universidade de Yale, usando a Dragonfly Telephoto Array.

Mediante uma análise mais aprofundada, os astrônomos perceberam que a galáxia tinha tão poucas estrelas que rapidamente seria rompida, a menos que algo estava segurando-a junto.

Para determinar a quantidade de matéria escura nesta galáxia, eles usaram o instrumento DEIMOS instalado no W. M. Keck Observatory em Mauna Kea, no Havaí, para medir as velocidades das estrelas em 33,5 horas durante um período de seis noites para que pudessem determinar a massa da galáxia.

Os cientistas, em seguida, utilizaram o Gemini Multi-Object Spectrograph instalado no telescópio Gemini North de 8 metros, para revelar um halo de aglomerados esféricos de estrelas em torno do núcleo da galáxia.

Os movimentos das estrelas podem fornecer quanta matéria existe. Na galáxia Dragonfly 44 as estrelas se movem muito rápido.

Entretanto, os astrônomos notaram uma grande discrepância,  encontraram muito mais massa indicada pelos movimentos das estrelas.

A massa da Dragonfly 44 é estimada em um trilhão de vezes a massa do Sol, muito semelhante à massa da Via Láctea. No entanto, apenas um 0,01% está na forma de estrelas e matéria "normal"; o restante 99,99% está sob a forma de matéria escura.

A Via Láctea tem mais de uma centena de vezes mais estrelas do que Dragonfly 44.

Encontrar uma galáxia com a massa da Via Láctea, que é quase totalmente escura foi inesperado.

"Nós não temos nenhuma idéia de como galáxias como Dragonfly 44 poderia ter se formado," disse o Dr. Roberto Abraham, da Universidade de Toronto. "Os dados do GEMINI mostram que uma fracção relativamente grande das estrelas está sob a forma de aglomerados muito compactos, e que é provavelmente uma pista importante. Mas no momento estamos apenas supondo."

"Isto tem grandes implicações para o estudo da matéria escura," disse o Dr. van Dokkum. "Ela ajuda a ter objetos que são quase inteiramente feitos de matéria escura para que não se confunda com estrelas e todas as outras coisas que as galáxias têm."

"As únicas galáxias que foram estudadas antes eram diminutas. Esta descoberta abre uma nova classe de objetos massivos que podemos estudar," conclui o Dr. van Dokkum.

Os resultados da equipe foram aceitos para publicação no Astrophysical Journal Letters.

Fonte: Astronomy

sábado, 27 de agosto de 2016

Descoberto inesperado tesouro de gás em torno de estrelas maiores

Astrônomos estudaram dúzias de estrelas jovens, algumas parecidas com o Sol e outras com quase o dobro do tamanho, e descobriram que o gênero mais massivo tem reservatórios surpreendentemente ricos de monóxido de carbono nos seus discos de detritos. Em contraste, as estrelas parecidas com o Sol, de massa inferior, têm discos de detritos praticamente livres de gás.

ilustração de um disco de detritos ao redor de uma estrela

© NRAO/D. Berry/SkyWorks (ilustração de um disco de detritos ao redor de uma estrela)

Esta constatação contraria as expetativas dos astrônomos, que afirmam que a maior radiação das estrelas maiores deve retirar gás dos seus discos de detritos mais rapidamente do que a radiação comparativamente suave das estrelas menores. Pode também fornecer novas informações sobre a linha temporal para a formação de planetas gigantes em torno de estrelas jovens.

Os discos de detritos podem ser encontrados em estrelas que perderam os seus discos protoplanetários cheios de gás e poeira para formar planetas, asteroides, cometas e outros planetesimais. No entanto, em torno de estrelas mais jovens, muitos destes objetos recém-formados têm ainda que assentar em órbitas estáveis e colidem rotineiramente, produzindo entulho suficiente para gerar um disco de "segunda geração" de detritos.

"As anteriores medições espectroscópicas dos discos de detritos revelaram que alguns tinham uma assinatura química inesperada, sugerindo um excesso do gás monóxido de carbono," afirma Jesse Lieman-Sifry, autor principal da pesquisa. No momento das observações, Lieman-Sifry era estudante de astronomia da Universidade de Wesleyan, em Middletown, no estado americano de Connecticut. "Esta descoberta é interessante porque os astrônomos pensam que este gás há muito que devia ter desaparecido durante o aparecimento de evidências de um disco de detritos," comenta.

Em busca de pistas sobre o porquê de certas estrelas abrigarem discos ricos em gás, Lieman-Sifry e a sua equipe estudaram 24 sistemas estelares na Associação Escorpião-Centauro. Este aglomerado estelar relativamente solto, situado a algumas centenas de anos-luz da Terra, contém centenas de estrelas de massa baixa e intermediária. Para referência, o nosso Sol é uma estrela de baixa massa.

Os astrônomos refinaram a sua pesquisa para estrelas entre cinco e dez milhões de anos, idade suficiente para hospedar sistemas planetários de pleno direito e discos de detritos, e usaram o ALMA (Atacama Large Millimeter/submillimeter Array) para examinar o "brilho" do comprimento de onda milimétrico do monóxido de carbono nos discos de detritos das estrelas.

A equipe realizou o seu estudo ao longo de um total de seis noites entre dezembro de 2013 e dezembro de 2014, observando apenas dez minutos cada noite. Durante a sua realização, esta pesquisa constituiu o mais extenso levantamento interferométrico no comprimento de onda milimétrico no que toca a discos de detritos estelares.

Armados com um conjunto incrivelmente rico de observações, os astrônomos descobriram os discos mais ricos em gás já registados num único estudo. Entre a sua amostra de duas dúzias de discos, os pesquisadores avistaram três que exibiam uma forte emissão do monóxido de carbono. Para sua surpresa, todos os três discos ricos em gás rodeavam estrelas com aproximadamente o dobro da massa do Sol. Nenhuma das 16 mais pequenas estrelas da amostra, estrelas estas parecidas com o Sol, pareciam ter discos com grandes reservatórios de monóxido de carbono. Estas observações sugerem que as estrelas maiores são mais propensas a abrigar discos com grandes reservatórios de gás do que estrelas do tipo solar.

Este achado é contraditório, uma vez que as estrelas mais massivas inundam os seus sistemas planetários com a energética radiação ultravioleta que deveria destruir o monóxido de carbono que persiste nos seus discos de detritos. Esta nova pesquisa revela, no entanto, que as estrelas maiores são, de alguma forma, capazes de ou preservar ou repor o estoque de monóxido de carbono.

"Não temos a certeza se estas estrelas estão retendo reservatórios de gás durante muito mais tempo do que o esperado, ou se há uma espécie de 'último fôlego' de gás de segunda geração sendo produzido por colisões de cometas ou pela evaporação de mantos gelados de grãos de poeira," acrescenta Meredith Hughes, astrônoma da Universidade de Wesleyan.

Segundo Hughes, a existência deste gás pode ter implicações importantes para a formação planetária. O monóxido de carbono é um dos principais constituintes das atmosferas dos planetas gigantes. A sua presença nos discos de detritos pode significar que outros gases, incluindo o hidrogênio, estão presentes, mas talvez em concentrações muito menores. Os astrônomos especulam que, caso alguns discos de detritos sejam capazes de segurar quantidades apreciáveis de gás, talvez possam empurrar para a frente o prazo previsto para a formação de planetas gigantes em torno de estrelas jovens.

"As observações de alta-resolução, no futuro, destes sistemas ricos em gás poderão permitir a determinação da localização do gás dentro do disco, o que poderá lançar luz sobre a origem do gás," comenta Antonio Hales, astrônomo do ALMA em Santiago, Chile e do NRAO (National Radio Astronomy Observatory) em Charlottesville, Virginia, EUA. "Por exemplo, caso o gás seja produzido por colisões entre planetesimais, deverá estar mais fortemente concentrado em regiões do disco onde esses impactos ocorreram. O ALMA é o único instrumento capaz de fazer este tipo de imagens de alta-resolução."

De acordo com Lieman-Sifry, estes discos de poeira são tão diversos quanto os sistemas planetários que acompanham. A descoberta de que os discos de detritos ao redor de algumas estrelas grandes retêm o monóxido de carbono durante mais tempo do que os seus homólogos tipo-Sol, poderá fornecer mais informações sobre a função que este gás desempenha no desenvolvimento de sistemas planetários.

A descoberta foi relatada num artigo publicado na revista The Astrophysical Journal.

Fonte: National Astronomical Observatory of Japan

quarta-feira, 24 de agosto de 2016

Encontrado planeta na zona de habitabilidade da estrela mais próxima

Com o auxílio dos telescópios do ESO e outras infraestruturas, astrônomos encontraram evidências claras de um planeta orbitando a estrela mais próxima da Terra, Proxima Centauri.

ilustração do planeta que orbita Proxima Centauri

© ESO/M. Kornmesser (ilustração do planeta que orbita Proxima Centauri)

Este mundo há muito procurado, designado por Proxima b, orbita a sua estrela progenitora, vermelha e fria, a cada 11 dias, e possui uma temperatura que permite a existência de água líquida em sua superfície. Este mundo rochoso é um pouco mais massivo que a Terra e trata-se do exoplaneta mais próximo de nós, podendo também ser o mais próximo a abrigar vida fora do Sistema Solar.

A estrela anã vermelha Proxima Centauri situa-se a pouco mais de 4 anos-luz de distância do Sistema Solar, sendo assim a estrela mais próxima da Terra depois do Sol. Esta estrela fria, localizada na constelação do Centauro, é muito fraca para poder ser vista a olho nu, situando-se perto do par de estrelas muito mais brilhante conhecido como Alfa Centauri AB.

Durante a primeira metade de 2016, Proxima Centauri foi regularmente observada com o espectrógrafo HARPS, montado no telescópio de 3,6 metros do ESO, instalado em La Silla, no Chile, e simultaneamente monitorada por outros telescópios em todo o mundo. Tratou-se da campanha Pálido Ponto Vermelho, durante a qual uma equipe de astrônomos liderada por Guillem Anglada, do Queen Mary University of London, procurou uma oscilação minúscula da estrela, que seria causada pela atração gravitacional de um possível planeta que a orbitasse. O nome Pálido Ponto Vermelho reflete a famosa referência de Carl Sagan à Terra como Pálido Ponto Azul. Como Proxima Centauri é uma estrela anã vermelha, banhará o seu planeta com um brilho vermelho pálido.

Uma vez que este é um tópico que gera muito interesse entre o público, de meados de janeiro a abril de 2016 o progresso da campanha foi compartilhado publicamente no website Pálido Ponto Vermelho e nas redes sociais. Relatórios regulares foram acompanhados por diversos artigos de divulgação escritos por especialistas de todo o mundo.

Guillem Anglada contextualiza esta busca única: “Os primeiros indícios da existência de um possível planeta em torno de Proxima Centauri foram observados em 2013, no entanto a detecção não foi convincente. Desde essa época que temos trabalhado arduamente de modo a obter mais observações a partir do solo com a ajuda do ESO e outras instituições. Preparamos a campanha Pálido Ponto Vermelho por cerca de dois anos.”

Os dados do Pálido Ponto Vermelho, quando combinados com observações anteriores obtidas nos observatórios do ESO e outros, revelaram o sinal claro de um resultado verdadeiramente excitante. Em determinadas épocas, Proxima Centauri se aproxima da Terra com uma velocidade de cerca de 5 km/hora, a velocidade normal de caminhada de um ser humano, e em outras se afasta à mesma velocidade. Este padrão regular de variação nas velocidades radiais repete-se com um período de 11,2 dias. Uma análise cuidadosa dos minúsculos desvios Doppler resultantes mostrou que estes desvios indicam a presença de um planeta com uma massa de pelo menos 1,3 vezes a massa da Terra, orbitando a cerca de 7 milhões de km de Proxima Centauri, apenas 5% da distância Terra-Sol.

As anãs vermelhas como Proxima Centauri são estrelas ativas, podendo por isso apresentar variações que reproduzem a presença de um planeta. Para excluir esta possibilidade, a equipe monitorou também de forma cuidadosa a variação do brilho da estrela durante a campanha, com o auxílio do telescópio ASH2, instalado no Observatório de Explorações Celestes de San Pedro de Atacama, no Chile, e da rede de telescópios do Observatório Las Cumbres. Os dados de velocidade radial obtidos nas épocas em que a estrela sofria erupções foram excluídos da análise final.

Embora o planeta Proxima b orbite muito mais próximo da sua estrela do que Mercúrio o faz do Sol no nosso Sistema Solar, a estrela propriamente dita é muito menos brilhante que o Sol, o que faz com que Proxima b se situe bem dentro da zona de habitabilidade da estrela, tendo uma temperatura superficial estimada que permite a presença de água líquida. Apesar da órbita temperada de Proxima b, as condições em sua superfície podem ser fortemente afetadas pelas erupções de raios ultravioleta e de raios X da estrela, que são muito mais intensas que as sentidas na Terra vindas do Sol. A possibilidade deste tipo de planeta ter água e vida do tipo da Terra é assunto de debate intenso mas essencialmente teórico. As principais preocupações contra a presença de vida estão relacionadas com a proximidade da estrela. Por exemplo, forças gravitacionais manterão muito provavelmente o mesmo lado do planeta em luz perpétua, enquanto o outro lado se manterá em noite perpétua. A atmosfera do planeta pode também estar evaporando lentamente ou pode ter uma química mais complexa que a da Terra devido a radiação ultravioleta e raios X muito fortes, principalmente durante o primeiro bilhão de anos de vida da estrela. No entanto, nenhum destes argumentos é determinante, não se podendo tirar nenhuma conclusão sem evidências observacionais diretas e caracterização da atmosfera do planeta.

Dois artigos científicos adicionais discutem a habitabilidade de Proxima b e seu clima. Estes artigos concluem que no momento a existência de água líquida na superfície deste planeta não pode ser descartada. Sendo assim, a água poderia estar presente apenas nas regiões mais iluminadas pela luz de sua estrela, que podem estar no hemisfério do planeta virado para estrela (no caso de rotação síncrona) ou na faixa tropical (no caso de uma ressonância orbital 3:2). A rotação de Proxima b, a forte radiação emitida pela estrela e a história de formação do planeta tornam seu clima bastante diferente do terrestre, e é improvável que Proxima b experimente estações do ano.

Esta descoberta marca o início de observações extensas subsequentes, tanto obtidas com os instrumentos atuais, como com a nova geração de telescópios gigantes tais como o European Extremely Large Telescope (E-ELT). Proxima b será o alvo principal para se procurar evidências de vida em outros locais do Universo. Alguns dos métodos para estudar a atmosfera de um planeta dependem desse planeta passar em frente da sua estrela e a luz estelar passar através da atmosfera no seu percurso até à Terra. Atualmente não temos evidências de que Proxima b transite em frente ao disco da sua estrela progenitora e as hipóteses disso acontecer parecem pequenas, no entanto estão em progresso mais observações para verificar esta possibilidade. Aliás, o sistema de Alfa Centauri é também o alvo da primeira tentativa da humanidade de viajar para outro sistema estelar, o projeto StarShot.

Guillem Anglada conclui: “Muitos exoplanetas já foram descobertos muitos outros ainda o serão, no entanto a procura do mais próximo potencial planeta análogo à Terra e a sua subsequente descoberta constituíram na realidade uma experiência para toda a vida para toda a equipe. A história e esforços de muitas pessoas convergiram nesta descoberta. Este resultado é por isso também um tributo a todos eles. A procura de vida em Proxima b é o passo seguinte...”

Um artigo científico descrevendo esta descoberta marcante foi publicado na revista Nature.

Fonte: ESO

terça-feira, 23 de agosto de 2016

Um jovem peso pesado estelar na Via Láctea

Astrônomos identificaram uma estrela jovem, localizada a quase 11.000 anos-luz de distância, que poderá ajudar-nos a entender como é que as estrelas mais extremas do Universo se formam.

ilustração do disco e do fluxo ao redor da estrela massiva

© U. Cambridge/A. Smith (ilustração do disco e do fluxo ao redor da estrela massiva)

Esta estrela jovem, já com mais de 30 vezes a massa do nosso Sol, está ainda no processo de recolhimento de material da sua nuvem molecular e poderá ficar ainda mais massiva quando finalmente atingir a idade adulta.

Os ipesquisadores, liderados por uma equipe da Universidade de Cambridge, identificaram uma etapa fundamental no nascimento de estrelas muito massivas e descobriram que estas estrelas se formam de maneira semelhante às estrelas muito menores como o nosso Sol, a partir de um disco rotativo de gás e poeira.

Na nossa Galáxia, as jovens estrelas massivas, aquelas cuja massa é pelo menos oito vezes superior à do Sol, são mais difíceis de estudar do que as estrelas menores. Isto porque vivem pouco tempo e morrem jovens, o que as torna raras entre as 100 bilhões de estrelas na Via Láctea e, em média, estão muito mais longe.

"Uma estrela média como o nosso Sol é formada ao longo de alguns milhões de anos, enquanto que as estrelas massivas são formadas ordens de magnitude mais rapidamente, cerca de 100.000 anos," afirma o Dr. John Ilee do Instituto de Astronomia de Cambridge, o autor principal do estudo.

Estas estrelas massivas também queimam o seu combustível muito mais rapidamente, de modo que têm vidas mais curtas. A protoestrela reside numa nuvem escura infravermelha, uma região muito fria e densa do espaço, ideal para um berçário estelar. No entanto, esta rica região de formação estelar é difícil de observar usando telescópios convencionais, pois as jovens estrelas estão rodeadas por uma nuvem espessa e opaca de gás e poeira. Mas ao usar o SMA (Submillimeter Array) no Havaí e o VLA (Karl G. Jansky Very Large Array) no estado americano do Novo México, ambos os quais utilizam comprimentos de onda relativamente longos para observar o céu, foi possível observar através da nuvem e espiar o berçário estelar propriamente dito.

Ao medir a quantidade de radiação emitida pela poeira fria perto da estrela, e utilizando as impressões digitais únicas de várias moléculas diferentes no gás, os cientistas foram capazes de determinar a presença de um disco "Kepleriano", um que gira mais rapidamente no seu centro do que nas orlas. Este tipo de rotação é também observado no Sistema Solar, onde os planetas interiores giram em torno do Sol mais depressa do que os planetas exteriores. "É emocionante encontrar um disco destes ao redor de uma jovem estrela massiva, porque sugere que as estrelas massivas se formam de maneira semelhante com as estrelas mais leves, como o Sol," realça Ilee.

As fases iniciais deste trabalho fizeram parte de um projeto de pesquisa que envolvia uma exploração inicial das observações e o desenvolvimento de um software para medir a massa da estrela central.

A partir destas observações, a equipe determinou que a massa da protoestrela é superior a 30 vezes a massa do Sol. Além disso, também se descobriu que o disco que rodeia a jovem estrela é relativamente massivo, entre duas a três a massa do nosso Sol. O Dr. Duncan Forgan, também da Universidade de St. Andrews, comenta: "Os nossos cálculos teóricos sugerem que o disco pode, de fato, estar escondendo ainda mais massa sobre camadas de gás e poeira. O disco pode até ser tão massivo para quebrar-se sob a sua própria gravidade, formando uma série de protoestrelas companheiras menos massivas."

O próximo passo dos pesquisadores será o de observar a região com o ALMA (Atacama Large Millimetre Array), localizado no Chile. Este poderoso instrumento permitirá com que quaisquer potenciais companheiras sejam observadas, e com que os cientistas aprendam mais sobre este jovem e intrigante peso pesado na nossa Galáxia.

Os resultados do estudo serão apresentados esta semana na conferência Star Formation 2016 na Universidade de Exeter e serão publicados na revista Monthly Notices of the Royal Astronomical Society.

Fonte: University of Cambridge

sábado, 20 de agosto de 2016

Exoplaneta parecido com Vênus poderá ter atmosfera de oxigênio

O distante planeta GJ 1132b intrigou os astrônomos quando foi descoberto no ano passado. Localizado a apenas 39 anos-luz da Terra, poderá ter uma atmosfera apesar de ser cozido a uma temperatura de aproximadamente 230ºC.

ilustração do exoplaneta GJ 1132b

© Dana Berry (ilustração do exoplaneta GJ 1132b)

Mas será que a atmosfera é espessa ou fina?

Uma nova pesquisa sugere que o segundo cenário é muito mais provável.

A astrônoma Laura Schaefer, do Harvard-Smithsonian Center for Astrophysics, e colegas examinaram a questão do que aconteceria a GJ 1132b ao longo do tempo caso começasse com uma atmosfera abafada e rica em água.

Orbitando tão perto da sua estrela, a uma distância de apenas 2,3 milhões de quilômetros, o planeta é inundado com radiação ultravioleta. A luz ultravioleta quebra as moléculas de água em hidrogênio e oxigênio, as quais, em seguida, são perdidas para o espaço. No entanto, dado que o hidrogênio é mais leve, escapa mais facilmente, enquanto o oxigênio persiste atrás.

"Em planetas mais frios, o oxigênio pode ser um sinal de vida extraterrestre e habitabilidade. Mas num planeta quente como GJ 1132b, é um sinal exatamente do oposto, um planeta que está sendo cozido e esterilizado," comenta Schaefer.

Dado que o vapor de água é um gás de efeito estufa, o planeta teria um forte efeito estufa, ampliando o já intenso calor da estrela. Como resultado, a sua superfície pode ficar derretida durante milhões de anos.

Um "oceano de magma" iria interagir com a atmosfera, absorvendo algum desse oxigênio, mas quanto? De acordo com o modelo criado por Schaefer e colegas, apenas cerca de 10%. A maioria dos restantes 90% flui para o espaço. No entanto, algum pode persistir.

"Esta poderá ser a primeira vez que detectamos oxigênio num planeta rochoso além do Sistema Solar," afirma Robin Wordsworth, da Harvard Paulson School of Engineering and Applied Sciences.

Se algum desse oxigênio ainda se apega a GJ 1132b, a próxima geração de telescópios como o GMT (Giant Magellan Telescope) ou o telescópio espacial James Webb poderá ser capaz de o detectar e analisar.

O modelo de oceano-atmosfera de magma pode ajudar os cientistas a resolver o enigma de como Vênus evoluiu ao longo do tempo. Vênus provavelmente começou com quantidades de água semelhantes às da Terra, que teriam sido quebradas pela luz solar. No entanto, mostra poucos sinais de oxigênio persistente. O problema da falta de oxigênio continua a confundindo os astrônomos.

Schaefer prevê que o seu modelo também possa fornecer informações sobre outros exoplanetas parecidos. Por exemplo, o sistema TRAPPIST-1 contém três planetas que podem estar na zona habitável. Uma vez que são mais frios do que GJ 1132b, têm mais hipóteses de reter uma atmosfera.

Este trabalho foi aceito para publicação na revista The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

Estrela sai da hibernação de forma explosiva

Astrônomos do Observatório Astronômico da Universidade de Varsóvia, baseados no levantamento a longo termo e em grande escala do OGLE (Optical Gravitational Lensing Experiment) anunciaram a descoberta de uma extraordinária explosão estelar.

  ilustração da explosão de uma nova clássica

© K. Ulaczyk/Warsaw University Observatory (ilustração da explosão de uma nova clássica)

Observações a longo prazo da nova clássica V1213 Centauri, entre os anos 2003 e 2016, forneceram novas informações sobre a evolução e mecanismos destas espetaculares explosões cósmicas.

"As erupções de novas clássicas estão entre as maiores explosões estelares observadas no Universo. Em poucas horas, as novas aumentam de brilho por um fator de vários milhares, tornando-se nos objetos mais brilhantes na Via Láctea," explica Przemek Mróz, o autor principal e estudante de pós-doutoramento no Observatório Astronômico da Universidade de Varsóvia.

As novas clássicas são sistemas binários íntimos que consistem de uma anã branca que rouba matéria de uma companheira estelar de baixa massa. A matéria rica em hidrogênio acumula-se à superfície da anã branca e assim que a sua massa atinge um valor crítico, é desencadeada uma reação termonuclear, provocando uma grande explosão, a erupção de uma nova clássica. Os astrônomos pensam que em cada sistema deste gênero, as erupções repetem-se em escalas de tempo de milhares a milhões de anos, o que torna impossível traçar o comportamento do sistema durante esse tempo.

Uma das hipóteses, conhecida como cenário de hibernação, prevê que várias décadas após a erupção o sistema caia num estado de baixa atividade, quando a transferência de massa virtualmente cessa. A hipótese de hibernação ganhou algum apoio graças à descoberta de antigas conchas de novas em torno de dois sistemas com uma transferência de baixa massa. No entanto, ainda não foram encontradas evidências diretas de alterações consideráveis na transferência de massa antes, durante e após as novas.

Os astrônomos efetuaram observações da nova clássica V1213 Centauri (Nova Centauri 2009), que explodiu no dia 8 de maio de 2009, com um telescópio de 1,3 metros localizado no Observatório Las Campanas, no Chile. A estrela está localizada na direção da constelação de Centauro a uma distância de 23 mil anos-luz da Terra.

"As nossas observações estão de acordo com as previsões do cenário de hibernação. Este é o primeiro caso em que a evolução de uma nova clássica pode ser investigada com tanta precisão," comenta Przemek Mróz.

Antes da erupção de 2009, o sistema mostrava novas anãs (aumentos pequenos e periódicos de brilho), sugerindo uma instável transferência de pouca massa entre as duas estrelas. Atualmente, o sistema está significativamente mais brilhante do que antes da explosão, sugerindo que a transferência de massa aumentou como resultado da nova. Isto está de acordo com as previsões fundamentais da hipótese de hibernação.

Durante as próximas décadas a taxa de transferência de massa deverá diminuir gradualmente e a estrela também diminuir, gradualmente, de brilho. A estrela voltará a transformar-se numa nova anã e possivelmente cair em hibernação durante milhares de anos, até que desperte novamente e expluda como uma nova clássica. A V1213 Centauri, com o seu bem conhecido comportamento de erupção, poderá torna-se uma "Pedra de Rosetta" para os estudos da evolução das novas. As continuadas e detalhadas observações de acompanhamento, durante as próximas décadas, irão permitir novos testes da evolução a longo prazo da nova.

"A nossa descoberta é outro caso de quando as observações a longo termo do OGLE são cruciais para os estudos deste fenômeno único e extremamente raro," afirma o professor Andrzej Udalski, diretor do Observatório da Universidade de Varsóvia e membro da equipe OGLE. "Há alguns anos, observamos um processo de fusão entre duas estrelas, o que levou a uma outra explosão estelar, conhecida como nova vermelha," realça Udalski.

Um dos primeiros objetivos do levantamento OGLE foi o de descobrir matéria escura usando a técnica de microlente gravitacional. Atualmente, os seus estudos cobrem uma grande variedade de tópicos: procura por exoplanetas, estudos da estrutura e evolução da Via Láctea e de galáxias vizinhas, estrelas variáveis, quasares e transientes.

O artigo que descreve a descoberta foi publicado na revista científica Nature.

Fonte: University of Warsaw

sexta-feira, 19 de agosto de 2016

Supernova ejetada das páginas da História

Um novo olhar sobre os detritos de uma estrela que explodiu na nossa Galáxia ajudou os astrônomos a reexaminar quando a supernova realmente aconteceu. Observações recentes do remanescente de supernova chamado G11.2-0.3, com o observatório de raios X Chandra da NASA, arrancaram a sua ligação a um evento registado pelos chineses no ano 386.

remanescente de supernova G11.2-0.3

© Chandra/DSS (remanescente de supernova G11.2-0.3)

Esta imagem mais recente de G11.2-0.3 mostra raios X de baixa energia em vermelho, raios X de energia moderada em verde, e raios X altamente energéticos detectados pelo Chandra em azul. Os dados de raios-  foram sobrepostos num campo óptico do DSS (Digitized Sky Survey), que mostra estrelas no primeiro plano.

As supernovas históricas e seus remanescentes podem ter ligações tanto em observações astronômicas atuais, bem como em registos históricos do evento. Uma vez que pode ser difícil determinar, a partir de observações recentes do remanescente, exatamente quando é que a supernova ocorreu, as supernovas históricas fornecem informações importantes sobre estas cronologias estelares. Os detritos estelares podem dizer-nos muito sobre a natureza da estrela que explodiu, mas a interpretação torna-se muito mais simples tendo uma idade conhecida.

Novos dados de G11.2-0.3 pelo Chandra mostram a existência de nuvens densas de gás situadas ao longo da linha de visão entre o remanescente de supernova e a Terra. As observações infravermelhas com o telescópio Hale de 5 metros do Observatório Palomar já tinham indicado anteriormente que partes do remanescente eram fortemente obscurecidas por poeira. Isto significa que a supernova responsável por este objeto teria sido simplesmente demasiado fraca para poder ser vista a olho nu no ano 386. Isto deixa a natureza do evento observado nesse ano como um mistério.

A nova imagem de G11.2-0.3 foi divulgada em conjunto com o workshop desta semana intitulado "A Ciência do Chandra para a Próxima Década", que teve lugar em Cambridge, no estado americano de Massachusetts. Apesar do workshop se focar na ciência inovadora e emocionante que o Chandra poderá concluir nos próximos dez anos, G11.2-0.3 é um exemplo de como este grande observatório nos ajuda a entender melhor a história complexa do Universo e dos objetos aí presentes.

Aproveitando as operações bem-sucedidas do Chandra desde que foi lançado para o espaço em 1999, os astrônomos foram capazes de comparar observações de G11.2-0.3 realizadas em 2000 com aquelas obtidas em 2003 e mais recentemente em 2013. Esta longa linha de base permitiu aos cientistas medir o quão rápido o remanescente está em expansão. Usando estes dados para extrapolar o passado, determinaram que a estrela que criou G11.2-0.3 explodiu entre 1.400 e 2.400 anos, da perspetiva da Terra.

Os dados anteriores de outros observatórios haviam mostrado que este remanescente era o produto de uma supernova criada a partir do colapso e explosão de uma estrela massiva. A cronologia revista da explosão, com base nos dados recentes do Chandra, sugere que G11.2-0.3 é uma das mais jovens supernovas na Via Láctea. A supernova mais jovem, Cassiopeia A, tem também uma idade determinada a partir da expansão do seu remanescente e, tal como G11.2-0.3, não foi observada durante a data estimada da sua explosão, 1680, devido ao obscurecimento da poeira. Até agora, a Nebulosa do Caranguejo, o remanescente de supernova observado no ano 1054, permanece o único firmemente identificado de uma enorme explosão estelar na Via Láctea.

Embora a imagem do Chandra pareça mostrar que o remanescente tem uma forma muito circular e simétrica, os detalhes dos dados indicam que o gás para onde o remanescente está se expandindo é irregular. Devido a isto, os pesquisadores propõem que a estrela que explodiu tenha perdido quase todas as suas regiões exteriores, quer seja num vento assimétrico de gás soprado para longe da estrela, quer seja numa interação com uma estrela companheira. Pensam que a estrela mais pequena, deixada para trás, teria então soprado gás para longe a uma velocidade ainda superior, varrendo gás anteriormente perdido no vento e formando a concha densa. A estrela teria então explodido, produzindo o remanescente de supernova G11.2-0.3 visto hoje.

A explosão da supernova também produziu um pulsar, uma estrela de nêutrons que gira rapidamente, e uma nebulosa de vento de pulsar, aqui vista como a emissão azulada de raios X no centro do remanescente. A combinação da rápida rotação do pulsar com o forte campo magnético gera um campo eletromagnético intenso que produz jatos de matéria e antimatéria que se afastam dos polos norte e sul do pulsar, e um vento intenso que flui para fora ao longo do seu equador.

O artigo que descreve estes resultados foi publicado na revista The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

terça-feira, 16 de agosto de 2016

Kepler observa dançarinas estelares no aglomerado das Plêiades

Tal como bailarinas cósmicas, as estrelas do aglomerado das Plêiades giram com velocidades diferentes.

aglomerado das Plêiades

© NASA/JPL-Caltech/UCLA/WISE (aglomerado das Plêiades)

Ao observar estas dançarinas estelares, o telescópio espacial Kepler da NASA, durante a sua missão K2, ajudou a recolher o mais completo catálogo de períodos de rotação de estrelas num aglomerado. Esta informação pode ajudar os astrônomos a ter uma visão sobre onde e como os planetas se formam em torno destas estrelas e como essas estrelas evoluem.

"Esperamos que, ao compararmos os nossos resultados com os de outros aglomerados, possamos aprender mais sobre a relação entre a massa de uma estrela, a sua idade e até mesmo sobre a história do seu sistema solar," afirma Luisa Rebull, pesquisadora no IPAC (Infrared Processing and Analysis Center) do Caltech em Pasadena, no estado americano da Califórnia.

O aglomerado aberto das Plêiades (M45) é um dos mais próximos e mais facilmente observáveis, situado, em média, a apenas 445 anos-luz da Terra. Com mais ou menos 125 milhões de anos, estas estrelas já podem ser consideradas jovens adultas. Nesta fase das suas vidas, as estrelas provavelmente giram mais rápido que nunca.

À medida que uma típica estrela atravessa a idade adulta, perde alguma rotação devido à emissão abundante de partículas carregadas conhecida como vento estelar (no nosso Sistema Solar, chamamos a este fenômeno vento solar). As partículas carregadas são transportadas ao longo dos campos magnéticos da estrela que, geralmente, exerce um efeito de frenagem sobre a velocidade de rotação da estrela.

Rebull e colegas procuraram aprofundar estas dinâmicas da rotação estelar com o Kepler. Considerando o seu campo de visão no céu, o Kepler observou aproximadamente 1.000 membros estelares das Plêiades ao longo de 72 dias. O telescópio mediu as velocidades de rotação de mais de 750 estrelas nas Plêiades, incluindo cerca de 500 das mais leves, pequenas e tênues do aglomerado, cujas rotações não podiam ser detectadas anteriormente com instrumentos terrestres.

As medições da luz estelar pelo Kepler inferem a velocidade de rotação de uma estrela captando pequenas mudanças na sua luminosidade. Estas alterações resultam de "manchas estelares" que, tal como as mais conhecidas manchas solares do nosso Sol, formam-se quando as concentrações do campo magnético impedem a liberação normal de energia à superfície de uma estrela. As regiões afetadas tornam-se mais frias do que os arredores e, por isso, aparecem escuras em comparação.

À medida que as estrelas giram, as suas manchas estelares entram e saem do ponto de vista do Kepler, fornecendo uma maneira de determinar a velocidade de rotação. Ao contrário das minúsculas manchas que o nosso Sol, de meia-idade, por vezes apresenta, as manchas estelares podem ser gigantescas em estrelas jovens como as das Plêiades porque a juventude estelar está associada a uma maior turbulência e atividade magnética. Estas manchas estelares desencadeiam maiores quedas no brilho e tornam mais fáceis de obter as necessárias medições da rotação.

Durante as suas observações das Plêiades, emergiu um padrão claro nos dados: as estrelas mais massivas tendem a girar mais lentamente, enquanto as estrelas menos massivas tendem a girar mais rapidamente. Os períodos de rotação das estrelas grandes e lentas variam entre 1 e 11 dias terrestres. Muitas estrelas de pequena massa, no entanto, levam menos de um dia para completar uma rotação (em comparação, o nosso calmo Sol completa uma rotação a cada 26 dias). A população de estrelas em rotação lenta varia de estrelas um pouco maiores, mais quentes e massivas que o Sol, até outras estrelas mais pequenas, frias e leves. No outro extremo, as estrelas velozes e de menor massa possuem, no mínimo, um-décimo da massa do Sol.

Os pesquisadores sugerem que a principal fonte destas diferentes rotações é a estrutura interna das estrelas. As estrelas maiores têm um enorme núcleo envolto numa camada fina de material estelar que atravessa um processo chamado convecção, parecido com o movimento circular da água fervendo. As estrelas pequenas, por outro lado, consistem quase no seu todo de regiões convectivas. À medida que as estrelas envelhecem, o mecanismo de frenagem dos campos magnéticos diminui mais facilmente a rotação da camada fina e mais externa das grandes estrelas do que a camada comparativamente espessa e turbulenta das estrelas pequenas.

Graças à proximidade das Plêiades, os pesquisadores pensam que deverá ser possível desembaraçar as complexas relações entre as velocidades de rotação e outras propriedades estelares. Estas propriedades estelares, por sua vez, podem influenciar os climas e a habitabilidade de exoplanetas aí presentes. Por exemplo, à medida que a rotação diminui, o mesmo acontece com a produção das manchas estelares e suas tempestades associadas. Uma menor quantidade de tempestades estelares significa uma menos intensa e prejudicial radiação liberada para o espaço, irradiando planetas próximos e suas biosferas potencialmente emergentes.

"O aglomerado das Plêiades fornece uma âncora para os modelos teóricos da rotação estelar em ambas as direções, jovens e velhas," afirma Rebull. "Ainda temos muito que aprender no que toca ao como, quando e porquê de as estrelas diminuírem os seus períodos de rotação."

Rebull e colegas estão agora analisando dados da missão K2 pertencentes a outro aglomerado estelar mais velho, o Presépio (M44), a fim de explorar este fenômeno da estrutura e evolução estelar.

A missão K2, em termos de estudos estelares, usa a capacidade do Kepler em observar com precisão as mudanças minúsculas na luz emitida. A missão principal do Kepler terminou em 2013, mas no ano seguinte começou a missão K2, que continua efetuando observações exoplanetárias e astrofísicas.

Três artigos sobre o assunto foram publicados na revista Astronomical Journal.

Fonte: Jet Propulsion Laboratory

Missão do Fermi expande a procura por matéria escura

A matéria escura, a misteriosa substância que constitui a maior parte do material do Universo, permanece tão evasiva como sempre.

Pequena Nuvem de Magalhães

© Hubble/DSS2 (Pequena Nuvem de Magalhães)

Embora experiências terrestres e espaciais tenham ainda de encontrar traços da matéria escura, os resultados estão ajudando os cientistas a descartar algumas das muitas possibilidades teóricas. Três estudos publicados no início deste ano, usando seis ou mais anos de dados do telescópio espacial de raios gama Fermi da NASA, ampliaram a missão de buscar matéria escura usando algumas abordagens novas.

A matéria escura não emite nem absorve luz, interage principalmente com o resto do Universo através da gravidade e, ainda assim, corresponde a cerca de 80% da matéria no Universo. Os astrônomos vêm os seus efeitos em todo o cosmos, e na rotação das galáxias, na distorção da luz que passa através de aglomerados de galáxias e em simulações do Universo jovem, que até exige a presença da matéria escura para a formação de galáxias.

Os principais candidatos para a matéria escura são classes diferentes de partículas hipotéticas. Os cientistas pensam que os raios gama, a forma mais energética de luz, pode ajudar a revelar a presença de alguns tipos de partículas propostas da matéria escura. Anteriormente, o Fermi procurou sinais de raios gama associados com a matéria escura no centro da nossa Galáxia e em pequenas galáxias anãs que a orbitam. Embora sem a descoberta de sinais convincentes, estes resultados eliminaram candidatos dentro de um intervalo de massas e taxas de interação, limitando ainda mais as possíveis características das partículas de matéria escura.

Entre os novos estudos, o cenário mais exótico investigado foi a possibilidade de a matéria escura consistir de partículas hipotéticas chamadas áxions ou outras partículas com propriedades semelhantes. Um aspeto interessante dos áxions é a capacidade de conversão em raios gama e vice-versa quando interagem com campos magnéticos fortes. Estas conversões deixariam para trás traços característicos, como falhas e "escadas" no espetro de uma fonte de raios gama brilhante.

Manuel Meyer da Universidade de Estocolmo liderou um estudo para procurar estes efeitos nos raios gama da NGC 1275, a galáxia central do aglomerado de galáxias de Perseu, localizado a aproximadamente 240 milhões de anos-luz de distância. Pensa-se que as emissões altamente energéticas da NGC 1275 estejam associadas com um buraco negro supermassivo no seu centro. Tal como em todos os aglomerados de galáxias, o aglomerado de Perseu tem gás quente envolvido com campos magnéticos, que permitem a transição entre raios gama e os áxions. Isto significa que alguns dos raios gama provenientes da NGC 1275 podem converter-se em áxions, e potencialmente de volta, enquanto viajam até nós.

A equipe de Meyer recolheu observações com o instrumento LAT (Large Area Telescope) do Fermi e procurou distorções previstas no sinal de raios gama. Os achados, publicados no dia 20 de abril na revista Physical Review Letters, exclui os áxions que poderiam ter constituído cerca de 4% da matéria escura.

Outra classe possível da matéria escura são as chamadas WIMPs (Weakly Interacting Massive Particles). Em algumas versões, as WIMPs que colidem ou se aniquilam mutuamente ou produzem uma partícula intermediária e de rápida decomposição. Ambos os cenários resultam em raios gama que podem ser detectados pelo LAT.

Regina Caputo da Universidade da Califórnia, em Santa Cruz, procurou estes sinais na Pequena Nuvem de Magalhães, localizada a cerca de 200.000 anos-luz de distância, a segunda maior galáxia que orbita a Via Láctea. Parte do encanto da Pequena Nuvem de Magalhães no que toca a uma investigação de matéria escura é que está relativamente perto de nós e a sua emissão de raios gama, que vem de fontes convencionais como formação estelar e pulsares, é bem compreendida. Mais importante ainda, os astrônomos têm medições de alta precisão da curva de rotação da Pequena Nuvem de Magalhães, que mostra como a sua velocidade de rotação muda com a distância ao centro e indica a quantidade de matéria escura presente. Num artigo publicado no dia 22 de março na revista Physical Review D, Caputo e colegas modelaram o teor de matéria escura da Pequena Nuvem de Magalhães, mostrando que possuía o suficiente para produzir sinais detectáveis de dois tipos de WIMPs.

blazares 

© NASA/Fermi (blazares)

Esta animação alterna entre duas imagens do céu em raios gama, visto pelo instrumento LAT do Fermi, uma usando os primeiros três meses de dados do LAT, a outra que mostra uma exposição acumulada de sete anos. A cor azul, que representa a menor quantidade de raios gama, inclui o fundo extragaláctico de raios gama (FER). Os blazares constituem a maior parte das fontes brilhantes aqui vistas (de vermelho a branco).

No terceiro estudo, pesquisadores liderados por Marco Ajello da Universidade de Clemson na Carolina do Sul, EUA, e por Mattia Di Mauro do Laboratório do Acelerador Nacional do SLAC na Califórnia, levaram a pesquisa numa direção diferente. Em vez de olhar para alvos astronômicos específicos, a equipe usou mais de 6,5 anos de dados do LAT para analisar o fundo de raios gama visto em todo o céu.

A natureza desta radiação, chamada fundo extragaláctico de raios gama, tem sido debatida desde que foi medida pela primeira vez pelo SAS-2 (Small Astronomy Satellite 2) da NASA na década de 1970. O Fermi mostrou que grande parte desta radiação tem origem em fontes não resolvidas de raios gama, particularmente galáxias chamadas blazares, galáxias alimentadas por material que cai em direção a buracos negros gigantescos. Os blazares constituem mais de metade do total das fontes de raios gama observadas pelo Fermi e compõem uma percentagem ainda maior num novo catálogo LAT dos raios gama mais energéticos.

Alguns modelos preveem que os raios gama do FER possam surgir de distantes interações com partículas de matéria escura, como a aniquilação ou decaimento dos WIMPs. Numa análise detalhada dos raios gama altamente energéticos do FER, publicada no dia 14 de abril na revista Physical Review Letters, Ajello e sua equipe mostram que os blazares e outras fontes discretas podem ser responsáveis pela quase totalidade desta emissão.

Apesar destes estudos mais recentes terem ficado de mãos vazias, a busca para encontrar matéria escura continua tanto no espaço como em experiências terrestres. Ao Fermi junta-se o instrumento AMS da NASA, um detector de partículas a bordo da Estação Espacial Internacional.

Fonte: SLAC National Accelerator Laboratory

Os estilhaços estelares de um remanescente de supernova

A alguns milhares de anos atrás, uma estrela explodiu a cerca de 160.000 anos-luz de distância da Terra, espalhando seus estilhaços estelares pelo céu.

DEM L71

© Hubble (DEM L71)

A consequência dessa detonação energética é mostrada nesta notável imagem feita pela Wide Field Camera 3 do telescópio espacial Hubble.

A estrela que explodiu era uma anã branca localizada na Grande Nuvem de Magalhães, uma de nossas galáxias vizinhas. Cerca de 97% das estrelas dentro da Via Láctea estão entre um décimo e oito vezes a massa solar, e espera-se que terminem suas vidas como anãs brancas. Essas estrelas podem ter diferentes destinos, um dos quais é explodir como uma supernova, um dos eventos mais brilhantes do Universo. Se uma anã branca é parte de um sistema estelar binário, ela pode sugar material de sua companheira. Após ingerir mais matéria do que pode lidar, e ficando do tamanho aproximado de 1,5 vezes do tamanho do Sol, a estrela torna-se instável e inicia o processo de geração de uma supernova do Tipo Ia.

Este foi o caso da remanescente de supernova mostrada aqui, que é conhecida como DEM L71. Ela se formou quando uma anã branca atingiu o final da sua vida e se arrebentou, ejetando uma nuvem de detritos super aquecida durante o processo. Vagando pelo gás interestelar ao redor, esses estilhaços estelares gradativamente se difundiram em filamentos separados de material que podem ser vistos na imagem.

Fonte: ESA

segunda-feira, 15 de agosto de 2016

Nuvens de Saturno no infravermelho

A imagem abaixo em cores falsas foi produzida pelo engenheiro Kevin M. Gill, do Jet Propulsion Laboratory da NASA, em Pasadena, na Califórnia.

  nuvens de Saturno no infravermelho

  © NASA/JPL-Caltech/K. M. Gill (nuvens de Saturno no infravermelho)

A imagem foi feita usando a câmera de grande angular da sonda Cassini no dia 20 de Julho de 2016, usando uma combinação de filtros espectrais sensíveis à luz infravermelha nos comprimentos de onda de 750, 727 e 619 nanômetros. Os filtros são sensíveis à absorção e ao espalhamento da luz do Sol pelo metano na atmosfera de Saturno. Eles têm sido usados pela missão Cassini para determinar a estrutura e a profundidade das formas observadas nas nuvens da atmosfera do planeta.

Saturno tem cerca de 75% de hidrogênio, e 25% de hélio, com traços de outras substâncias como metano e gelo de água, de acordo com os pesquisadores planetários da ESA.

O planeta é um dos lugares onde mais venta no Sistema Solar. Os ventos sopram com altas velocidades em Saturno devido ao fato do seu núcleo emitir mais energia se comparado com Júpiter. Perto do equador, eles atingem a velocidade de 1.800 km/h.

A atmosfera de Saturno é uma região pequena, se comparado com o vasto interior do gigante gasoso. Existem três regiões na atmosfera baixa de Saturno, a troposfera, onde as plataformas de nuvens podem ser encontradas.

A temperatura na troposfera de Saturno varia de -130 a 80°C. A plataforma de nuvens superior visível, feito de amônia, encontra-se a cerca de 100 km abaixo do topo da troposfera, a tropopausa, onde a temperatura é de -250°C. A segunda plataforma de nuvens, feita de nuvens com hidrosulfetho de amônia, encontra-se a cerca de 170 km abaixo da tropopausa, onde a temperatura é de -70°C. A plataforma mais baixa de nuvens, feita de nuvens de água, encontra-se a 130 km abaixo da tropopausa, onde a temperatura é de 0°C.

O gás hidrogênio que faz parte da maior parte da atmosfera vagarosamente muda para líquido com a profundidade, à medida que a pressão aumenta. Abaixo do hidrogênio líquido, resta o hélio líquido mais pesado. Nas profundezas do corpo de Saturno, o hidrogênio está sob tremenda pressão, e é transformado em hidrogênio líquido metálico.

Fonte: Jet Propulsion Laboratory

Fronteira turbulenta da Nebulosa de Órion

Estas imagens mostram o limite da vasta nuvem molecular que se situa por trás da Nebulosa de Órion, a 1.400 anos-luz de distância da Terra.

fronteira turbulenta da Nebulosa de Órion

© ESO (fronteira turbulenta da Nebulosa de Órion)

A imagem da esquerda mostra uma vista de grande angular da região, obtida pelo instrumento HAWK-I, instalado no Very Large Telescope (VLT) do ESO. Nesta imagem encontra-se destacada com um retângulo branco uma pequena região, região esta que mostramos precisamente na imagem da direita com grande detalhe e que observada pelo Atacama Large Millimeter/submillimeter Array (ALMA).

Além de nos fornecerem imagens bonitas, as nuvens moleculares são de grande interesse para os astrônomos. Tratam-se de maternidades estelares e nas suas periferias os átomos reagem e formam moléculas por processos astroquímicos fundamentais. Com as observações do ALMA, os astrônomos conseguiram resolver a transição de gás atômico a gás molecular nas fronteiras da nuvem molecular de Órion. Esta é a região de formação estelar massiva mais próxima da Terra, o que a torna no alvo ideal para melhor compreendermos estes processos astroquímicos, oferecendo também a possibilidade de estudar em detalhe as interações de estrelas formadas recentemente com o meio que as envolve.

Ambas as observações mostram que esta transição astroquímica de gás atômico a molecular ocorre num meio altamente dinâmico. A imagem ALMA da nebulosa faz lembrar as nuvens escuras de uma tempestade se formando na atmosfera terrestre.

Fonte: ESO

Hubble vê um Lince assimétrico

A galáxia, conhecida como NGC 2337, vista a seguir, reside a 25 milhões de anos-luz de distância na constelação de Lynx (Lince).

NGC 2337

© Hubble (NGC 2337)

A NGC 2337 é uma galáxia irregular, o que significa que juntamente com um quarto de todas as galáxias no Universo não tem uma aparência regular. A galáxia foi descoberta em 1877 pelo astrônomo francês Édouard Stephan, que no mesmo ano descobriu o grupo galáctico Quinteto de Stephan.

Embora as galáxias irregulares nunca podem ganhar um prêmio de beleza quando competindo com as rivais galáxias espirais e elípticas mais simétricas, os astrônomos as consideram muito importante. Algumas galáxias irregulares podem ter uma vez caído em uma das classes regulares da sequência de Hubble, mas foram distorcidas e deformadas por uma companheira cósmica que passa. Como tal, galáxias irregulares fornecem aos astrônomos uma valiosa oportunidade para aprender mais sobre a evolução galáctica e interação.

Apesar da interrupção, as interações gravitacionais entre galáxias podem iniciar a atividade de formação de estrelas dentro das galáxias afetadas, o que pode explicar os receptáculos de luz azul espalhados por toda a NGC 2337. Essas manchas e componentes de aspecto azul indicam a presença de recém-formadas estrelas quentes.

Fonte: ESA

domingo, 14 de agosto de 2016

O Coelho da Páscoa chega a NGC 4725

Inicialmente chamado "Easterbunny" (Coelho da Páscoa) pela equipe que o descobriu, e oficialmente denominado Makemake, ele é o segundo mais brilhante planeta anão do Cinturão de Kuiper.

NGC 4725 e Makemake

© Bob English (NGC 4725 e Makemake)

Makemake foi descoberto em 31 de março de 2005, um pouco antes da Páscoa, no Observatório Palomar, por uma equipe liderada por Michael Brown, e anunciado em 29 de julho de 2005. Ele é o terceiro maior planeta anão do Sistema Solar e o maior objeto transnetuniano conhecido, com um diâmetro de cerca de dois terços o de Plutão. Sua superfície é coberta por metano, etano e possivelmente nitrogênio e tem uma baixa temperatura média de cerca de -243,2°C.

Este mundo gélido aparece duas vezes nesta imagem astronômica(riscos em vermelho), baseada em dados obtidos em 29 e 30 de junho, da brilhante galáxia espiral NGC 4725, que possui apenas um braço. Ela tem mais de 100.000 anos-luz de diâmetro, estando distante 41 milhões de anos-luz.

Makemake é marcado por curtas linhas vermelhas, com sua posição mudando através do campo de visão de um telescópio caseiro durante duas noites ao longo de uma órbita distante.

Naquelas datas, quase coincidente com a linha de visão da galáxia espiral na constelação da Cabeleira de Berenice, Makemake estava distante cerca de 52,5 UA (unidades astronômicas), ou 7,3 horas-luz de distância. Sabe-se agora que Makemake tem ao menos uma lua.

Fonte: NASA

sexta-feira, 12 de agosto de 2016

Galáxias em colisão no Quinteto de Stephan

Qualquer uma destas galáxias irão sobreviver?

NGC 7318

© Hubble/Jose Jimenez Priego (NGC 7318)

As duas espirais catalogadas como NGC 7318 encontram-se em colisão. A fotografia em destaque foi criada a partir de imagens obtidas pelo telescópio espacial Hubble.

Quando as galáxias chocam entre si, ocorre uma distorção gravitacional com condensação do gás para produzir novos episódios de formação de estrelas, e, finalmente, a fusão das duas galáxias.

Uma vez que estas duas galáxias fazem parte do Quinteto de Stephan, um embate derradeiro de galáxias provavelmente acontecerá ao longo dos próximos bilhões de anos, com o eventual resultado de muitas estrelas espalhadas e uma grande galáxia.

Provavelmente, a galáxia restante não será facilmente identificada através dos seus componentes galácticos iniciais.

O Quinteto de Stephan foi o primeiro grupo de galáxias identificado que fica a cerca de 300 milhões de anos luz de distância, e é visível por intermédio de um telescópio de tamanho moderado na direção da constelação do Cavalo Alado (Pegasus).

Fonte: NASA