quarta-feira, 10 de abril de 2019

Astrônomos obtêm primeira imagem de um buraco negro

O Event Horizon Telescope (EHT), uma rede em escala planetária de oito radiotelescópios colocados em solo, formada através de colaboração internacional, foi concebido para captar imagens de um buraco negro. Hoje, em conferências de imprensa coordenadas em todo o mundo, os pesquisadores do EHT revelam que foram bem sucedidos, mostrando a primeira evidência direta visual de um buraco negro supermassivo e da sua sombra.


© EHT Collaboration (primeira imagem de um buraco negro)

Este resultado pioneiro foi anunciado hoje numa série de seis artigos científicos publicados num número especial da revista The Astrophysical Journal Letters. A imagem revela o buraco negro situado no centro de Messier 87, uma galáxia massiva localizada no aglomerado de galáxias da Virgem. Este buraco negro está a 55 milhões de anos-luz de distância da Terra e possui uma massa de 6,5 bilhões de vezes a do Sol.

A sombra de um buraco negro é o mais próximo da imagem do buraco negro propriamente dito que conseguimos obter, já que este é um objeto completamente escuro do qual a luz não pode escapar. A fronteira do buraco negro, o horizonte de eventos que dá o nome ao EHT, é cerca de 2,5 vezes menor que a sombra que projeta e mede menos de 40 bilhões de km de um lado ao outro.

Os buracos negros supermassivos são objetos astronômicos relativamente pequenos, o que faz com que até agora tenham sido impossíveis de serem observados diretamente. Como o tamanho do horizonte de eventos de um buraco negro é proporcional à sua massa, quanto mais massivo for o buraco negro, maior será a sua sombra. Graças à sua enorme massa e relativa proximidade, previu-se que o buraco negro de M87 fosse um dos maiores visto a partir da Terra, o que o tornou num excelente alvo para o EHT.

O EHT conecta telescópios situados em todo o globo, formando um telescópio virtual do tamanho da Terra sem precedentes. Apesar dos telescópios não estarem fisicamente ligados, foi possível sincronizar os dados coletados com relógios atômicos, ou seja, masers de hidrogênio, que dão o tempo preciso das observações. Estas observações foram obtidas a um comprimento de onda de 1,3 mm durante uma campanha global em 2017. Cada telescópio do EHT produziu enormes quantidades de dados, cerca de 350 terabytes por dia, os quais foram armazenados em discos de elevado desempenho. Estes dados foram depois combinados em supercomputadores altamente especializados existentes no Instituto Max Planck de Rádio Astronomia e no Observatório Haystack do MIT. Foram seguidamente convertidos numa imagem usando ferramentas computacionais inovadoras.

O EHT proporciona aos astrônomos uma nova maneira de estudarem os objetos mais extremos do Universo previstos pela relatividade geral de Einstein durante o ano centenário da experiência histórica que confirmou esta teoria pela primeira vez. Há 100 anos, duas expedições partiram para a Ilha do Príncipe, na costa de África, e para Sobral, no Brasil, para observarem o eclipse total de 1919, com o intuito de testarem a relatividade geral ao observarem se a luz estelar se curvava em torno do limbo do Sol, tal como previsto por Einstein. Seguindo um pouco este espírito, o EHT enviou membros da sua equipe a algumas das mais altas e isoladas infraestruturas rádio do mundo para, uma vez mais, testarem a nossa compreensão da gravidade.

“Fizemos a primeira fotografia a um buraco negro,” disse o diretor do projeto EHT, Sheperd S. Doeleman do Center for Astrophysics do Harvard & Smithsonian, EUA. “Trata-se de um feito científico extraordinário executado por uma equipe de mais de 200 pesquisadores.”

Os buracos negros são objetos cósmicos extraordinários com massas enormes e tamanhos extremamente compactos. A presença destes objetos afeta o meio onde estão inseridos de maneira extrema, deformando o espaço-tempo e superaquecendo o material que os rodeia.

“Se estiverem imersos numa região brilhante, como um disco de gás brilhante, pensamos que o buraco negro crie uma região escura semelhante a uma sombra, algo previsto pela relatividade geral de Einstein que nunca foi observado anteriormente,” explica Heino Falcke da Universidade Radboud, na Holanda. “Esta sombra, causada pela curvatura gravitacional e que captura da luz no horizonte de eventos, nos revela muito sobre a natureza destes fascinantes objetos e nos permite medir a enorme massa do buraco negro de M87.”

Calibrações múltiplas e métodos de obtenção de imagens revelaram uma estrutura semelhante a um disco com uma região central escura, ou seja, a sombra do buraco negro, que se manteve em várias observações independentes do EHT.

“Quando tivemos a certeza de ter efetivamente capturado a sombra, pudemos comparar o nosso resultado com uma extensa biblioteca de modelos computacionais que incluem a física do espaço distorcido, matéria superaquecida e fortes campos magnéticos,” observa Paul T.P. Ho, membro do Conselho do EHT e diretor do East Asian Observatory. “A imagem observada se ajusta bem com a nossa compreensão teórica, nos deixando confiantes na interpretação de nossas observações, incluindo nossa estimativa da massa do buraco negro,” comenta o membro do Conselho do EHT, Luciano Rezzolla, da Goethe Universität, Alemanha.

Criar o EHT consistiu de um enorme desafio, pois foi necessário atualizar e conectar uma rede mundial de oito telescópios pré—existentes colocados numa quantidade de locais de altitude elevada. Estes locais incluem vulcões no Havaí e no México, montanhas no Arizona, EUA, a Sierra Nevada espanhola, o deserto chileno do Atacama e a Antártida.

As observações do EHT usaram uma técnica conhecida por interferometria de linha de base muito longa (VLBI), que sincroniza os vários telescópios e explora a rotação do nosso planeta de modo a formar um enorme telescópio do tamanho da Terra, que observa a um comprimento de onda de 1,3 mm. A VLBI permite ao EHT atingir uma resolução angular de 20 microsegundos de arco, o suficiente para se ler um jornal colocado em Nova Iorque à distância de um café em Paris. As observações do EHT no futuro próximo irão ter um aumento substancial da sua sensibilidade, devido à participação dos IRAM NOEMA Observatory, Greenland Telescope e Kitt Peak Telescope.

Os telescópios que contribuíram para este resultado foram: Atacama Large Millimeter/submillimeter Array (ALMA), Atacama Pathfinder Experiment (APEX), telescópio IRAM de 30 metros, James Clerk Maxwell Telescope, Large Millimeter Telescope Alfonso Serrano, Submillimeter Array, Submillimeter Telescope e South Pole Telescope.

A construção do EHT e as observações anunciadas hoje representam o culminar de décadas de trabalho observacional, técnico e teórico. Este exemplo de trabalho de equipe global se apoiou em colaborações estreitas entre pesquisadores de todo o mundo.

Fonte: ESO & Harvard Smithsonian Center for Astrophysics

Fragmentos de um planeta sobrevivem à destruição da sua estrela

Um grupo de astrônomos liderados pela Universidade de Warwick e que envolveu pesquisadores do Instituto de Astrofísica das Canárias (IAC) e da Universidade de La Laguna (ULL) descobriu um fragmento de um planeta que sobreviveu à morte da sua estrela num disco de detritos formados a partir de planetas destruídos que a estrela irá consumir.


© U. de Warwick/M. Garlick (ilustração de um fragmento planetário em órbita de estrela)

O planetesimal, rico em ferro e níquel, sobreviveu a um cataclismo a nível do sistema que se seguiu à morte da sua estrela progenitora, SDSS J122859.93+104032.9. Teorizado como tendo feito parte de um planeta maior, a sua sobrevivência é ainda mais surpreendente, pois orbita mais perto da sua estrela do que se pensava ser possível, completando uma órbita a cada duas horas.

A descoberta, divulgada a semana passada na revista Science, é a primeira vez que cientistas usam espectroscopia para descobrir um corpo sólido em órbita de uma anã branca, usando variações sutis na luz emitida para identificar gás adicional que o planetesimal está produzindo.

Usando o espectrógrafo OSIRIS, instalado no GTC (Gran Telescopio Canarias), situado no Observatório Roque de los Muchachos (Garafía, La Palma), os cientistas estudaram um disco de detritos em órbita de uma anã branca a 410 anos-luz de distância formado pelo "desmembramento" de corpos rochosos compostos por elementos como ferro, magnésio, silício e oxigênio, os quatro principais blocos de construção da Terra e da maioria dos corpos rochosos. Dentro deste disco descobriram um anel de gás que sai de um corpo sólido, como a cauda de um cometa. Este gás pode ser produzido pelo próprio corpo ou por evaporação de poeira quando colide com detritos pequenos dentro do disco.

Os astrônomos estimam que este corpo tem pelo menos um quilômetro em tamanho, mas pode ser tão grande quanto algumas centenas de quilômetros [em diâmetro], comparável aos maiores asteroides conhecidos no Sistema Solar.

As anãs brancas são os remanescentes de estrelas como o nosso Sol que queimaram todo o seu combustível e liberaram as suas camadas externas, deixando para trás um núcleo denso que arrefece lentamente com o passar do tempo. Esta estrela encolheu tão dramaticamente que o planetesimal orbita dentro do raio original do seu sol. As evidências sugerem que já fez parte de um corpo maior, mais afastado, provavelmente um planeta dilacerado quando a estrela começou o seu processo de arrefecimento.

O autor principal, Christopher Mander, disse: "A estrela teria originalmente cerca de duas massas solares, mas agora a anã branca tem apenas 70% da massa do nosso Sol. Também é muito pequena, tem aproximadamente o tamanho da Terra, e isso torna a estrela e, em geral, todas as anãs brancas, extremamente densas."

A gravidade da anã branca é tão forte, cerca de 100.000 vezes a da Terra, que um asteroide típico será dilacerado por forças gravitacionais se passar muito perto da anã branca.

O professor Boris Gaensicke, coautor do Departamento de Física, acrescentou: "o planetesimal que descobrimos está no fundo do poço gravitacional da anã branca, muito mais perto do que esperaríamos encontrar algo ainda com 'vida'. Isto só é possível porque deve ser muito denso e/ou muito provavelmente ter força interna que o mantém unido, por isso propomos que é composto em grande parte de ferro e níquel". E explicou: "Se fosse de ferro puro, podia sobreviver onde vive agora, mas podia igualmente ser um corpo rico em ferro, mas com força interna para o manter unido, o que é consistente com o planetesimal sendo um fragmento bastante massivo de um planeta. Sendo correto, o corpo original tinha pelo menos centenas de quilômetros em diâmetro porque é apenas neste ponto que os planetas começam a se diferenciar e os seus elementos mais pesados 'afundam' para formar um corpo metálico."

A descoberta fornece informações sobre que planetas podem residir em outros sistemas solares e um vislumbre do futuro do nosso.

Christopher Manser explicou: "À medida que as estrelas envelhecem, transformam-se em gigantes vermelhas que 'limpam' boa parte da região interna do seu sistema planetário. No nosso Sistema Solar, o Sol vai crescer para onde a Terra atualmente orbita e provavelmente eliminará o nosso planeta, Mercúrio e Vênus. Marte e os restantes planetas vão sobreviver e mover-se para mais longe.

O consenso geral é que daqui a 5 a 6 bilhões de anos, o nosso Sistema Solar terá uma anã branca no lugar do Sol, orbitada por Marte, Júpiter, Saturno, os restantes planetas, bem como asteroides e cometas. Provavelmente acontecerão muitas interações gravitacionais nestes tipos de remanescentes de sistemas planetários, o que significa que planetas maiores podem facilmente empurrar corpos menores para uma órbita que os aproxima da anã branca, onde são destruídos pela sua enorme gravidade.

Pablo Rodríguez Gil, pesquisador do IAC/ULL, salientou que "este planetesimal é o segundo já descoberto em íntima órbita de uma anã branca. O anterior foi localizado com o 'método de trânsito' porque os restos passavam em frente da estrela e bloqueavam parte da sua luz. Esta técnica é frequentemente usada para descobrir exoplanetas em torno de estrelas parecidas com o Sol. Para encontrar estes trânsitos tem de haver um alinhamento quase perfeito entre o plano do disco de detritos e a nossa linha de visão. Dado que isto não ocorre com frequência, precisamos de observar um grande número de anãs brancas a fim de encontrar a geometria correta."

Fonte: Instituto de Astrofísica de Canarias

segunda-feira, 8 de abril de 2019

VLA obtém primeira imagem direta das poderosas galáxias rádio

Os astrônomos usaram o VLA (Karl G. Jansky Very Large Array) para fazer a primeira imagem direta de uma característica empoeirada, com a forma de um donut, em torno de um buraco negro supermassivo no núcleo de uma das mais poderosas galáxias rádio do Universo, uma característica pela primeira vez postulada pelos teóricos há quase quatro décadas como parte essencial de tais objetos.


© NRAO/VLA (região central da poderosa radiogaláxia Cygnus A)

Os cientistas estudaram Cygnus A, uma galáxia a cerca de 760 milhões de anos-luz da Terra. A galáxia abriga um buraco negro no seu núcleo que é 2,5 bilhões de vezes mais massivo que o Sol. À medida que a poderosa atração gravitacional do buraco negro atrai material circundante, também impulsiona jatos supervelozes de material que viajam para fora quase à velocidade da luz, produzindo "lóbulos" espetaculares e brilhantes de emissão rádio.

Os "motores centrais" movidos a buracos negros que produzem emissões brilhantes em vários comprimentos de onda, e jatos que se estendem muito além da galáxia, são comuns nestes imensos objetos, mas mostram propriedades diferentes quando observados. Estas diferenças levaram a uma variedade de nomes, como quasares, blazares ou galáxias Seyfert. Para explicar as diferenças, os teóricos construíram um "modelo unificado" com um conjunto comum de características que mostrariam propriedades diferentes dependendo do ângulo a partir do qual são observados.

O modelo unificado inclui o buraco negro central, um disco giratório de material em queda e ao redor do buraco negro e os jatos que se deslocam para fora dos polos do disco. Além disso, para explicar por que o mesmo tipo de objeto parece diferente quando visto de ângulos diferentes, é incluído um "toro" espesso, empoeirado e em forma de donut, rodeando as regiões interiores. O toro obscurece algumas características quando visto de lado, levando a diferenças aparentes para o observador, mesmo para objetos intrinsecamente similares. Os astrônomos geralmente denominam este conjunto comum de características de núcleo galáctico ativo (NGA).

"O toro é uma parte essencial do fenômeno dos NGAs e existem evidências de tais estruturas em NGAs próximos e de baixa luminosidade, mas nunca antes tínhamos visto um, diretamente, numa galáxia rádio tão brilhante. O toro ajuda a explicar porque objetos conhecidos por nomes diferentes são, na verdade, a mesma coisa, apenas observados de uma perspetiva diferente," disse Chris Carilli, do NRAO (National Radio Astronomy Observatory).

Na década de 1950, os astrônomos descobriram objetos que emitiam fortes ondas de rádio, mas pareciam pontuais, semelhantes a estrelas distantes, quando mais tarde observados com telescópios ópticos. Em 1963, Maarten Schmidt, do Caltech, descobriu que um destes objetos era extremamente distante, e outras descobertas rapidamente se seguiram. Para explicar como estes objetos, denominados quasares, podiam ser tão brilhantes, os teóricos sugeriram que deveriam estar aproveitando a tremenda energia gravitacional de buracos negros supermassivos. A combinação de buraco negro, do disco giratório, chamado disco de acreção, e dos jatos, foi apelidada de "motor central" responsável pelos prolíficos fluxos energéticos do objeto.

O mesmo tipo de motor central também parecia explicar o fluxo de outros tipos de objetos, incluindo galáxias rádio, blazares e Galáxias Seyfert. No entanto, cada mostrava um conjunto diferente de propriedades. Os teóricos trabalharam para desenvolver um "esquema de unificação" com o intuito de explicar como a mesma coisa podia ter aspetos diferentes. Em 1977, o obscurecimento por poeira foi sugerido como um elemento deste esquema. Num artigo científico datado de 1982, Robert Antonucci, da Universidade da Califórnia, apresentou um desenho de um toro opaco em torno do motor central. Daquele ponto em diante, o toro obscurecido permaneceu uma característica comum da visão unificada dos astrônomos sobre todos os tipos de núcleos galácticos ativos.

As observações do VLA revelaram diretamente o gás no toro de Cygnus A, que tem um raio de aproximadamente 900 anos-luz. Os modelos de longa data para o toro sugerem que a poeira se encontra em nuvens embebidas no gás, que é um tanto ou quanto desajeitado.

Mais detalhes poderão ser obtidos com o ALMA (Atacama Large Millimeter/submillimeter Array) que pode revelar diretamente a poeira, sendo que objetos mais fracos e distantes deverão exigir maior resolução que futuramente o ngVLA (Next Generation Very Large Array) propiciará resultados condizentes.

Os pesquisadores descobriram o toro quando acompanhavam a sua surpreendente descoberta, em 2016, de um novo objeto brilhante perto do centro de Cygnus A. Este novo objeto é provavelmente um segundo buraco negro supermassivo que só recentemente encontrou material novo para devorar, fazendo com que produzisse emissões brilhantes da mesma forma que o buraco negro central. A existência do segundo buraco negro sugere que Cygnus A se fundiu com outra galáxia no passado astronomicamente recente.

Cygnus A, assim chamado porque é o mais poderoso objeto emissor de rádio na constelação de Cisne, foi descoberto em 1946 pelo físico e radioastrônomo inglês James Stanley Hey. Foi correspondido, em 1951, a uma galáxia gigante, no visível, por Walter Baade e Rudolf Minkowski. Tornou-se um alvo inicial do VLA pouco depois da sua conclusão no início da década de 1980. Imagens detalhadas de Cygnus A, pelo VLA, publicadas em 1984, produziram grandes avanços na compreensão de tais galáxias pelos astrônomos.

Um artigo científico foi publicado na revista The Astrophysical Journal Letters.

Fonte: National Radio Astronomy Observatory

domingo, 7 de abril de 2019

Missão TESS leva à descoberta de um planeta do tamanho de Saturno

Os astrônomos que estudam as estrelas estão fornecendo uma ajuda valiosa aos astrônomos que caçam planetas e que perseguem o objetivo principal da nova missão TESS da NASA.


© IAC/Gabriel Perez Diaz (Saturno quente passa em frente da sua estrela hospedeira)

Os asterossismolólogos - astrônomos estelares que estudam ondas sísmicas estelares que aparecem como mudanças no brilho - muitas vezes fornecem informações críticas para encontrar as propriedades de planetas recém-descobertos.

Este trabalho possibilitou a descoberta e caracterização do primeiro planeta identificado pelo TESS, para o qual as oscilações da sua estrela hospedeira podem ser medidas.

O planeta TOI 197.01 (TOI é abreviação para "TESS Object of Interest") é descrito como um "Saturno quente". Isto porque o planeta tem aproximadamente o mesmo tamanho que Saturno e também está muito perto da sua estrela, completando uma órbita em apenas 14 dias e é, portanto, muito quente.
A missão principal do satélite TESS (Transiting Exoplanet Survey Satellite) é encontrar exoplanetas. Depois de dois anos, o TESS terá examinado 85% do céu.

Os astrônomos estudam as imagens, procurando trânsitos, minúsculas quedas no brilho estelar provocadas por um planeta em órbita passando em frente. A missão Kepler da NASA, antecessora da missão TESS, procurou planetas da mesma forma, mas examinou uma pequena parte da Via Láctea e focou-se em estrelas distantes.

O TESS tem como alvo estrelas próximas e brilhantes, permitindo que os astrônomos acompanhem as suas descobertas usando outros observatórios espaciais e terrestres para estudar e caracterizar estrelas e planetas. Em um artigo publicado recentemente na revista The Astrophysical Journal: Supplement Series, os astrônomos do TASC (TESS Asteroseismic Science Consortium) identificaram uma lista de alvos de estrelas oscilantes semelhantes ao Sol para serem estudadas usando dados do TESS, compondo uma lista com 25.000 estrelas.

Os astrônomos do TASC usam modelagem asterossismológica para determinar o raio, a massa e a idade de uma estrela hospedeira. Estes dados podem ser combinados com outras observações e medições para determinar as propriedades dos planetas em órbita.

No caso da estrela progenitora TOI-197, os asterossismólogos usaram as suas oscilações para determinar que tem cerca de 5 bilhões de anos e é um pouco mais massiva e maior que o Sol. Também determinaram que o planeta TOI-197.01 é um gigante gasoso com um raio mais ou menos nove vezes o da Terra, tornando-se aproximadamente do tamanho de Saturno. Tem também 1/13 da densidade da Terra e cerca de 60 vezes a massa da Terra.

A revista The Astronomical Journal vai publicar o artigo escrito por uma equipe internacional composta por 141 astrônomos.

Fonte: Iowa State University

sábado, 6 de abril de 2019

Hubble observa asteroide se quebrando

De acordo com novos dados obtidos pelo telescópio espacial Hubble e por outros observatórios, um pequeno asteroide foi apanhado girando tão depressa que está expelindo material.


© NASA/ESA/Hubble/U. Havaí (auto-destruição gradual de um asteroide)

As imagens do Hubble mostram duas caudas estreitas, parecidas às dos cometas, de detritos empoeirados que saem do asteroide (6478) Gault. Cada cauda representa um episódio no qual o asteroide liberou suavemente o seu material, evidências de que Gault está começando a desfazer-se.

Descoberto em 1988, o asteroide com 4 km tem sido observado repetidamente, mas as caudas de detritos são as primeiras evidências de desintegração. Gault está localizado a 344 milhões de quilômetros da Terra. Entre os cerca de 800.000 asteroides conhecidos entre Marte e Júpiter, os astrônomos estimam que este tipo de evento no cinturão de asteroides seja raro, ocorrendo aproximadamente uma vez por ano.

A observação da fragmentação de um asteroide fornece a oportunidade de estudar a composição destas rochas espaciais sem enviar uma nave para recolher amostras.

"Nós apenas tivemos que olhar para a imagem das correntes e podemos ver todos os grãos de poeira bem ordenados por tamanho. Todos os grãos grandes (mais ou menos do tamanho das partículas de areia) estão perto do objeto e os grãos menores (mais ou menos do tamanho de grãos de farinha) são os mais distantes, porque estão sendo empurrados mais rapidamente pela pressão da luz solar," explicou Olivier Hainaut do ESO na Alemanha.

Gault é apenas o segundo asteroide cuja desintegração está fortemente ligada a um processo conhecido como efeito YORP (Yarkovsky–O'Keefe–Radzievskii–Paddack). Quando a luz solar aquece um asteroide, a radiação infravermelha que escapa da sua superfície aquecida transporta momento angular, bem como calor. Este processo cria um pequeno torque que faz com que o asteroide gire continuamente mais depressa. Quando a força centrífuga resultante começa a superar a gravidade, a superfície do asteroide torna-se instável, e os deslizamentos de terra podem fazer com que a poeira e o entulho sigam para o espaço a poucos quilômetros por hora. Os pesquisadores estimam que Gault pode estar aumentando lentamente a sua rotação há mais de 100 milhões de anos.

Reunindo a atividade recente de Gault esta investigação forense astronômica envolve telescópios e astrônomos de todo o mundo. Levantamentos de todo o céu, telescópios terrestres e instalações espaciais como o telescópio espacial Hubble uniram esforços para tornar esta descoberta possível.

A pista inicial foi a descoberta fortuita da primeira cauda de detritos, observada no dia 5 de janeiro de 2019 pelo telescópio ATLAS (Asteroid Terrestrial-Impact Last Alert System) no Havaí. A cauda também apareceu em dados de arquivo de dezembro de 2018 do ATLAS e dos telescópios Pan-STARRS (Panoramic Survey Telescope and Rapid Response System) no Havaí. Em meados de janeiro, uma segunda cauda mais curta foi vista pelo telescópio do Canadá-França-Havaí e pelo telescópio Isaac Newton na Espanha, assim como por outros observadores. Uma análise de ambas as caudas sugere que os dois eventos de poeira ocorreram por volta de 28 de outubro e de 30 de dezembro de 2018.

Observações de acompanhamento com o telescópio William Herschel, com a Estação Terrestre Ótica da ESA em La Palma e Tenerife, Espanha, e com o telescópio Chandra nos Himalaias, Índia, mediram um período de rotação de duas horas para o objeto, perto da velocidade crítica na qual um asteroide solto começa a desfazer-se.

Uma análise do ambiente circundante do asteroide, pelo Hubble, não revelou sinais de detritos mais amplamente distribuídos, o que exclui a possibilidade de uma colisão com outro asteroide como causa para os surtos.

As correntes estreitas do asteroide sugerem que a poeira foi liberada em surtos curtos, com a duração de algumas horas a alguns dias. Estes eventos súbitos sopraram detritos suficientes para produzir uma "bola suja" com aproximadamente 150 metros de diâmetro, se compactados juntos. As caudas vão começar a desaparecer daqui a poucos meses, à medida que a poeira se dispersa pelo espaço interplanetário.

Com base nas observações do telescópio do Canadá-França-Havaí, os astrônomos estimam que a cauda mais longa se estenda por 800 mil quilômetros e tenha aproximadamente 4.800 km de espessura. A cauda mais curta tem cerca de um-quarto deste comprimento.

Até ao momento, apenas foram encontrados algumas dúzias de asteroides ativos. Os astrônomos podem agora detectar muitos mais graças às capacidades aprimoradas de levantamento de observatórios como o Pan-STARRS e ATLAS, que varrem todo o céu.

Os pesquisadores esperam monitorar Gault em busca de mais eventos de poeira.

Os resultados foram aceitos para publicação na revista The Astrophysical Journal Letters.

Fonte: University of Hawaii

Rios fluíram em Marte durante muito tempo

Há muito tempo, em Marte, a água esculpiu leitos de rios profundos à superfície do planeta, mas ainda não sabemos que tipo de clima os alimentou. Os cientistas não têm a certeza porque a sua compreensão do clima marciano, há bilhões de anos, permanece incompleta.


© NASA/JPL/U. de Chicago (a linha tracejada assinala a posição do canal de rio preservado)

Um novo estudo por cientistas da Universidade de Chicago catalogou esses rios para concluir que um escoamento significativo de rios persistiu em Marte durante mais tempo do que se pensava anteriormente. Segundo o estudo, o escoamento foi intenso, onde os rios em Marte eram mais largos do que os da Terra de hoje, e ocorreram em centenas de locais no Planeta Vermelho.

"Isto complica a imagem para os cientistas que querem modelar o antigo clima marciano. Já é difícil explicar rios ou lagos com base nas informações que temos," disse. "Isto torna um problema difícil ainda mais complexo," disse o autor principal do estudo, Edwin Kite, professor assistente de ciências geofísicas e especialista tanto da história de Marte quanto dos climas de outros mundos.
Mas, as restrições podem ser úteis para analisar as muitas teorias que os pesquisadores propuseram para explicar o clima.

Marte é atravessado por trilhas distintas de rios extintos há muito tempo. As naves da NASA tiraram fotos de centenas desses rios a partir de órbita e, quando o rover Curiosity pousou em 2012, enviou imagens de seixos arredondados durante muito tempo no fundo de um rio.

Mas o porquê de Marte, no passado, ter tido água líquida, é um enigma. Marte tem hoje uma atmosfera extremamente fina e no início da sua história também recebia apenas um-terço da luz solar que a Terra de hoje recebe, o que não deveria fornecer calor suficiente para manter a água líquida. "De fato, mesmo no passado de Marte, quando havia água suficiente para a existência de rios durante algum tempo, os dados indicam que Marte era extremamente frio e seco no tempo restante," explicou Kite.

Procurando uma melhor compreensão da precipitação marciana, Kite e colegas analisaram fotografias e modelos de elevação de mais de 200 antigos leitos de rios marcianos, abrangendo mais de um bilhão de anos. Esses leitos de rio são uma rica fonte de pistas sobre a água que os atravessou e o clima que os produziu. Por exemplo, a largura e a inclinação dos leitos dos rios e o tamanho do cascalho informam os cientistas sobre a força do fluxo da água e a quantidade de cascalho restringe o volume de água que passa.

A sua análise mostra evidências claras de escoamento persistente e forte que ocorreu no último estágio do clima úmido.

Os resultados fornecem orientação para aqueles que tentam reconstruir o clima marciano. Por exemplo, o tamanho dos rios implica que a água estava fluindo continuamente, não apenas ao meio-dia, de modo que os modeladores climáticos precisam de explicar um forte efeito estufa para manter o clima aquecido o suficiente para temperaturas diurnas médias acima do ponto de congelamento da água.

Os rios também mostram forte fluxos até ao "último minuto" geológico antes do clima úmido ter secado. "Esperaríamos que diminuíssem gradualmente com o tempo, mas não é isso que vemos," realça Kite. Os rios ficam mais curtos, centenas de quilômetros, em vez de milhares, mas a descarga ainda é forte."

É possível que o clima tenha tido uma oscilação entre os ciclos secos e molhados.

"O nosso trabalho responde a algumas perguntas existentes, mas levanta uma nova. O que está errado: os modelos climáticos, os modelos de evolução atmosférica ou a nossa compreensão básica da cronologia do Sistema Solar interior?", concluiu kite.

O estudo foi publicado na revista Science Advances.

Fonte: University of Chicago

segunda-feira, 1 de abril de 2019

Cadeia de galáxias de Markarian

Do outro lado do coração do aglomerado de galáxias de Virgem, encontra-se uma impressionante cadeia de galáxias, conhecida como Cadeia de Markarian.


© Sergio Kaminsky (Cadeia de Markarian)

A cadeia de galáxias, vista na imagem acima, é destacada à direita com duas grandes galáxias lenticulares, sem traços característicos, M84 e M86. Proeminente no canto inferior esquerdo está um par de galáxias interagindo conhecidas como Olhos de Markarian.

O aglomerado de Virgem é o mais próximo aglomerado de galáxias, contendo mais de 2.000 galáxias e exerce uma atração gravitacional notável nas galáxias do Grupo Local em torno da Via Láctea.

O centro do aglomerado de Virgem está localizado a cerca de 70 milhões de anos-luz de distância em direção à constelação de Virgem. Pelo menos sete galáxias da cadeia parecem se mover de forma coerente, embora outras pareçam estar superpostas ao acaso.

Fonte: NASA

sábado, 30 de março de 2019

Encontradas evidências de planeta quase 13 vezes maior que Júpiter

Nas últimas três décadas, foram descobertos quase 4 mil objetos semelhantes a um planeta situados fora do Sistema Solar orbitando estrelas isoladas.


© Leandro Almeida (exoplaneta em torno de sistema binário)

Já a partir de 2011, por meio do satélite Kepler da NASA, foi possível observar os primeiros exoplanetas girando em torno de sistemas binários jovens, compostos por duas estrelas vivas, em cujos núcleos ainda há queima de hidrogênio.

Agora, um grupo de astrônomos brasileiros encontrou as primeiras evidências da existência de um exoplaneta ao redor de um sistema binário mais velho ou evoluído, em que uma das duas estrelas está morta.

“Conseguimos obter indicações bastante sólidas da existência de um exoplaneta gigante, com massa quase 13 vezes maior que a de Júpiter [maior planeta do Sistema Solar] em um sistema binário evoluído," disse Leonardo Andrade de Almeida, pós-doutorando na Universidade Federal do Rio Grande do Norte (UFRN). O pesquisador fez pós-doutorado no Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo (IAG-USP) com supervisão do professor Augusto Damineli.

Os pesquisadores encontraram sinais da existência de um exoplaneta em um sistema binário evoluído nomeado KIC10544976, localizado na constelação do Cisne, no hemisfério celeste norte, por meio da análise de diferentes pistas. Uma delas foi o efeito da variação do instante do eclipse.

O fenômeno é caracterizado pela precisão do tempo em que ocorrem os eclipses das duas estrelas que formam um sistema binário ao passar uma na frente da outra. Uma variação nesse tempo de ocorrência de eclipses, chamado período orbital, é forte indicador da existência de um planeta ao redor de estrelas. A variação do período orbital de um sistema binário ocorre em razão da atração gravitacional entre os três objetos, que passam a girar em torno de um centro de massa comum.

A identificação de variações no período orbital, porém, não é suficiente para a detecção de um planeta em um sistema binário. Isso porque, assim como o Sol apresenta variação em seu ciclo de atividade magnética a cada 11 anos, marcada por um pico e o posterior declínio das manchas solares, outras estrelas também passam por esse mesmo processo.

“A variação da atividade magnética do Sol e de outras estrelas isoladas causa uma alteração em seus campos magnéticos. Já em estrelas que compõem um sistema binário isso provoca uma mudança no período orbital, que chamamos de mecanismo Applegate,” disse Almeida.

A fim de afastar a hipótese de que a variação no período orbital do KIC10544976 seria resultado apenas da atividade magnética, os pesquisadores analisaram o efeito da variação do instante do eclipse e o ciclo de atividade magnética da estrela viva do sistema binário.

Esse sistema binário (KIC10544976) é composto por uma anã branca – a estrela morta, menor e com brilho alto (alta emissão de energia por unidade de tempo) devido à sua temperatura superficial elevada – e uma anã vermelha – a estrela viva, com massa pequena em comparação à do Sol e baixa luminosidade (baixa emissão de energia por unidade de tempo). As duas estrelas foram monitoradas por telescópios terrestres entre 2005 e 2017 e pelo satélite Kepler entre 2009 e 2013, que geraram dados minuto a minuto.

"Esse sistema é único. Nenhum outro sistema similar possui dados suficientes que nos permitam calcular a variação do período orbital e o ciclo de atividade magnética da estrela viva,” disse Almeida.

Por meio dos dados obtidos pelo satélite Kepler foi possível estimar o ciclo magnético da anã vermelha pela frequência e energia das explosões nos campos magnéticos (flares) e pelas manchas na superfície da estrela associadas a essas ejeções de energia.

As análises dos dados indicaram que o ciclo de atividade magnética da anã vermelha é de 600 dias, o que está de acordo com os ciclos magnéticos medidos para estrelas isoladas de massa baixa. Já a variação do período orbital do sistema binário KIC10544976 foi de 17 anos.

“Isso afasta totalmente a hipótese de que a atividade magnética gere essa variação do período orbital. A explicação mais plausível é a presença de um planeta gigante ao redor desse sistema binário, com massa próxima a 13 vezes à de Júpiter,” disse Almeida.

Ainda não se sabe como o planeta em torno do sistema binário teria sido formado. Uma das hipóteses é a de que o objeto se desenvolveu ao mesmo tempo que as duas estrelas, há bilhões de anos. Nesse caso, seria um planeta de primeira geração. Outra hipótese é a de que foi gerado a partir do gás ejetado durante a morte da anã branca, sendo, portanto, um planeta de segunda geração.

A confirmação de que se trata de um planeta de primeira ou segunda geração e a sua detecção direta ao redor desse sistema poderão ocorrer quando entrar em operação a nova geração de telescópios gigantes com espelhos primários maiores do que 20 metros. Entre eles, o Telescópio Gigante Magalhães (GMT, em inglês), no deserto do Atacama, no Chile, previsto para coletar sua primeira luz em 2024.

A Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) investirá US$ 40 milhões no GMT, o que equivale a cerca de 4% do custo total estimado. O investimento garantirá 4% do tempo de operação do telescópio para estudos realizados por pesquisadores de São Paulo (Brasil).

“Estamos sondando 20 sistemas com possibilidade de gravitar corpos externos, como o KIC10544976, e a maioria só é observável a partir do Hemisfério Sul. O GMT permitirá fazer a detecção direta desses objetos e obter respostas importantes sobre a formação, a evolução e a possibilidade de vida nesses ambientes exóticos,” disse Almeida.

O artigo “Orbital period variation of KIC 10544976: Applegate mechanism versus light travel time effect” foi publicado no periódico The Astronomical Journal.

Fonte: FAPESP

"Chaminés" gigantes liberam raios X do núcleo da Via Láctea

Ao examinar o centro da nossa Galáxia, o XMM-Newton da ESA descobriu duas colossais "chaminés" que canalizam o material da vizinhança do buraco negro supermassivo da Via Láctea em duas enormes bolhas cósmicas.


© ESA (ilustração da ejeção de material quente e de raios X no centro da Via Láctea)

As bolhas gigantes foram descobertas em 2010 pelo telescópio espacial de raios gama Fermi da NASA: uma estende-se acima do plano da Via Láctea e a outra por baixo, desenhando uma forma semelhante a uma ampulheta colossal que se estende por mais ou menos 50.000 anos-luz, cerca de metade do diâmetro de toda a Galáxia. Podem ser considerados "arrotos" gigantes de material das regiões centrais da nossa Via Láctea, onde reside o seu buraco negro central, conhecido como Sagitário A*.

Agora, o XMM-Newton descobriu dois canais de emissão de raios X quentes saindo de Sagitário A*, finalmente ligando as redondezas imediatas do buraco negro às bolhas.

"Sabemos que as correntes e ventos de material e energia que emanam de uma galáxia são cruciais para esculpir e alterar a forma da Galáxia ao longo do tempo," comenta Gabriele Ponti do Instituto Max Planck para Física Extraterrestre e do Instituto Nacional de Astrofísica na Itália.

"Felizmente, a nossa Galáxia dá-nos um laboratório próximo para explorar isto em detalhe, e examinar como o material flui para o espaço ao nosso redor. Nós usamos dados recolhidos pelo XMM-Newton entre 2016 e 2018 para formar o mapa de raios X mais extenso já feito do núcleo da Via Láctea."
Este mapa revelou canais longos de gás superaquecido, cada um estendendo-se por centenas de anos-luz, fluindo para cima e para baixo do plano da Via Láctea.

Os cientistas pensam que estes agem como um conjunto de tubos de escape através dos quais a energia e a massa são transportadas do núcleo da nossa Galáxia para a base das bolhas, reabastecendo-as com material novo.

Esta descoberta esclarece como a atividade que ocorre no núcleo da nossa Galáxia, tanto no presente como no passado, está ligada à existência de estruturas maiores em seu redor.

O fluxo pode ser um remanescente do passado da nossa Galáxia, de um período em que a atividade era muito mais prevalente e poderosa, ou pode provar que mesmo galáxias quiescentes, aquelas que abrigam um buraco negro supermassivo relativamente calmo e níveis moderados de formação estelar como a Via Láctea, podem orgulhar-se de ter enormes e energéticos fluxos exteriores de material.

Apesar da sua classificação como quiescente na escala cósmica de atividade galáctica, dados anteriores do XMM-Newton revelaram que o núcleo da Via Láctea ainda é bastante tumultuoso e caótico. As estrelas moribundas explodem violentamente, atirando o seu material para o espaço; as estrelas binárias giram em torno uma da outra; e Sagitário A*, um buraco negro tão massivo quanto 4 milhões de sóis, está à espreita para devorar material que se aproxima, expelindo mais tarde radiação e partículas energéticas.

Gigantes cósmicos como Sagitário A* hospedados por galáxias em todo o cosmos, serão explorados em detalhe por observatórios de raios X como o ATHENA (Advanced Telescope for High-Energy Astrophysics) da ESA, com lançamento previsto para 2031. Outra missão futura da ESA, LISA (Laser Interferometer Space Antenna), vai procurar ondas gravitacionais liberadas pela fusão de buracos negros supermassivos no núcleo de galáxias distantes em colisão.

O ATHENA combinará espectroscopia de raios X de alta resolução com excelentes capacidades de imagem em amplas áreas do céu, permitindo a exploração da natureza e do movimento do gás cósmico quente.

"Este excelente resultado do XMM-Newton dá-nos uma visão sem precedentes do que realmente está acontecendo no centro da Via Láctea, e apresenta o mapa de raios X mais extenso já criado de toda a região central," diz Norbert Schartel, cientista do projeto XMM-Newton da ESA.

Fonte: ESA

quarta-feira, 27 de março de 2019

GRAVITY abre novos caminhos na obtenção de imagens de exoplanetas

O instrumento GRAVITY montado no Interferômetro do Very Large Telescope (VLTI) do ESO obteve a sua primeira observação direta de um exoplaneta utilizando interferometria óptica.


© ESO/L. Calçada (ilustração do exoplaneta HR 8799e)

Este método revelou uma atmosfera exoplanetária complexa com nuvens de ferro e silicatos no seio de uma tempestade que engloba todo o planeta. Esta técnica apresenta possibilidades únicas para caracterizar muitos dos exoplanetas que se conhecem atualmente.

Este resultado foi anunciado hoje numa carta à revista Astronomy & Astrophysics pela Colaboração GRAVITY, na qual foram apresentadas observações do exoplaneta HR8799e usando interferometria óptica. Este exoplaneta foi descoberto em 2010 em órbita de uma estrela jovem de sequência principal, HR8799, situada a cerca de 129 anos-luz de distância da Terra na direção da constelação de Pégaso.

Os resultados de hoje, que revelam novas características do HR8799e, necessitaram de um instrumento de muito alta resolução e sensibilidade. O GRAVITY pode usar os quatro telescópios principais do VLT do ESO em sincronia como se fossem um único grande telescópio, utilizando um técnica conhecida por interferometria. O VLTI colecta e separa de forma precisa a radiação emitida pela atmosfera do HR8799e e a radiação emitida pela sua estrela progenitora.

O HR8799e é um exoplaneta do tipo “super-Júpiter”, um mundo diferente de qualquer um dos planetas existentes no Sistema Solar, já que é mais massivo e muito mais jovem do que qualquer dos planetas que orbita o nosso Sol. Com apenas 30 milhões de anos de idade, este exoplaneta bebê é suficientemente jovem para dar aos astrônomos pistas sobre a formação de planetas e sistemas planetários. O exoplaneta é completamente inóspito, a energia que restou da sua formação e um forte efeito estufa fazem com que o HR8799e apresente uma temperatura de cerca de 1.000 ºC na sua superfície.

Esta é a primeira vez que interferometria óptica é utilizada para revelar detalhes sobre um exoplaneta e a nova técnica nos deu um espectro extremamente detalhado com uma qualidade sem precedentes, dez vezes mais detalhado do que observações anteriores. As medições efetuadas pela equipe revelaram a composição da atmosfera do HR8799e, a qual contém algumas surpresas.

“A nossa análise mostrou que o HR8799e tem uma atmosfera que contém muito mais monóxido de carbono do que metano, algo que não se espera do equilíbrio químico,” explica o líder da equipe Sylvestre Lacour, pesquisador do Observatório de Paris e do Instituto Max Planck de Física Extraterrestre. “A melhor maneira de explicar este resultado surpreendente é com elevados ventos verticais no seio da atmosfera, os quais impedem o monóxido de carbono de reagir com o hidrogênio para formar metano.”

A equipe descobriu que a atmosfera contém igualmente nuvens de poeira de ferro e silicatos. Quando combinado com o excesso de monóxido de carbono, este fato nos sugere que a atmosfera do HR8799e esteja sofrendo os efeitos de uma enorme e violenta tempestade.

“As nossas observações sugerem uma bola de gás iluminada do interior, com raios de luz quente em movimento nas nuvens escuras tempestuosas,” explica Lacour. ”A convecção faz movimentar as nuvens de partículas de ferro e silicatos, que se desagregam provocando chuva no interior. Este cenário nos mostra uma atmosfera dinâmica num exoplaneta gigante acabado de formar, onde ocorrem processos físicos e químicos altamente complexos.”

Este resultado junta-se ao já impressionante conjunto de descobertas feitas com o auxílio do GRAVITY, as quais incluem a observação do ano passado de gás espiralando com uma velocidade de 30% da velocidade da luz na região logo a seguir ao horizonte de eventos do buraco negro supermassivo que se situa no Centro Galáctico. Este novo resultado adiciona mais uma maneira de observar exoplanetas ao já extenso arsenal de métodos disponíveis aos telescópios e instrumentos do ESO, abrindo caminho a muitas outras descobertas impressionantes.

Os exoplanetas podem ser observados usando muitos métodos diferentes. Alguns destes métodos são indiretos, como o método das velocidades radiais que é usado pelo HARPS, o instrumento caçador de exoplanetas do ESO, que mede a atração que a gravidade de um planeta exerce sobre a sua estrela progenitora. Os métodos diretos, tais como a técnica pioneira usada para a obtenção deste resultado, envolvem a observação do planeta propriamente dito em vez do efeito que ele exerce sobre a sua estrela.

Este trabalho foi descrito num artigo científico intitulado “First direct detection of an exoplanet by optical interferometry,” que foi publicado na revista Astronomy & Astrophysics.

Fonte: ESO

Formação estelar e poeira de estrelas antigas

Pesquisadores detectaram um sinal de rádio de poeira interestelar abundante em MACS0416_Y1, uma galáxia a 13,2 bilhões de anos-luz de distância na direção da constelação de Erídano.


© ALMA/Hubble (galáxia distante MACS0416_Y1)

Os modelos-padrão não conseguem explicar tanta poeira numa galáxia tão jovem, forçando-nos a reconsiderar a história da formação estelar. É possível que MACS0416_Y1 sofreu uma formação estelar escalonada, com dois períodos intensos 300 milhões e 600 milhões de anos após o Big Bang, e com uma fase calma entre eles.

As estrelas são os principais intervenientes no Universo, mas são apoiadas pelas mãos invisíveis dos bastidores: a poeira estelar e o gás. As nuvens cósmicas de poeira e gás são os locais de formação estelar e magistrais contadores da história cósmica.

"A poeira e os elementos relativamente pesados, como oxigênio, são disseminados pela morte das estrelas," disse Yoichi Tamura, professor associado da Universidade de Nagoya. "Portanto, uma detecção de poeira em determinado momento indica que um número de estrelas já se formou e morreu bem antes desse ponto."

Usando o ALMA (Atacama Large Millimeter/submillimeter Array), Tamura e a sua equipe observaram a galáxia distante MACS0416_Y1. Dada a velocidade finita da luz, as ondas de rádio que observamos hoje nesta galáxia tiveram que viajar durante 13,2 bilhões de anos para chegar até nós, apenas 600 milhões de anos após o Big Bang.

Os astrônomos detectaram um sinal fraco, mas revelador, de emissões de rádio de partículas de poeira em MACS0416_Y1. O telescópio espacial Hubble, o telescópio espacial Spitzer e o VLT (Very Large Telescope) do ESO observaram a luz das estrelas da galáxia; e da sua cor estimam que a idade estelar seja de 4 milhões de anos.

A poeira é demasiado abundante para ter sido formada em 4 milhões de anos. As estrelas mais antigas podem estar escondidas na galáxia, ou podem já ter morrido e desaparecido.

"Já foram propostas várias ideias para superar esta crise do montante de poeira," disse Ken Mawatari, pesquisador da Universidade de Tóquio. "No entanto, nenhuma é conclusiva. Fizemos um novo modelo que não precisa de suposições extremas divergentes do conhecimento da vida das estrelas no Universo de hoje. O modelo explica bem tanto a cor da galáxia como a quantidade de poeira."

Neste modelo, o primeiro surto de formação estelar começou aos 300 milhões de anos e durou 100 milhões de anos. Depois, a formação estelar acalmou durante algum tempo e recomeçou aos 600 milhões de anos. Os pesquisadores pensam que o ALMA observou esta galáxia no início da sua segunda geração de formação estelar.

"A poeira é um material crucial para planetas como a Terra," explica Tamura. "O nosso resultado é um passo importante para entender o início da história do Universo e a origem da poeira."

Um artigo foi publicado no periódico Astrophysical Journal.

Fonte: National Astronomical Observatory of Japan

sábado, 23 de março de 2019

Pulsar que acelera através do espaço

Os astrônomos encontraram um pulsar que viaja pelo espaço a quase 4 milhões de quilômetros por hora, tão rápido que poderia percorrer a distância entre a Terra e a Lua em apenas seis minutos.


© NASA/NRAO/J. English (remanescente de supernova CTB 1)

O remanescente de supernova CTB 1 assemelha-se a uma bolha fantasmagórica nesta imagem, que combina novas observações do VLA (Very Large Array) (1,5 gigahertz, laranja, perto do centro) com observações mais antigas do Canadian Galactic Plane Survey do DRAO (Dominion Radio Astrophysical Observatory) (1,42 gigahertz, magenta e amarelo; 408 megahertz, verde) e dados infravermelhos (azul). Os dados do VLA revelam claramente a cauda brilhante e reta do pulsar J0002+6216 e a borda curva da concha do remanescente. O CTB 1 tem cerca de meio-grau, o tamanho aparente de uma Lua Cheia.

A descoberta foi feita usando o telescópio espacial de raios gama Fermi da NASA e o VLA (Karl G. Jansky Very Large Array).

Os pulsares são estrelas de nêutrons superdensas e de rápida rotação deixadas para trás quando uma estrela massiva explode. A PSR J0002+6216 (J0002, abreviado), ostenta uma cauda de emissão de rádio que aponta diretamente para os destroços em expansão de uma recente explosão de supernova.
O pulsar J0002 foi descoberto em 2017 por um projeto de cientistas cidadãos chamado Einstein@Home, que usa o tempo nos computadores de voluntários para processar dados de raios gama do Fermi. Graças ao tempo de processamento, coletivamente superior a 10.000 anos, o projeto identificou até à data 23 pulsares de raios gama.

Localizado a mais ou menos 6.500 anos-luz de distância na direção da constelação de Cassiopeia, o J0002 gira 8,7 vezes por segundo, produzindo um pulso de raios gama a cada rotação.

O pulsar fica a cerca de 53 anos-luz do centro do remanescente de supernova CTB 1. O seu movimento rápido através do gás interestelar resulta em ondas de choque que produzem a cauda de energia magnética e partículas aceleradas detectadas no rádio com o VLA. A cauda estende-se por 13 anos-luz e aponta claramente para o centro de CTB 1.

Usando dados do Fermi e uma técnica chamada tempo do pulsar, a equipe foi capaz de medir com que rapidez e em que direção o pulsar se move ao longo da nossa linha de visão.

O resultado apoia a ideia de que o pulsar foi expulso a alta velocidade pela supernova responsável por CTB 1, que ocorreu há aproximadamente 10.000 anos.

O J0002 está acelerando pelo espaço cinco vezes mais depressa do que o pulsar médio e mais depressa do que 99% daqueles com velocidades medidas. Eventualmente acabará por escapar da nossa Galáxia.

Inicialmente, os destroços em expansão da supernova teriam sido movidos para fora mais depressa do que J0002, mas ao longo de milhares de anos a interação da concha com o gás interestelar produziu um arrasto que gradualmente diminui este movimento. Entretanto, o pulsar, comportando-se mais como uma bala de canhão, atravessou o remanescente, escapando cerca de 5.000 anos após a explosão.

Exatamente como o pulsar foi acelerado a uma velocidade tão alta durante a explosão de supernova, ainda não está claro, e um estudo mais aprofundado do J0002 ajudará a esclarecer o processo. Um mecanismo possível envolve instabilidades na estrela em colapso, formando uma região de matéria lenta e densa que sobrevive o tempo suficiente para servir como "rebocador gravitacional", acelerando a estrela de nêutrons nascente na sua direção.

A equipe planeja efetuar observações adicionais usando o VLA, o VLBA (Very Long Baseline Array) e o observatório de raios X Chandra da NASA.

Os astrônomos apresentaram os seus achados na reunião da Divisão de Astrofísica de Alta Energia da Sociedade Astronômica Americana em Monterey, Califórnia.

O artigo que descreve os resultados foi submetido para publicação numa edição futura da revista The Astrophysical Journal Letters.

Fonte: NASA

Testemunhando o nascimento de um sistema binário massivo

Cientistas do Grupo RIKEN no Japão, da Universidade Chalmers na Suécia, da Universidade da Virgínia nos EUA e colaboradores usaram o ALMA (Atacama Large Millimeter/submillimeter Array) para observar uma nuvem molecular que está em colapso para formar duas protoestrelas massivas que acabarão por se tornar num sistema estelar binário.


© ALMA/RIKEN/Y. Zhang (animação das correntes de gás)

A animação é composta por imagens obtidas pelo ALMA que mostram as correntes de gás, traçadas pela molécula metanol, com diferentes cores que indicam velocidades diferentes, em torno da massiva protoestrela binária. A imagem cinzenta de fundo mostra a distribuição geral, de todas as velocidades, da emissão da poeira presente nas densas correntes de gás.

Embora se saiba que a maioria das estrelas massivas possuem companheiras estelares em órbita, não se tem a certeza de como isso acontece; por exemplo, se as estrelas nascem juntas num disco espiral comum no centro de uma nuvem em colapso, ou se se agrupam mais tarde graças a encontros aleatórios num aglomerado estelar lotado.

Tem sido difícil compreender a dinâmica da formação de binários porque as protoestrelas nestes sistemas ainda estão envolvidas numa nuvem espessa de gás e poeira que impede a maior parte da luz de escapar. Felizmente, é possível vê-las usando ondas de rádio, desde que possam ser visualizadas com resolução espacial suficientemente alta.

Na pesquisa atual, os cientistas liderados por Yichen Zhang do Grupo RIKEN e Jonathan C. Tan da Universidade Chalmers e da Universidade da Virgínia, usaram o ALMA para observar, em alta resolução espacial, uma região de formação estelar conhecida como IRAS07299-1651, localizada a 1,68 kiloparsecs, cerca de 5.500 anos-luz.

As observações mostraram que já neste estágio inicial, a nuvem contém dois objetos, uma estrela central massiva e "primária" e outra estrela "secundária" em formação, também com massa elevada. Pela primeira vez, a equipe foi capaz de usar estas observações para deduzir a dinâmica do sistema. As observações mostraram que as duas estrelas em formação estão separadas por uma distância de aproximadamente 180 UA (1 UA, ou unidade astronômica, é a distância entre a Terra e o Sol). Portanto, estão bem distantes. Atualmente orbitam-se uma à outra com um período de no máximo de 600 anos e têm uma massa total de pelo menos 18 vezes a do Sol.

Outra descoberta do estudo foi que as estrelas binárias estão sendo estimuladas a partir de um disco comum alimentado pela nuvem em colapso e isto favorece um cenário no qual a estrela secundária do binário se formou como resultado da fragmentação do disco originalmente ao redor da primária. Isto permite que a protoestrela secundária, inicialmente mais pequena, "roube" matéria da sua irmã e eventualmente emergem como "gêmeas" bastante semelhantes.

Jonathan Tan disse: "Este é um resultado importante para entender o nascimento das estrelas massivas. Estas são importantes em todo o Universo pois produzem, no final das suas vidas, os elementos pesados que compõem a nossa Terra e que estão nos nossos corpos."

A pesquisa foi publicada na revista Nature Astronomy.

Fonte: National Radio Astronomy Observatory

quarta-feira, 20 de março de 2019

Descobertos 83 buracos negros supermassivos no Universo inicial

Astrônomos do Japão, de Taiwan e dos EUA (Universidade de Princeton) descobriram 83 quasares alimentados por buracos negros supermassivos, numa época em que o Universo tinha menos de 10% da sua idade atual.


© Yoshiki Matsuoka (ilustração de um quasar)

Este achado aumenta consideravelmente o número de buracos negros conhecidos naquela época e revela, pela primeira vez, quão comuns são no início da história do Universo. Além disso, fornece novas informações sobre o efeito dos buracos negros no estado físico do gás no Universo primordial, durante os seus primeiros bilhões de anos.

Os buracos negros supermassivos, encontrados nos centros das galáxias, podem ser milhões ou até bilhões de vezes mais massivos que o Sol. Embora sejam prevalentes ainda hoje, não se sabe quando se formaram pela primeira vez, e quantos existiam no Universo primitivo e distante. Um buraco negro supermassivo torna-se visível quando acumula gás ao seu redor, fazendo com que brilhe como um quasar. Os estudos anteriores foram apenas sensíveis aos raríssimos quasares mais luminosos e, portanto, aos buracos negros mais massivos. As novas descobertas sondam a população de quasares mais fracos, alimentados por buracos negros com massas comparáveis à maioria dos buracos negros vistos no Universo atual.

A equipe usou dados obtidos com um instrumento HSC (Hyper Suprime-Cam), acoplado no telescópio Subaru do NAOJ (National Astronomical Observatory of Japan), localizado no cume do Mauna Kea, Havaí. O HSC tem um campo de visão fantástico, com 1,77 graus, ou sete vezes a área da Lua Cheia, montado num dos maiores telescópios do mundo. A equipe do HSC está examinando o céu ao longo de 300 noites de tempo de telescópio, espalhadas durante cinco anos.

Foram selecionados candidatos a distantes quasares dos dados sensíveis da pesquisa do HSC. Foi realizado então uma intensa campanha observacional para obter espectros destes candidatos, usando três telescópios: o telescópio Subaru, o GTC (Gran Telescopio Canarias) em La Palma, Canárias, Espanha; e o telescópio Gemini Sul no Chile. O levantamento revelou 83 quasares muito distantes e anteriormente desconhecidos. Juntamento com 17 quasares já conhecidos na região de estudo, os cientistas descobriram que existe aproximadamente um buraco negro supermassivo por giga-ano-luz cúbico, ou seja, se fragmentássemos o Universo em cubos imaginários com bilhões de anos de lado, cada um teria um buraco negro supermassivo.

A amostra de quasares neste estudo está a cerca de 13 bilhões de anos-luz da Terra; isto é, estamos vendo os astros como eram há 13 bilhões de anos. Dado que o Big Bang ocorreu há 13,8 bilhões de anos, estamos efetivamente olhando para trás no tempo, vendo estes quasares e buracos negros supermassivos como apareciam apenas mais ou menos 800 milhões de anos após a formação do Universo (conhecido).

É amplamente aceito que o hidrogênio no Universo já foi neutro, mas que foi "reionizado", dividido nos seus componentes, prótons e elétrons, na época em que a primeira geração de estrelas, galáxias e buracos negros supermassivos nasceram, nas primeiras centenas de milhões de anos depois do Big Bang. Este é um marco da história cósmica, mas ainda não se sabe o que forneceu a incrível quantidade de energia necessária para provocar a reionização. Uma hipótese convincente sugere que havia muitos mais quasares no Universo primitivo do que o detectado anteriormente, e que foi a sua radiação integrada que reionizou o Universo.

Porém, o número de quasares vistos é significativamente menor do que o necessário para explicar a reionização. A reionização foi provocada por outra fonte de energia, provavelmente várias galáxias que começaram a formar-se no Universo jovem.

Com base nos resultados obtidos até agora, a equipe está ansiosa por encontrar buracos negros ainda mais distantes e por descobrir quando surgiu no Universo o primeiro buraco negro supermassivo.
A pesquisa foi divulgada numa série de cinco artigos publicados nas revistas The Astrophysical Journal e Publications of the Astronomical Observatory of Japan.

Fonte: Princeton University

terça-feira, 19 de março de 2019

Brilho estelar no Cão Maior

Brilhando intensamente no centro da imagem vemos o sistema estelar múltiplo massivo Tau Canis Majoris, o membro mais brilhante do aglomerado Tau Canis Majoris (NGC 2362) situado na constelação do Cão Maior.


© ESO (NGC 2362)

Para além de Tau Canis Majoris, este aglomerado apresenta muitas outras estrelas jovens com apenas 4 ou 5 milhões de anos de idade, ou seja, mesmo no início das suas vidas cósmicas.

O aglomerado Tau Canis Majoris é um aglomerado aberto, um grupo de estrelas nascidas da mesma nuvem molecular, que por isso mesmo partilham a mesma composição química e se encontram ligadas entre si, ainda que ligeiramente, pela gravidade. Uma vez que nasceram juntas, estas estrelas fornecem-nos um laboratório estelar ideal para testar teorias de evolução estelar, a cadeia de eventos que leva desde o nascimento de uma estrela no seio de uma nuvem de gás fria e densa até à sua morte eventual.

Apesar de todas as estrelas nesta imagem se terem formado ao mesmo tempo, as diferentes massas que apresentam significam que levarão vidas muito diferentes. As estrelas que compõem o sistema múltiplo de Tau Canis Majoris são do tipo mais massivo e de curta vida que se conhece, o que significa que gastarão rapidamente o seu combustível nuclear, antes das suas companheiras de aglomerado menores, as quais continuarão ainda brilhando durante bilhões de anos.

Fonte: ESO