segunda-feira, 28 de outubro de 2019

Hubble captura rosto cósmico

Em comemoração ao Halloween, esta nova imagem do telescópio espacial Hubble capta duas galáxias do mesmo tamanho em uma colisão que parece assemelhar-se a um rosto fantasmagórico.


© Hubble (Arp-Madore 2026-424)

Esta observação foi feita em 19 de junho de 2019 em luz visível pela Advanced Camera for Surveys do telescópio.

Embora colisões de galáxias sejam comuns, especialmente no Universo primitivo, a maioria não é um impacto frontal como a colisão que provavelmente criou este sistema Arp-Madore a 704 milhões de anos-luz da Terra. Este encontro violento fornece ao sistema uma estrutura de anel de retenção, mas apenas por um curto período de tempo. O acidente puxou e esticou os discos de gás, poeira e estrelas das galáxias para fora, formando o anel de intensa formação estelar que molda o "nariz" e a "face" do sistema.

As galáxias em anel são raras, e apenas algumas centenas delas residem em nossa vizinhança cósmica maior. As galáxias precisam colidir com a orientação correta para interagirem para criar o anel, e logo se fundirão completamente, escondendo seu passado confuso.

A justaposição lado a lado das duas protuberâncias centrais de estrelas das galáxias que vemos aqui também é incomum. Como as protuberâncias que formam os "olhos" parecem ter o mesmo tamanho, podemos ter certeza de que as duas galáxias envolvidas no acidente eram do mesmo tamanho. Isso é diferente das colisões mais comuns em que pequenas galáxias são devoradas por seus vizinhos maiores.

Este sistema galáctico é catalogado como Arp-Madore 2026-424 (AM 2026-424) no Arp-Madore “Catalogue of Southern Peculiar Galaxies and Associations”. O astrônomo Halton Arp publicou seu compêndio de 338 galáxias interativas de aparência incomum em 1966. Mais tarde, ele fez uma parceria com o astrônomo Barry Madore para estender a busca por encontros galácticos únicos no céu do sul. Várias milhares de galáxias estão listadas nesta pesquisa de 1987.

O Hubble observou este sistema exclusivo como parte de um programa de "instantâneo" que tira proveito de lacunas ocasionais no cronograma de observação do telescópio para extrair imagens adicionais. Os astrônomos planejam usar este inovador programa Hubble para examinar de perto muitas outras galáxias que interagem. O objetivo é compilar uma amostra robusta de galáxias que interagem nas proximidades, o que poderia oferecer insights sobre como as galáxias cresceram ao longo do tempo através de fusões galácticas. Ao analisar estas observações detalhadas do Hubble, os astrônomos poderão decidir quais sistemas são os principais alvos para observações de acompanhamento do próximo telescópio espacial James Webb, com lançamento previsto para 2021.

Fonte: ESA

O menor planeta anão do Sistema Solar conhecido até hoje?

Com o auxílio do instrumento SPHERE montado no Very Large Telescope (VLT) do ESO, os astrônomos revelaram que o asteroide Hígia pode ser classificado como planeta anão.


© VLT/SPHERE (Hígia)

Este objeto é o quarto maior do cinturão de asteroides, depois de Ceres, Vesta e Pallas. Pela primeira vez foram feitas observações com resolução suficiente para estudar a sua superfície e determinar a sua forma e tamanho. Os astrônomos descobriram que Hígia é um asteroide esférico, podendo potencialmente destronar Ceres da sua posição de menor planeta anão do Sistema Solar.

Tal como os objetos do cinturão principal de asteroides, Hígia atende imediatamente três dos quatro requisitos para ser classificado como um planeta anão: orbita em torno do Sol, não é satélite de nenhum planeta e, contrariamente aos planetas, não "limpou" o espaço em torno da sua órbita. O requisito final é que ele tenha massa suficiente para que a sua própria gravidade lhe permita ter uma forma mais ou menos esférica. Foi isto que as observações obtidas com o VLT revelaram agora sobre Hígia.

A equipe também usou as observações SPHERE para restringir o tamanho de Hígia, colocando o seu diâmetro em pouco mais de 430 km. Plutão, o mais famoso dos planetas anões, tem um diâmetro de cerca de 2.400 km, enquanto Ceres apresenta cerca de 950 km de diâmetro.

Surpreendentemente, as observações revelaram também que Hígia não apresenta a enorme cratera de impacto que os cientistas esperavam ver na sua superfície. Hígia é o membro principal de uma das maiores famílias de asteroides, a qual é composta por cerca de 7.000 membros, todos com origem no mesmo corpo celeste. Os astrônomos esperavam que o evento que levou à formação desta numerosa família tivesse deixado uma marca grande e profunda em Hígia.

Apesar dos astrônomos terem observado 95% da superfície de Hígia, foram apenas identificadas inequivocamente duas crateras. Nenhuma destas duas crateras poderia ter sido causada pelo impacto que deu origem à família de asteroides Hígia, cujo volume é comparável a um objeto com uma dimensão da ordem dos 100 km. As crateras observadas são muito pequenas.

A equipe decidiu investigar mais. Com o auxílio de simulações numéricas, eles deduziram que a enorme família de asteroides e a forma esférica de Hígia são provavelmente o resultado de uma enorme colisão frontal com um projétil de diâmetro entre 75 e 150 km. As simulações mostram que o impacto violento, que se pensa ter ocorrido a cerca de 2 bilhões de anos atrás, despedaçou completamente o corpo progenitor. Quando os vários pedaços voltaram a se juntar, deram a Hígia uma forma esférica e milhares de asteroides companheiros.

Este trabalho foi apresentado em um artigo publicado na revista Nature Astronomy.

Fonte: ESO

sábado, 26 de outubro de 2019

A abominável galáxia

Os astrônomos descobriram acidentalmente as pegadas de uma monstruosa galáxia no Universo primitivo que nunca havia sido vista antes.


© Ivo Labbe (ilustração do aspeto de uma galáxia massiva no Universo inicial)

Como um abominável monstro cósmico, a comunidade científica geralmente considerava estas galáxias como uma espécie de lenda, dada a falta de evidências da sua existência, mas astrônomos nos Estados Unidos e na Austrália conseguiram, pela primeira vez, obter uma imagem da galáxia.

A descoberta fornece novas ideias sobre os primeiros passos crescentes de algumas das maiores galáxias do Universo.

A astrônoma Christina Williams, da Universidade do Arizona, autora principal do estudo, notou um leve borrão de luz em novas observações sensíveis do ALMA (Atacama Large Millimeter/submillimeter Array), uma coleção de 66 radiotelescópios no alto das montanhas chilenas. Estranhamente, o brilho parecia estar surgindo rdo nada, como uma pegada fantasmagórica num vasto deserto escuro.

Os pesquisadores estimam que o sinal veio de tão longe que demorou 12,5 bilhões de anos para chegar à Terra, dando-nos uma visão do Universo na sua infância. Eles pensam que a emissão observada é provocada pelo brilho quente das partículas de poeira aquecidas pelas estrelas que se formam no interior profundo de uma galáxia jovem. As nuvens gigantes de poeira escondem a luz das próprias estrelas, tornando a galáxia completamente invisível.

Ivo Labbe, da Universidade de Tecnologia de Swinburne, na Austrália, disse: "Descobrimos que a galáxia é realmente enorme e massiva com tantas estrelas quanto a Via Láctea, mas repleta de atividade, formando novas estrelas a um ritmo 100 vezes superior à da nossa própria Galáxia."

A descoberta pode resolver uma questão de longa data da astronomia. Estudos recentes descobriram que algumas das maiores galáxias do Universo jovem cresceram e atingiram a maioridade rapidamente, resultado que não é compreendido teoricamente. As galáxias massivas e adultas só são vistas no Universo primordial, a 10% da sua idade atual. Ainda mais intrigante, é que estas galáxias maduras parecem surgir do nada.

As galáxias menores já foram vistas no Universo inicial com o telescópio espacial Hubble, mas estas "criaturas" não estão crescendo depressa o suficiente para resolver o enigma. Outras galáxias monstruosas também foram relatadas anteriormente, mas estes avistamentos têm sido raros demais para fornecer uma explicação satisfatória.

Uma questão em aberto é exatamente quantas existem por aí. As observações para o estudo atual foram feitas numa parte pequena do céu, menos de 1/100 do disco da Lua Cheia. Como o Abominável Homem das Neves, encontrar pegadas da criatura mítica numa pequena faixa de deserto cósmico seria um sinal de incrível sorte ou sinal de que os monstros estão literalmente à espreita em todos os lugares.

Os cientistas aguardam ansiosamente o lançamento, programado para março de 2021, do telescópio espacial James Webb da NASA, a fim de investigar estes objetos em mais detalhe.

A descoberta foi publicada na revista The Astrophysical Journal.

Fonte: Swinburne University of Technology

sexta-feira, 25 de outubro de 2019

Detectado estrôncio durante colisão de duas estrelas de nêutrons

Foi detectado pela primeira vez no espaço um elemento pesado recentemente produzido, o estrôncio, após uma fusão de duas estrelas de nêutrons.


© ESO/L. Calçada/M. Kornmesser (ilustração da fusão de estrelas de nêutrons)

Esta descoberta foi realizada com observações efetuadas pelo espectrógrafo X-shooter, montado no Very Large Telescope (VLT) do ESO. A detecção confirma que os elementos mais pesados do Universo podem se formar em fusões de estrelas de nêutrons, fornecendo uma peça que falta no quebra-cabeça da formação de elementos químicos.

Em 2017, após a detecção das ondas gravitacionais que passaram pela Terra, o ESO apontou os seus telescópios, incluindo o VLT, para a fonte destas ondas: uma fusão de estrelas de nêutrons chamada GW170817. Os astrônomos suspeitavam que, se os elementos pesados se formassem efetivamente em colisões de estrelas de nêutrons, as assinaturas destes elementos poderiam ser detectadas em quilonovas, os resultados explosivos destas fusões. Foi exatamente isso que uma equipe de pesquisadores europeus fez, usando dados coletados pelo instrumento X-shooter, montado no Very Large Telescope do ESO.

Após a fusão GW170817, os telescópios do ESO começaram a monitorar a explosão emergente de quilonova em uma ampla gama de comprimentos de onda. Em particular, o X-shooter obteve uma série de espectros desde o ultravioleta ao infravermelho próximo. A análise preliminar destes espectros sugeria a presença de elementos pesados na quilonova, mas os astrônomos não podiam identificar elementos individuais até agora.

Na Terra, o estrôncio é encontrado naturalmente no solo e está concentrado em certos minerais. Seus sais são usados para dar aos fogos de artifício uma cor vermelha brilhante.

Os astrônomos conhecem os processos físicos que dão origem aos elementos desde a década de 1950. Nas décadas seguintes, foram sendo descobertas as regiões cósmicas de cada uma destas forjas nucleares principais, exceto uma. “Esta é a fase final de uma busca de longas décadas para descobrir a origem dos elementos,” disse Darach Watson, do Universidade de Copenhague, na Dinamarca. “Sabemos que os processos que formaram os elementos ocorreram essencialmente em estrelas comuns, em explosões de supernovas e nas camadas externas de estrelas velhas. Mas, até agora, não conhecíamos a localização do processo final, conhecido por captura rápida de nêutrons e que deu origem aos elementos mais pesados da tabela periódica.”

A captura rápida de nêutrons é um processo no qual um núcleo atômico captura nêutrons com rapidez suficiente para permitir a criação de elementos muito pesados. Embora muitos elementos sejam produzidos nos núcleos das estrelas, a criação de elementos mais pesados que o ferro, como o estrôncio, requer ambientes ainda mais quentes, com muitos nêutrons livres. A captura rápida de nêutrons ocorre naturalmente apenas em ambientes extremos, onde os átomos são bombardeados por um grande número de nêutrons.

Só agora os cientistas estão começando a entender melhor as fusões de estrelas de nêutrons e as quilonovas. Devido ao conhecimento limitado que temos destes fenômenos e a várias complexidades nos espectros que o X-shooter obteve da explosão, os astrônomos não tinham conseguido identificar anteriormente elementos individuais.

A fusão GW170817 foi a quinta detecção de ondas gravitacionais, possível graças ao Laser Interferometer Gravitational-Wave Observatory (LIGO), nos EUA, e ao Virgo Interferometer, na Itália. Situada na galáxia NGC 4993, esta fusão foi a primeira, e até agora a única, fonte de ondas gravitacionais a ter a sua contraparte visível detectada por telescópios na Terra.

Com os esforços combinados do LIGO, Virgo e VLT, podemos agora compreender melhor os mecanismos internos das estrelas de nêutrons e as suas fusões explosivas.

Esta pesquisa foi apresentada em um artigo científico publicado na revista Nature.

Fonte: ESO

terça-feira, 22 de outubro de 2019

As semelhanças da Terra com outros planetas

Os planetas parecidos com a Terra podem ser comuns no Universo, sugere um novo estudo.


© Mark Garlick (ilustração de uma anã branca com um planeta em cima e à direita)

Uma equipe de astrofísicos e geoquímicos apresenta novas evidências de que a Terra não é única.

"Acabamos de aumentar a probabilidade de muitos planetas rochosos serem como a Terra e há um número muito grande de planetas rochosos no Universo," disse Edward Young, professor de geoquímica e cosmoquímica da UCLA (Universidade da Califórnia em Los Angeles).

Os cientistas, liderados por Alexandra Doyle, estudante de geoquímica e astroquímica da UCLA, desenvolveu um novo método para analisar em detalhe a geoquímica dos planetas localizados além do nosso Sistema Solar. Foi analisado os elementos em rochas de asteroides ou fragmentos de planetas rochosos que orbitavam seis estrelas anãs brancas.

As estrelas anãs brancas são os remanescentes densos de estrelas normais. A sua forte atração gravitacional faz com que os elementos pesados como carbono, oxigênio e nitrogênio afundem rapidamente nos seus interiores, onde os elementos pesados não podem ser detectados por telescópios. A estrela anã branca mais próxima estudada por Doyle fica a cerca de 200 anos-luz da Terra e a mais distante está a 665 anos-luz.

"Observando estas anãs brancas e os elementos presentes na sua atmosfera, estamos observando os elementos que estão no corpo que orbitou a anã branca," disse Doyle. A grande força gravitacional da anã branca rasga o asteroide ou fragmento de planeta que está em órbita e o material cai sobre a anã branca, acrescentou. "Observar uma anã branca é como fazer uma autópsia sobre o conteúdo daquilo que devorou no seu sistema."

Os dados analisados por Doyle foram recolhidos por telescópios, principalmente pelo Observatório W. M. Keck no Havaí, que os cientistas espaciais haviam recolhido anteriormente para outros fins científicos.

Ao observar uma estrela anã branca espera-se encontrar hidrogênio e hélio. Mas nestes dados, foram vistas outras substâncias, como silício, magnésio, carbono e oxigênio, material de corpos que estavam em órbita e que se acumulou nas anãs brancas.

Quando o ferro é oxidado, partilha os seus elétrons com o oxigênio, formando uma ligação química. A isto chamamos oxidação e podemos ver quando o metal se transforma em ferrugem. O oxigênio captura elérons do ferro, produzindo óxido de ferro. Os astrônomos mediram a quantidade de ferro oxidado nestas rochas que atingiram a anã branca.

As rochas da Terra, de Marte e de outras partes do nosso Sistema Solar são semelhantes em composição química e contêm um nível surpreendentemente alto de ferro oxidado.

O Sol é composto principalmente de hidrogênio, que faz o oposto da oxidação; o hidrogênio acrescenta elétrons.

Os pesquisadores disseram que a oxidação de um planeta rochoso tem um efeito significativo na atmosfera, no núcleo e no tipo de rochas que produz à superfície. "Toda a química que ocorre à superfície da Terra pode, em última análise, ser rastreada até ao estado de oxidação do planeta," disse Young. "O fato de termos oceanos e todos os ingredientes necessários para a vida pode ser rastreado até à quantidade de oxidação do planeta. As rochas controlam a química."

Até agora, os cientistas não sabiam em detalhe se a química dos exoplanetas rochosos era semelhante ou se era muito diferente da química da Terra.

Quão semelhantes são as rochas analisadas, com as rochas da Terra e de Marte?

São parecidas com as da Terra e de Marte em termos de ferro oxidado.

Os pesquisadores estudaram os seis elementos mais comuns nas rochas: ferro, oxigênio, silício, magnésio, cálcio e alumínio.

"Se as rochas extraterrestres têm uma quantidade de oxidação semelhante à da Terra, então podemos concluir que o planeta possui placas tectônicas parecidas e potencial para campos magnéticos semelhantes aos da Terra, que se pensa serem ingredientes para a vida."

O estudo foi publicado na revista Science.

Fonte: University of California

domingo, 20 de outubro de 2019

A Via Láctea roubou várias galáxias minúsculas da sua vizinha

Assim como a Lua orbita a Terra, e a Terra orbita o Sol, as galáxias orbitam-se umas às outras de acordo com as previsões da cosmologia.


© UCR/Ethan Jahn (visualização das simulações)

Por exemplo, descobriram-se até agora mais de 50 galáxias satélites em órbita da Via Láctea. A maior delas é a Grande Nuvem de Magalhães (GNM), uma grande galáxia anã que se assemelha a uma nuvem fraca no céu noturno do hemisfério sul.

Uma equipe de astrônomos, liderada por cientistas da Universidade da Califórnia em Riverside, descobriu que várias das galáxias anãs que orbitam a Via láctea provavelmente foram roubadas da GNM, incluindo várias anãs ultratênues, mas também galáxias satélites relativamente brilhantes e conhecidas, como a Anã de Carina e a Anã de Fornalha.

Os pesquisadores fizeram a descoberta usando novos dados recolhidos pelo telescópio espacial Gaia dos movimentos de várias galáxias próximas e contrastando-os com simulações hidrodinâmicas cosmológicas de ponta. A equipe usou as posições no céu e as velocidades previstas do material, como matéria escura, acompanhando a GNM, descobrindo que pelo menos quatro galáxias anãs ultrafracas e duas anãs clássicas, Carina e Fornalha, já foram satélites da Grande Nuvem de Magalhães. Durante o processo de fusão, no entanto, a mais massiva Via Láctea usou o seu poderoso campo gravitacional para destruir a GNM e roubar estas galáxias satélites.

Os resultados têm implicações importantes para a massa total da GNM e também para a formação da Via Láctea.

Se tantas anãs vieram com a GNM apenas recentemente, isso significa que as propriedades da população de satélites da Via Láctea há apenas um bilhão de anos era radicalmente diferente, impactando o conhecimento de como as galáxias mais fracas se formam e evoluem.

As galáxias anãs são galáxias pequenas que contêm entre alguns milhares e alguns bilhões de estrelas. Os cientistas usaram simulações de computador do projeto FIRE (Feedback In Realistic Environments) para mostrar que a GNM e galáxias parecidas hospedam inúmeras galáxias anãs minúsculas, muitas das quais não contêm estrelas, apenas matéria escura, um tipo de matéria que constitui a maior parte da massa do Universo.

O alto número de pequenas galáxias anãs parece sugerir que o conteúdo de matéria escura da GNM é bastante grande, o que significa que a Via Láctea está a passando pela fusão mais massiva da sua história, com a GNM, sua parceira, fornecendo até um-terço da massa do halo de matéria escura da Via Láctea.

O número de pequenas galáxias anãs que a GNM hospeda poderá ser maior do que foi estimado anteriormente e que muitas destas pequenas galáxias satélites não têm estrelas.

As galáxias anãs podem ser satélites de galáxias maiores, ou podem estar "isoladas", existindo por si próprias e independentes de qualquer objeto maior.

A Grande Nuvem de Magalhães continha pelo menos sete galáxias satélites, incluindo a Pequena Nuvem de Magalhães (PNM) no céu do hemisfério sul, antes de serem capturadas pela Via Láctea.

A equipe vai agora estudar como as galáxias satélites do tamanho da GNM formam as suas estrelas e como a formação estelar se relaciona com a quantidade de matéria escura que possuem.

Os resultados do estudo foram publicados na revista Monthly Notices of the Royal Astronomical Society.

Fonte: University of California

sábado, 19 de outubro de 2019

ALMA observa fluxos de gás em torno de buraco negro

No centro de uma galáxia chamada NGC 1068, um buraco negro supermassivo esconde-se dentro uma espessa nuvem de poeira e gás em forma de anel.


© NRAO/S. Dagnello (ilustração do movimento do gás no núcleo da galáxia NGC 1068)

Quando os astrônomos usaram o ALMA (Atacama Large Millimeter/submillimeter Array) para estudar esta nuvem em mais detalhe, fizeram uma descoberta inesperada que poderá explicar porque é que os buracos negros supermassivos cresceram tão depressa no início do Universo.

Os buracos negros supermassivos já existiam quando o Universo era jovem, apenas um bilhão de anos após o Big Bang. Mas exatamente como estes objetos extremos, cujas massas atingem bilhões de vezes a massa do Sol, tiveram tempo para crescer tanto, é uma questão importante na astronomia. Esta nova descoberta do ALMA pode fornecer uma pista. Os fluxos de gás contragiratórios são instáveis, o que significa que as nuvens caem no buraco negro mais depressa do que num disco com uma única direção de rotação. Esta pode ser uma maneira pela qual um buraco negro cresce rapidamente.

A NGC 1068, também conhecida como Messier 77 (M77), é uma galáxia espiral localizada a aproximadamente 47 milhões de anos-luz da Terra na direção da constelação da Baleia. No seu centro está um núcleo galáctico ativo, um buraco negro supermassivo que se alimenta ativamente de um disco giratório e fino de gás e poeira, também conhecido como disco de acreção.

Observações anteriores do ALMA revelaram que o buraco negro está engolindo material e expelindo gás a velocidades incrivelmente altas. Este gás expelido do disco de acreção provavelmente contribui para ocultar a região em torno do buraco negro dos telescópios ópticos.

Os astrônomos usaram a incrível capacidade de ampliação do ALMA para observar o gás molecular ao redor do buraco negro. Inesperadamente, encontraram dois discos de gás contragiratórios. O disco interno mede de 2 a 4 anos-luz e segue a rotação da galáxia, ao passo que o disco externo, também conhecido como toro, mede de 4 a 22 anos-luz e gira na direção oposta.

A contrarotação não é um fenômeno incomum no espaço. É visto em galáxias, geralmente a milhares de anos-luz dos seus centros galácticos. A contrarotação resulta sempre da colisão ou interação entre duas galáxias. O que torna este resultado notável é que a contrarotação é vista numa escala muito menor, a dezenas de anos-luz em vez de a milhares de anos-luz do buraco negro central.

Os astrônomos pensam que o fluxo oposto em NGC 1068 pode ser provocado por nuvens de gás que caíram da galáxia hospedeira, ou por uma pequena galáxia, que passava numa órbita contrária, capturada no disco.

De momento, o disco externo parece estar numa órbita estável em torno do disco interno. Isto vai mudar quando o disco externo começar a cair no disco interno, o que poderá ocorrer após algumas órbitas ou algumas centenas de milhares de anos. Os fluxos giratórios do gás vão colidir e tornar-se instáveis, e os discos vão provavelmente colapsar num evento luminoso quando o gás molecular cair no buraco negro.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: National Radio Astronomy Observatory

Fluxos gasosos revelam protoplanetas ao redor de estrela jovem

Pela primeira vez, os astrônomos que usam o ALMA (Atacama Large Millimeter/submillimeter Array) testemunharam os movimentos 3D de gás num disco protoplanetário.


© NRAO/S. Dagnello (ilustração do gás que flui num disco protoplanetário)

Em três locais do disco em torno de uma jovem estrela chamada HD 163296, o gás flui como uma cascata para aberturas que são provavelmente provocadas por planetas em formação. Estes fluxos gasosos há muito que foram previstos e influenciam diretamente a composição química das atmosferas dos planetas.

Os locais de nascimento dos planetas são discos feitos de gás e poeira. Os astrônomos estudam estes discos protoplanetários a fim de entender os processos de formação planetária. As incríveis imagens destes discos, obtidas com o ALMA, mostram lacunas distintas e características anulares na poeira, que podem ser provocadas por planetas em formação.

Para ter mais certeza de que os planetas provocam estas divisões, e para ter uma visão completa da formação planetária, os cientistas estudam o gás nos discos, além da poeira. Noventa e nove por cento da massa de um disco protoplanetário é gás, dos quais o monóxido de carbono (CO) é o componente mais brilhante, e o ALMA pode observá-lo.

No ano passado, duas equipes de astrônomos demonstraram uma nova técnica de caça planetária usando este gás. Foi medida a velocidade do gás monóxido de carbono que gira ao redor da jovem estrela HD 163296. Distúrbios localizados nos movimentos do gás revelaram três padrões semelhantes a planetas no disco.

Neste novo estudo, os astrônomos usaram novos dados ALMA de alta resolução do projeto DSHARP (Disk Substructures at High Angular Resolution Project) para estudar em mais detalhe a velocidade do gás. Foi possível notar o gás movendo-se das camadas superiores em direção ao meio do disco em três locais diferentes.

Esta é a melhor evidência, até à data, de que realmente existem planetas em formação em torno de HD 163296. Mas não é possível ter certeza absoluta de que os planetas provocam o fluxo de gás. Por exemplo, o campo magnético da estrela também pode provocar distúrbios no gás.

As posições dos três planetas previstos neste estudo correspondem aos resultados do ano passado. Estão provavelmente localizados a 87, 140 e 237 UA (1 UA, ou unidade astronômica, é a distância média da Terra ao Sol). Calculou-se que o planeta mais próximo de HD 163296 tem metade da massa de Júpiter e o planeta mais distante tenha o dobro da massa de Júpiter.

Os fluxos de gás da superfície para o plano médio do disco protoplanetário foram previstos no final da década de 1990. Mas esta é a primeira vez que os astrônomos os observam. Além de serem úteis para detectar planetas em formação, estes fluxos também podem esculpir a nossa compreensão de como os planetas gigantes gasosos obtêm as suas atmosferas.

Esta pesquisa foi publicada na revista Nature.

Fonte: National Radio Astronomy Observatory

terça-feira, 15 de outubro de 2019

Explosão violenta no núcleo de um sistema que abriga um buraco negro

Uma equipe internacional de astrônomos, liderada pela Universidade de Southampton, usou câmaras de última geração para criar um filme com alta taxa de quadros de um sistema com um buraco negro em crescimento e a um nível de detalhe nunca antes visto.


© John Paice (ilustração do buraco negro)

No processo, descobriram novas pistas para a compreensão dos arredores imediatos destes objetos enigmáticos.

Os buracos negros podem alimentar-se de uma estrela próxima e criar vastos discos de acreção de material. Aqui, o efeito da forte gravidade do buraco negro e o próprio campo magnético do material pode emitir níveis de radiação em rápida mudança do sistema como um todo.

Esta radiação foi detectada no visível pelo instrumento HiPERCAM acoplado ao GTC (Gran Telescopio Canarias) em La Palma, Ilhas Canárias, e em raios X pelo observatório NICER da NASA a bordo da Estação Espacial Internacional.

O buraco negro estudado tem o nome MAXI J1820+070 e foi descoberto no início de 2018. Fica a apenas 10.000 anos-luz de distância, na nossa própria Via Láctea. Tem uma massa equivalente a mais ou menos 7 sóis, que colapsou numa região do espaço inferior à cidade de Londres.

O estudo destes sistemas geralmente é muito difícil, pois as suas distâncias tornam-nos demasiado tênues e pequenos para serem observados, nem mesmo com o EHT (Event Horizon Telescope), que recentemente obteve a primeira fotografia do buraco negro no centro da galáxia M87. Os instrumentos HiPERCAM e NICER, no entanto, permitem o registro da luz do sistema a mais de 300 fps ("frames per second", quadros por segundo), capturando "crepitações" violentas e "surtos" de luz visível e raios X.

John Paice, estudante na Universidade de Southampton e do Centro Interuniversitário de Astronomia e Astrofísica, na Índia, foi o autor principal do estudo que apresentou estes resultados e também o artista que criou o filme. Ele explicou o trabalho da seguinte forma: "O filme foi feito usando dados reais, mas diminui para 1/10 da velocidade real para permitir que os surtos mais rápidos fossem discernidos pelo olho humano. Podemos ver que o material ao redor do buraco negro é tão brilhante que ofusca a estrela que está consumindo, e as oscilações mais rápidas duram apenas alguns milissegundos, é o 'output' de mais de cem sóis emitido num piscar de olhos."

Os cientistas também descobriram que quedas nos níveis de raios X são acompanhadas por um aumento da luz visível (e vice-versa). E que os flashes mais rápidos no visível emergiram uma fração de segundo após os raios X. Tais padrões revelam indiretamente a presença de plasma distinto, material extremamente quente onde os elétrons são despojados dos átomos, em estruturas profundas no abraço da gravidade do buraco negro, de outra forma pequenas demais para serem resolvidas.

Não é a primeira vez que isto é encontrado; uma diferença de fração de segundo entre a luz raios X e visível já foi observada em outros dois sistemas que hospedam buracos negros, mas nunca com este nível de detalhe. Os membros desta equipe internacional estiveram na vanguarda deste campo ao longo da última década. O Dr. Poshak Gandhi, igualmente de Southampton, também encontrou as mesmas assinaturas temporárias nos dois sistemas anteriores.

Ele comentou acerca da importância destas descobertas: "O fato de vermos isto agora em três sistemas reforça a ideia de que é uma característica unificadora de tais buracos negros em crescimento. A ser verdade, deve estar nos dizendo algo fundamental sobre como o fluxo de plasma em torno dos buracos negro opera."

"As nossas melhores ideias invocam uma ligação profunda entre os fluxos de plasma, para dentro e para fora. Mas estas são condições físicas extremas que não podemos replicar nos laboratórios da Terra e não entendemos como a natureza gere isto. Estes dados serão cruciais para acertar na teoria correta."

Um artigo foi publicado na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Royal Astronomical Society

sexta-feira, 11 de outubro de 2019

Saturno ultrapassa Júpiter após descoberta de 20 novas luas!

Uma equipe liderada por Scott S. Sheppard, da Carnegie Institution for Science, encontrou 20 novas luas em órbita de Saturno. Isto eleva o número total de satélites do planeta para 82, ultrapassando Júpiter, que tem 79.


© Hubble (Saturno)

A descoberta foi anunciada esta semana pelo Centro de Planetas Menores da União Astronômica Internacional.

Cada uma das recém-descobertas luas tem cerca de cinco quilômetros em diâmetro. Dezessete delas orbitam o planeta numa direção retrógrada, o que significa que o seu movimento é oposto à rotação do planeta em torno do seu eixo. As outras três luas orbitam na mesma direção que a rotação do planeta.

Duas das luas prógradas estão mais próximas do planeta e levam cerca de dois anos para completar uma volta em torno de Saturno. As mais distantes luas retrógradas e a outra lua prógrada levam mais de três anos para completar uma órbita.

"O estudo das órbitas destas luas pode revelar as suas origens, bem como informações sobre as condições que rodearam Saturno no momento da sua formação," explicou Sheppard.

As luas exteriores de Saturno parecem estar agrupadas em três grupos diferentes em termos das inclinações dos ângulos a que orbitam o planeta. Duas das recém-descobertas luas prógradas encaixam com um grupo de luas exteriores com inclinações de cerca de 46º, de nome grupo Inuíte, assim chamado em homenagem à mitologia Inuíte. Estas luas podem ter feito parte de uma maior lua que foi fragmentada no passado distante. Da mesma forma, as recém-anunciadas luas retrógradas têm inclinações semelhantes às de outras luas retrógradas anteriormente conhecidas, indicando que também são provavelmente fragmentos de uma lua progenitora anterior. Estas luas retrógradas pertencem ao grupo Nórdico, cujos nomes vêm da mitologia nórdica. Uma das luas retrógradas recém-descobertas é a lua mais distante conhecida em torno de Saturno.

"Este tipo de agrupamento de luas externas também existe em torno de Júpiter, indicando colisões violentas ocorridas entre luas no sistema de Saturno ou com objetos externos, como asteroides ou cometas," explicou Sheppard.

A outra lua prógrada recém-descoberta tem uma inclinação próxima dos 36º, semelhante a outro grupo de luas prógradas interiores em torno de Saturno chamado grupo Gaulês. Mas esta nova lua orbita muito mais longe de Saturno do que qualquer outra prógrada, indicando que poderá ter sido puxada para fora com o passar do tempo ou que pode não estar associada com o grupo mais interior de luas prógradas.


© Carnegie Institution for Science (trajetórias das novas luas de Saturno)

Caso estivesse presente uma quantidade significativa de gás ou poeira quando uma lua se fragmentasse, e criasse estes aglomerados de fragmentos menores, teriam havido fortes interações de atrito entre as luas menores e o gás e a poeira, fazendo com que espiralassem para o planeta.

"No Sistema Solar jovem, o Sol estava rodeado por um disco giratório de gás e poeira a partir do qual os planetas nasceram. Pensa-se que um disco semelhante de gás e poeira tenha cercado Saturno durante a sua formação," disse Sheppard. "O fato de que estas recém-descobertas luas conseguiram continuar orbitando Saturno depois das suas luas progenitoras terem sido destruídas indica que estas colisões ocorreram após o processo de formação planetária, quando o disco já não era um fator."

As novas luas foram descobertas usando o telescópio Subaru no topo do Mauna Kea no Havaí. A equipe de observação incluía Sheppard, David Jewitt da Universidade da Califórnia em Los Angeles (UCLA) e Jan Kleyna da Universidade do Havaí.

"Usando alguns dos maiores telescópios do mundo, estamos agora concluindo o inventário de pequenas luas em torno dos planetas gigantes," disse Scott Sheppard. "Desempenham um papel crucial para ajudar a determinar como os planetas do nosso Sistema Solar se formaram e evoluíram."
No ano passado, Sheppard descobriu 12 novas luas em órbita de Júpiter e Carnegie Institution for Science organizou um concurso online para dar nome a cinco delas.

"Fiquei tão emocionado com a resposta do público durante o concurso dos nomes das luas de Júpiter que decidimos fazer outro para dar nome a estas recém-descobertas luas de Saturno," comentou Sheppard. "Desta vez, as luas devem ter o nome de gigantes da mitologia nórdica, gaulesa ou inuíte."

Fonte: Carnegie Institution for Science

A regeneração da água nos asteroides

Os cientistas descobriram como as moléculas de água podem ser regeneradas nos asteroides que se deslocam pelo espaço, num avanço que pode estender-se a outros corpos como a Lua.


© U. Curtin (ilustração de um asteroide passando perto da Terra)

A nova pesquisa mostra que a água pode ser reabastecida à superfície dos asteroides caso o vento solar e os impactos de meteoroides se juntem a temperaturas muito baixas.

A principal autora australiana, a Dra. Katarina Mijkovic, do Centro de Ciência e Tecnologia Espacial da Universidade Curtin, disse que pesquisa provou que dois componentes do clima espacial, elétrons e choque térmico, são necessários para manter o abastecimento de moléculas de água nos asteroides, em vez de apenas um, como se pensava anteriormente.

"Este processo complexo para regenerar moléculas de água à superfície também pode ser um mecanismo possível para reabastecer o suprimento de água  em outros corpos sem atmosfera como a Lua," disse a Dra Miljkovic.

"O resultado desta pesquisa tem implicações potencialmente significativas porque todos sabemos que a disponibilidade de água no Sistema Solar é um elemento extremamente importante para a habitabilidade no espaço."

Um pedaço do meteorito Murchison, que caiu na Austrália há 50 anos, possibilitou simular as condições climáticas de um cinturão de asteroides dentro de uma máquina especialmente construída que imita as condições à superfície de um asteroide.

A equipe então usou elétrons energizados para simular ventos solares e lasers para imitar pequenos meteoroides que atingiam o asteroide, enquanto monitorava os níveis das moléculas de água à superfície.

Os impactos de meteoroides deram início à reação, e depois o vento solar atingiu a superfície, deixando os átomos de oxigênio e hidrogênio unidos, criando água.

O papel da Dra Miljkovic como especialista em impactos, foi o de validar o uso da ablação laser como substituto do bombardeamento de micrometeoroides.

Pesquisadores da Universidade do havaí e da Universidade Estatal da Califórnia também participaram da pesquisa.

Um artigo foi publicado na revista Nature Astronomy.

Fonte: Curtin University

terça-feira, 8 de outubro de 2019

Explosão no centro da Via Láctea ocorreu há relativamente pouco tempo

Há apenas 3,5 milhões de anos, um gigantesco feixe de energia se originou perto do buraco negro supermassivo no centro da Via Láctea, enviando um pulso de radiação em forma de cone pelos dois polos da Galáxia e pelo espaço profundo.


© ASTRO 3D/James Josephides (explosão que surgiu no centro da Via Láctea)

É o que descobriu um novo estudo conduzido por Joss Bland-Hawthorn, do centro de pesquisa australiano ASTRO 3D.

O fenômeno, conhecido como explosão de Seyfert, criou dois “cones de ionização” enormes que viajaram pela Via Láctea, começando com diâmetros relativamente pequenos perto do buraco negro, e se expandido bastante à medida que saíam da galáxia.

A explosão foi tão poderosa que impactou a corrente de Magalhães, uma longa trilha de gás que se estende entre galáxias anãs próximas, chamadas Grande Nuvem de Magalhães e Pequena Nuvem de Magalhães. A corrente de Magalhães fica a uma média de 200.000 anos-luz da Via Láctea.

Segundo a equipe de pesquisadores australianos e americanos, a explosão foi grande demais para ter sido causado por algo que não seja atividade nuclear associada ao buraco negro, chamado Sagitário A (Sgr A*), que é cerca de 4,2 milhões de vezes mais massivo do que o nosso Sol.

Usando dados coletados pelo telescópio espacial Hubble, os pesquisadores calcularam que a explosão maciça ocorreu há pouco mais de três milhões de anos.

Em termos galácticos, isso é surpreendentemente recente. Naquela época, o asteroide que causou a extinção dos dinossauros já estava 63 milhões de anos no passado, e os australopitecos, nossos ancestrais, já andavam pela África.

Os pesquisadores estimam que a explosão durou cerca de 300.000 anos, um período extremamente curto em termos galácticos.

O novo estudo dá sequência a uma pesquisa liderada também por Bland-Hawthorn e publicada em 2013. Esse trabalho anterior analisou evidências de um evento explosivo maciço se originando no centro da Via Láctea, descartou uma explosão nuclear como a causa e tentou ligar a explosão com a atividade do buraco negro Sgr A*.

Esse estudo coloca o Sgr A* como principal suspeito, mas os pesquisadores admitem que ainda há muito mais a ser pesquisado. O modo exato como os buracos negros evoluem, influenciam e interagem com galáxias ainda é um grande problema na astrofísica.

Um artigo será publicado em breve na revista científica The Astrophysical Journal.

Fonte: Scientific American

segunda-feira, 7 de outubro de 2019

Uma galáxia espiral de perfil

O telescópio espacial Hubble vê galáxias de todas as formas, tamanhos, brilho e orientações no cosmos. Às vezes, o telescópio olha para uma galáxia orientada de lado, como vista aqui.


© Hubble (NGC 3717)

A galáxia espiral apresentada nesta imagem é chamada NGC 3717 e está localizada a cerca de 60 milhões de anos-luz de distância da Terra na constelação de Hydra (A Serpente do Mar).

Ver uma espiral quase de perfil pode fornecer uma sensação vívida de sua forma tridimensional. Durante a maior parte de sua extensão, as galáxias em espiral têm a forma de uma fina panqueca. Em seus núcleos, porém, eles têm protuberâncias brilhantes, esféricas e cheias de estrelas que se estendem acima e abaixo deste disco, dando a essas galáxias um formato parecido com o de um disco voador quando são vistas de frente.

A NGC 3717 não é captada perfeitamente na borda nesta imagem; a parte mais próxima da galáxia está levemente inclinada para baixo e o lado oposto é inclinado para cima. Esse ângulo oferece uma visão através do disco e da protuberância central (da qual apenas um lado é visível).

Fonte: ESA

domingo, 6 de outubro de 2019

Um pretzel cósmico

Os astrônomos que usam o Atacama Large Millimeter/submillimeter Array (ALMA) obtiveram uma imagem de altíssima resolução, mostrando dois discos nos quais estrelas jovens estão crescendo, alimentadas por uma complexa rede de filamentos de gás e poeira em forma de um pretzel.


© ESO/ALMA ([BHB2007] 11)

Observar esse fenômeno notável lança uma nova luz sobre as fases iniciais da vida das estrelas e ajuda os astrônomos a determinar as condições nas quais nascem as estrelas binárias.

As duas estrelas-bebê foram encontradas no sistema [BHB2007] 11, o membro mais jovem de um pequeno aglomerado estelar na nebulosa escura Barnard 59, que faz parte das nuvens de poeira interestelar denominadas Nebulosa do Cachimbo. Observações anteriores deste sistema binário mostraram a estrutura externa. Agora, graças à alta resolução do ALMA, uma equipe internacional de astrônomos liderada por cientistas do Instituto Max Planck de Física Extraterrestre (MPE), na Alemanha, podemos ver a estrutura interna desse objeto.

“Vemos duas fontes compactas que interpretamos como discos circunstelares em torno de duas estrelas jovens,” explica Felipe Alves do MPE, que liderou o estudo. Um disco circunstelar é o anel de gás e poeira que rodeia uma estrela jovem. A estrela acreta matéria do anel e vai crescendo. “O tamanho de cada um destes discos é semelhante ao cinturão de asteroides do nosso Sistema Solar e a separação entre eles é 28 vezes maior que a distância entre a Terra e o Sol,” diz Alves.

Os dois discos circunstelares estão rodeados por um disco maior, com uma massa total de cerca de 80 massas de Júpiter, que exibe uma complexa rede de estruturas de poeira distribuídas em formas espirais, os laços da rosquinha.

As estrelas-bebê acumulam massa do disco maior em dois estágios. O primeiro estágio é quando a massa é transferida para os discos circunstelares individuais em belos laços giratórios, que é o que a nova imagem do ALMA nos mostra. A análise dos dados também revelou que o disco circunstelar menos massivo, porém mais brilhante — o que vemos na parte inferior da imagem — acumula mais material. No segundo estágio, as estrelas acumulam massa massa a partir de seus discos circunstelares. “Esperamos que esse processo de acréscimo em dois níveis conduza a dinâmica do sistema binário durante sua fase de acréscimo em massa,” acrescenta Alves. “Embora o bom acordo dessas observações com a teoria já seja muito promissor, precisaremos estudar mais sistemas binários jovens em detalhes para entender melhor como é que estrelas múltiplas se formam.”

Esta pesquisa foi apresentada na revista Science.

Fonte: ESO

As "sementes" desaparecidas dos buracos negros no jardim cósmico

No vasto jardim do Universo, os buracos negros mais pesados cresceram a partir de sementes.


© NASA (buracos negros supermassivos no núcleo de galáxias em fusão)

Alimentados pelo gás e poeira que consumiram, ou pela fusão com outros objetos densos, estas sementes cresceram em tamanho e massa para formar os centros das galáxias como a nossa Via Láctea. Mas, ao contrário do reino das plantas, as sementes dos buracos negros gigantes devem ter sido buracos negros também. E ninguém encontrou estas sementes, ainda.

Uma ideia é que os buracos negros supermassivos, o equivalente em massa a centenas de milhares a bilhões de sóis, cresceram a partir de uma população de buracos negros menores que nunca foram vistos. Este grupo elusivo, os "buracos negros de massa intermediária", teriam entre 100 e 100.000 vezes a massa do Sol. Entre as centenas de buracos negros encontrados até agora, existem muitos relativamente pequenos, mas nenhum com certeza no "deserto" intermediário da variedade de massas.

Os cientistas estão trabalhando com poderosos telescópios espaciais da NASA, além de outros observatórios, para rastrear objetos distantes que se encaixam na descrição destas entidades exóticas. Já encontraram dezenas de possíveis candidatos e estão analisanso para confirmá-los como buracos negros. Mas, mesmo que o façam, isto abre um novo mistério: como é que os buracos negros de massa intermediária se formaram?

Um buraco negro é um objeto extremamente denso no espaço, do qual nenhuma luz consegue escapar. Quando o material cai num buraco negro, não tem como sair. E quanto mais um buraco negro se abastece, mais cresce em massa e tamanho.

Os buracos negros menores são chamados de "massa estelar", entre 1 e 100 vezes a massa do Sol. Formam-se quando as estrelas explodem em processos violentos chamados supernovas.

Os buracos negros supermassivos, por outro lado, são as âncoras centrais de galáxias grandes, por exemplo, o nosso Sol e todas as outras estrelas da Via Láctea orbitam um buraco negro chamado Sagitário A* com aproximadamente 4,1 milhões de massas solares. Um buraco negro ainda mais massivo, com 6,5 bilhões de vezes a massa do Sol, serve como peça central da galáxia Messier 87 (M87). O buraco negro supermassivo de M87 aparece na famosa imagem do EHT (Event Horizon Telescope), mostrando um buraco negro e a sua "sombra" pela primeira vez. Esta sombra é provocada pelo horizonte de eventos, o ponto de não retorno do buraco negro, curvando e capturando a luz com a sua forte gravidade.

Os buracos negros supermassivos tendem a ter discos de material em seu redor chamados "discos de acreção", feitos de partículas extremamente quentes e altamente energéticas que brilham à medida que se aproximam do horizonte de eventos, a região de não retorno do buraco negro. Aqueles que fazem os seus discos brilhar intensamente, porque comem muito, são chamados "núcleos galácticos ativos".

A densidade de matéria necessária para criar um buraco negro é incompreensível. Para fazer um buraco negro com 50 vezes a massa do Sol, precisaríamos de colocar o equivalente a 50 sóis numa bola com menos de 300 km de diâmetro. Mas, no caso do buraco negro supermassivo de M87, é como se 6,5 bilhões de sóis fossem comprimidos numa bola maior que a órbita de Plutão. Em ambos os casos, a densidade é tão alta que o material original deve desmoronar numa singularidade, um rasgo no tecido do espaço-tempo.

A chave para o mistério das origens dos buracos negros é o limite físico de quão depressa podem crescer. Até os monstros gigantes nos centros das galáxias têm limites, porque uma certa quantidade de material é repelido pela radiação altamente energética proveniente de partículas quentes perto do horizonte de eventos. Por exemplo, só absorvendo material circundante, um buraco negro de baixa massa pode duplicar a sua massa em 30 milhões de anos.

No início da história do Universo, a semente de um buraco negro de massa intermediária pode ter sido formada a partir do colapso de uma grande nuvem de densa de gás ou de uma explosão de supernova. As primeiras estrelas que explodiram no Universo tinham hidrogênio e hélio puros nas suas camadas exteriores, com elementos mais pesados concentrados no núcleo. Esta é uma receita para um buraco negro muito mais massivo do que as estrelas explosivas modernas, que estão "poluídas" com elementos pesados nas suas camadas exteriores e, portanto, perdem mais massa através dos seus ventos estelares.

Uma pista de que os buracos negros de massa intermediária ainda podem realmente estar por aí veio do LIGO (Laser Interferometer Gravitational-Wave Observatory), uma colaboração entre o California Institute of Technology (Caltech) e o Massachusetts Institute of Technology (MIT). Os detectores do LIGO, em combinação com uma instalação europeia chamada Virgo, estão encontrando muitas fusões diferentes de buracos negros através de ondulações no espaço-tempo chamadas ondas gravitacionais.

Em 2016, o LIGO anunciou uma das descobertas científicas mais importantes dos últimos 50 anos: a primeira detecção de ondas gravitacionais. Especificamente, os detectores captaram o sinal de dois buracos negros em fusão. As massas destes buracos negros têm 29 e 36 vezes a massa do Sol.

É complicado procurar buracos negros no "deserto" da massa intermediária porque os próprios buracos negros não emitem luz. No entanto, os cientistas podem procurar sinais indicadores específicos usando telescópios sofisticados e outros instrumentos. Por exemplo, dado que o fluxo de matéria para um buraco negro não é constante, a massa agregada de material consumido provoca certas variações na emissão de luz no ambiente. Tais mudanças podem ser vistas mais rapidamente em buracos negros menores do que em buracos negros maiores.

O candidato mais promissor a buraco negro de massa intermediária tem o nome HLX-1, com uma massa de cerca de 20.000 vezes a do Sol. HLX-1 significa "Hyper-Luminous X-ray source 1" e a sua produção energética é muito maior que a de estrelas parecidas com o Sol. Foi descoberto em 2009 pelo astrônomo australiano Sean Farrell, usando o telescópio espacial XMM-Newton da ESA. Um estudo de 2012, usando os telescópios espaciais Hubble e Swift da NASA, encontrou sugestões de um aglomerado de jovens estrelas azuis em órbita deste objeto. Pode ter sido o centro de uma galáxia anã engolida pela galáxia maior ESO 243-49. Muitos cientistas consideram HLX-1 um buraco negro de massa intermediária já provado.

Objetos menos brilhantes que podem ser buracos negros de massa intermediária são chamadas fontes de raios X ultraluminosas (ULXs). Uma ULX cintilante chamada NGC 5048 X-1 tem sido especialmente interessante para os cientistas que procuram buracos negros de massa intermediária. Mas os observatórios de raios X NuSTAR e Chandra da NASA surpreenderam ao revelar que muitas ULXs não são buracos negros, são pulsares, remanescentes estelares extremamente densos que parecem pulsar como faróis.

M82 X-1, a fonte de raios-X mais brilhante na galáxia M82, é outro objeto muito brilhante que parece piscar em escalas de tempo consistentes com um buraco negro de massa intermediária. Estas mudanças no brilho estão ligadas com a massa do buraco negro e são provocadas por material em órbita perto da região interior do disco de acreção. Um estudo de 2014 analisou variações específicas na luz de raios X e estimou que M82 X-1 tem uma massa equivalente a 400 sóis. Os cientistas usaram dados de arquivo do satélite RXTE (Rossi X-ray Timing Explorer) da NASA para estudar estas variações de brilho em raios X.

Mais recentemente, os cientistas analisaram um grupo maior de possíveis buracos negros de massa intermediária. Em 2018, os pesquisadores descreveram uma amostra de 10 candidatos reanalisando dados ópticos do SDSS (Sloan Digital Sky Survey) e comparando as perspetivas iniciais com dados de raios X do Chandra e do XMM-Newton. Agora estão utilizando telescópios terrestres no Chile e no Arizona. Os pesquisadores argumentam que estes buracos negros se formaram originalmente no colapso de nuvens gigantes, não em explosões estelares.

As galáxias anãs são lugares interessantes para continuar a procura porque sistemas estelares menores podem hospedar buracos negros de massa muito menor do que os encontrados nos centros de galáxias maiores como a nossa.

Os caçadores de buracos negros de massa intermediária aguardam ansiosamente o lançamento do telescópio espacial James Webb da NASA, que estudará as primeiras galáxias da Universo. O Webb vai ajudar a descobrir o que surgiu primeiro, a galáxia ou o seu buraco negro central, e como este buraco negro pode ter sido produzido. Em combinação com observações de raios X, os dados infravermelhos do Webb serão importantes para identificar alguns dos candidatos mais antigos a buraco negro.

Outra nova ferramenta lançada em julho pela agência espacial russa Roscosmos chama-se Spectrum X-Gamma, uma espaçonave que varre o céu em raios X e transporta um instrumento com espelhos desenvolvidos e contruídos em parceria com a NASA. As informações de ondas gravitacionais da colaboração LIGO-Virgo também vão ajudar na busca, assim como a missão planejada LISA (Laser Interferometer Space Antenna) da ESA.

Fonte: NASA