Em sua primeira observação, o observatório de raios X Hitomi descobriu que o gás do aglomerado de galáxias Perseus é muito menos turbulento do que o esperado. Esta é uma surpresa porque o aglomerado Perseus é o lar da NGC 1275, uma galáxia elíptica ativa altamente energética, que tem um buraco negro supermassivo em seu centro.
© R. Jay GaBany (aglomerado de galáxias Perseus)
O resultado permite que a massa do aglomerado de galáxias Perseus deve ser calculada com mais precisão do que antes. Uma vez que esta técnica pode ser estendida a outros aglomerados, permitindo sua utilização pelos cosmólogos como melhores sondas de nossos modelos de evolução do Universo desde o Big Bang até o presente momento.
O Hitomi (“olho” em japonês), originalmente conhecido como ASTRO-H, foi um observatório de raios X concebido pela Agência Espacial Japonesa (JAXA) em colaboração com centros de pesquisa nos Estados Unidos e na Holanda. O satélite foi lançado para o espaço em 17 de Fevereiro deste ano, a partir do Centro Espacial Tanegashima, no Japão. Um mês depois, já em órbita e quando tudo parecia correr normalmente, o sistema de estabilização do satélite deixou de funcionar devido a um erro de software, provocando a sua fragmentação e o fim prematuro da missão.
Perseus é o aglomerado de galáxias mais brilhante em raios X no céu, e está localizado a uma distância de 240 milhões de anos-luz. Ele foi, portanto, a melhor escolha para demonstrar plenamente o poder do Soft X-ray Spectrometer (SXS), um instrumento que continha um micro-calorímetro arrefecido a 0,05 Kelvin (-273,1 ºC) com a capacidade de medir com precisão a energia de cada fóton de raios X que nele entrava.
A colaboração Hitomi descobriu que o espectrômetro SXS poderia medir a turbulência no aglomerado com uma precisão de 10 km/s. Mas foi a velocidade absoluta do gás que os pegou de surpresa. Foi apenas 164 ± 10 km/s. A melhor medição anterior para Perseus foi tomada com o observatório de raios X XMM-Newton da ESA. Usando um tipo diferente de espectrômetro, a velocidade foi limitada com valor menor do que 500 km/s.
O espectro do gás no centro do aglomerado de galáxias Perseus obtido pelo SXS tem 30 vezes melhor resolução do que os melhores obtidos até à data e mostra um grande número de linhas de emissão devidas a íons de ferro, níquel, crómio e manganês no gás intergaláctico. Os cientistas puderam usar o efeito de Doppler nessas linhas como referência para medir a velocidade do gás numa região com 195 mil anos-luz de diâmetro no centro do enxame.
O resultado indica que o gás do aglomerado tem poucos movimentos turbulentos em seu interior. A energia turbulenta em Perseus é apenas 4% da energia armazenada no gás em forma de calor. Isto é extraordinário, considerando que a galáxia ativa NGC 1275 fica no núcleo do aglomerado. Ele está bombeando energia em seus arredores, criando bolhas de gás extremamente quentes. Pensou-se que estas bolhas induziram a turbulência, o que mantém o gás central quente.
O Hitomi mostra que o movimento turbulento é quase ausente no aglomerado, e isso dá origem a um mistério: o que está mantendo o gás muito difundido do aglomerado quente?
Existe a possibilidade da existência de ondas sonoras como meio de propagação da energia uniformemente por todo o gás. Isto porque, em uma onda de som, a energia pode ser movida, enquanto o próprio meio se mantém mais ou menos estacionária.
Os aglomerados de galáxias são as maiores estruturas ligadas no Universo. Os modelos de computador da expansão do Universo usam a distribuição de massas dos aglomerados como um teste observacional para analisar se estão corretas. Calculando a massa de um aglomerado depende da proporção turbulenta do gás quiescente. Qualquer forma de medir com mais precisão a turbulência permite melhores massas a serem calculadas, e, portanto, melhores modelos computacionais de todo o Universo a ser desenvolvido.
Infelizmente, apenas algumas semanas após a observação de Perseus, uma avaria no sistema de controle colocou o Hitomi em uma rotação incontrolável que resultou na ruptura e perda do satélite.
A próxima missão que será capaz de continuar o programa do Hitomi é Athena, da ESA, um observatório de raios X com lançamento previsto para os anos 2020.
Athena terá 100 vezes mais área coletora e 100 vezes mais pixels do que o Hitomi. Entre os objetivos científicos principais do Athena são investigar a evolução de aglomerados de galáxias, incluindo sua interação com a injeção de energia a partir de buracos negros supermassivos.
Fonte: Nature