sábado, 20 de outubro de 2018

Detectado parente de fonte de ondas gravitacionais

Há cerca de um ano, os astrônomos relataram animadamente a primeira detecção de ondas eletromagnéticas, ou luz, de uma fonte de ondas gravitacionais. Agora, um ano depois, pesquisadores estão anunciando a existência de um parente cósmico deste acontecimento histórico.

All in the Family: Kin of Gravitational-Wave Source Discovered

© Chandra/Hubble (GRB 150101B)

A descoberta foi feita usando dados obtidos pelo observatório de raios X Chandra, pelo telescópio espacial de raios gama Fermi, pelo observatório Swift Neil Gehrels, pelo telescópio espacial Hubble e pelo telescópio do Discovery Channel.

O objeto do novo estudo, de nome GRB 150101B, foi reportado pela primeira vez como uma explosão de raios gama detectada pelo Fermi em janeiro de 2015. Esta detecção e observações de acompanhamento, em outros comprimentos de onda, mostram que GRB 150101B partilha semelhanças notáveis com a fusão de estrelas de nêutrons e fonte de ondas gravitacionais descoberta pelo LIGO (Advanced Laser Interferometer Gravitational Wave Observatory) e pelo seu equivalente europeu Virgo em 2017, conhecida como GW170817. O estudo mais recente conclui que estes dois objetos separados podem estar relacionados.

"A nossa descoberta diz-nos que eventos como GW170817 e GRB 150101B podem representar uma nova classe de objetos em erupção que ligam e desligam raios X e podem, na verdade, ser relativamente comuns," comenta Eleonora Troja, autora principal do estudo, do Goddard Space Flight Center da NASA e da Universidade de Maryland em College Park.

Troja e colegas pensam que tanto GRB 150101B como GW170817 foram provavelmente produzidos pelo mesmo tipo de evento: a fusão de duas estrelas de nêutrons, uma coalescência que gerou um jato estreito, ou feixe, de partículas altamente energéticas. O jato produziu uma explosão curta e intensa de raios gama (GRB), um flash de alta energia que pode durar apenas alguns segundos. O GW170817 provou que estes eventos também podem criar ondulações no próprio espaço-tempo, chamadas ondas gravitacionais.

A aparente correspondência entre GRB 150101B e GW170817 é impressionante: ambos produziram uma explosão de raios gama incomumente tênue, ambos foram uma fraca fonte de luz azul com a duração de alguns dias e a emissão de raios X durou muito mais tempo. As galáxias hospedeiras são também incrivelmente similares, com base em observações do telescópio espacial Hubble e do telescópio do Discovery Channel. Ambas são galáxias elípticas brilhantes com uma população de estrelas com alguns bilhões de anos e sem evidências de nova formação estelar.

Nos casos, tanto de GRB 150101B como de GW170817, o aumento lento na emissão de raios X, em comparação com a maioria dos GRBs, implica que a explosão tenha provavelmente sido vista "fora do eixo", isto é, com o jato não apontando diretamente para a Terra. A descoberta do objeto GRB 150101B representa apenas a segunda vez que os astrônomos detectaram um GRB curto fora do eixo.

Embora existam muitas semelhanças entre GRB 150101B e GW170817, existem duas diferenças muito importantes. Uma é a sua localização. O GW170817 está a cerca de 130 milhões de anos-luz da Terra, enquanto o GRB 150101B está a mais ou menos 1,7 bilhões de anos-luz de distância. Mesmo que o LIGO estivesse em operação no início de 2015, muito provavelmente não teria detectado ondas gravitacionais de GRB 150101B devido à sua distância maior.

"A beleza de GW170817 é que nos deu um conjunto de características, como marcadores genéticos, para identificar novos membros da família de objetos explosivos a distâncias ainda maiores do que o LIGO pode atualmente alcançar," afirma Luigi Piro do Instituto Nacional de Astrofísica em Roma, Itália.

A emissão óptica de GRB150101B está em grande parte na porção azul do espectro, fornecendo uma pista importante de que este evento envolveu o que chamamos de uma quilonova, como visto em GW170817. Uma quilonova é uma explosão extremamente poderosa que não apenas libera uma grande quantidade de energia, mas também produz elementos importantes como ouro, platina e urânio que outras explosões estelares não produzem.

É possível que algumas fusões como as vistas em GW170817 e GRB 150101B tenham sido detectadas anteriormente como GRBs curtos, mas não foram identificadas com outros telescópios. Sem detecções em comprimentos de onda mais longos, como raios X ou no visível, as posições dos GRBs não são precisas o suficiente para determinar em qual galáxia estão localizadas.

No caso de GRB 150101B, os astrônomos pensaram inicialmente que o equivalente era uma fonte de raios X detectada pelo Swift no centro de uma galáxia, provavelmente de material caindo para um buraco negro supermassivo. No entanto, as observações de acompanhamento com o Chandra detectaram a homóloga verdadeira longe do centro da galáxia hospedeira.

A outra diferença importante entre GW170817 e GRB 150101B é que sem a detecção de ondas gravitacionais, a equipe não conhece as massas dos dois objetos que se fundiram. É possível que a fusão tenha ocorrido entre um buraco negro e uma estrela de nêutrons, em vez de duas estrelas de nêutrons.

"Precisamos de mais casos como GW170817 que combinam dados de ondas gravitacionais com eletromagnéticos para encontrar um exemplo entre uma estrela de nêutrons e um buraco negro. Esta detecção seria a primeira do tipo," comenta Hendrik Van Eerten da Universidade de Bath, no Reino Unido.

O artigo que descreve estes resultados foi publicado na revista Nature Communications.

Fonte: Harvard-Smithsonian Center for Astrophysics

Nenhum comentário:

Postar um comentário