domingo, 28 de outubro de 2018

Ondas gravitacionais poderão fornecer medição da expansão do Universo

Há vinte anos, os cientistas ficaram chocados ao perceber que o nosso Universo não está apenas se expandindo, mas que está se expandindo mais depressa com o passar do tempo.

colisão de duas estrelas de nêutrons

© A. Simon (colisão de duas estrelas de nêutrons)

A determinação da taxa exata de expansão, chamada constante de Hubble, em honra ao famoso astrônomo Edwin Hubble, tem sido surpreendentemente difícil. Desde então, os cientistas usaram dois métodos para calcular o valor, com resultados angustiantemente diferentes. Mas a surpreendente captura de ondas gravitacionais do ano passado, oriundas de uma colisão de estrelas de nêutrons, forneceu uma terceira forma de calcular a constante de Hubble.

Este foi apenas um único ponto de dados de uma colisão, mas num novo estudo, três cientistas da Universidade de Chicago estimam que, dada a rapidez com que os pesquisadores viram a primeira colisão entre estrelas de nêutrons, podem ter uma medida muita precisa da constante de Hubble dentro de cinco a dez anos.

"A constante de Hubble diz-nos o tamanho e idade do Universo; é o 'santo Graal' desde o nascimento da cosmologia. O seu cálculo, recorrendo às ondas gravitacionais, poderá dar-nos uma perspetiva inteiramente nova do Universo," comenta o autor Daniel Holz, professor de física na Universidade de Chicago. "A questão é: quando é que muda o jogo para a cosmologia?"

Em 1929, Edwin Hubble anunciou que, com base nas suas observações de galáxias localizadas além da Via Láctea, estas pareciam estar se afastando de nós, e que quanto mais distante a galáxia, mais rápido estava retrocedendo. Esta é uma pedra fundamental da teoria do Big Bang e iniciou uma busca de quase um século pela taxa exata a que isto ocorre.

Para calcular a taxa de expansão do Universo, os cientistas precisam de dois números. Um é a distância até um objeto distante; o outro é quão rápido o objeto se afasta de nós devido à expansão do Universo. Se pudermos vê-lo com um telescópio, o segundo valor é relativamente fácil de determinar, porque a luz que vemos quando olhamos para uma estrela distante desvia-se para o vermelho à medida que se afasta. Os astrônomos há mais de um século que usam este truque para ver a velocidade com que um objeto se move; é como o efeito Doppler, no qual uma sirene muda de tom quando a ambulância passa por nós.

Mas obter uma medida exata da distância é muito mais difícil. Tradicionalmente, os astrofísicos usam uma técnica chamada escada de distâncias cósmicas, na qual o brilho de certas estrelas variáveis e supernovas pode ser usado para construir uma série de comparações que chegam até ao objeto em questão.

Talvez as supernovas usadas como marcadores não sejam tão consistentes quanto se pensa. Talvez estejamos confundindo alguns tipos de supernovas com outros, ou exista algum erro desconhecido nas nossas medições das distâncias até estrelas próximas.

A outra maneira importante de calcular a constante de Hubble é olhar para a radiação cósmica de fundo em micro-ondas, o pulso de luz criada no início do Universo, que ainda é vagamente detectável. Embora também seja útil, este método baseia-se igualmente em suposições sobre como o Universo funciona.

O surpreendente é que, embora os cientistas que fazem cada cálculo estejam confiantes nos seus resultados, estes não são iguais. Um diz que o Universo está se expandindo quase 10% mais depressa do que o outro.

Então os detectores do LIGO (Laser Interferometer Gravitational-Wave Observatory) captaram a sua primeira ondulação no tecido do espaço-tempo a partir da colisão de duas estrelas no ano passado. Isto não somente abalou o observatório, mas o próprio campo da astronomia: ser capaz de sentir a onda gravitacional e ver a luz do rescaldo da colisão com um telescópio deu aos cientistas uma nova e poderosa ferramenta.

As ondas gravitacionais fornecem uma maneira completamente diferente de calcular a constante de Hubble. Quando duas estrelas massivas colidem uma com a outra, emitem ondulações no tecido do espaço-tempo que podem ser detectadas na Terra. Medindo este sinal, os cientistas podem obter uma assinatura da massa e da energia das estrelas em colisão. Quando comparam esta leitura com a força das ondas gravitacionais, podem inferir a que distância elas estão.

Esta medição é mais limpa e contém menos suposições sobre o Universo, o que deve torná-la mais precisa. Juntamente com Scott Hughes do Massachusetts Institute of Technology (MIT), Holz sugeriu a ideia de fazer esta medição com ondas gravitacionais emparelhadas com observações telescópicas em 2005. A única questão é a frequência com que os cientistas podiam captar estes eventos, e quão bons seriam os dados.

A pesquisa prevê que, assim que os cientistas tenham detectado 25 leituras de colisões de estrelas de nêutrons, possam medir a expansão do Universo com uma precisão de 3%. Com 200 leituras, este número diminui para 1%.

Os cientistas dizem que um novo número preciso para a constante de Hubble seria fascinante, não importa a resposta. Por exemplo, uma razão possível para a incompatibilidade nos outros dois métodos é que a natureza da própria gravidade pode ter mudado com o tempo. A leitura também pode trazer dados sobre a energia escura, uma força misteriosa responsável pela expansão do Universo.

Está planejado que os detetores do LIGO comecem uma nova campanha de observações em fevereiro de 2019, juntamente com os seus homólogos italianos no VIRGO. Graças a uma atualização, a sensibilidade dos detectores será muito maior, expandindo o número e distância de eventos astronômicos que podem captar.

O estudo foi publicado na revista Nature.

Fonte: University of Chicago

Nenhum comentário:

Postar um comentário