terça-feira, 3 de junho de 2025

Estrela excêntrica desafia explicações simples

Cientistas descobriram uma estrela com um comportamento diferente de todas as outras já observadas, fornecendo novas pistas sobre a origem de uma nova classe de objetos misteriosos.

© NASA (ASKAP J1832)

Uma imagem de campo amplo de ASKAP J1832 (o ponto roxo no círculo) em raios X, no rádio e no infravermelho.

Uma equipe de astrônomos combinou dados do observatório de raios X Chandra da NASA e do radiotelescópio ASKAP (Australian Square Kilometre Array Pathfinder), na Austrália Ocidental, para estudar as peculiaridades do objeto descoberto conhecido como ASKAP J1832−0911 (ASKAP J1832 para abreviar), localizado a 15.000 anos-luz da Terra. 

ASKAP J1832 pertence a uma classe de objetos chamados "transientes de rádio de longo período", descobertos em 2022, que variam em intensidade de ondas de rádio de forma regular ao longo de dezenas de minutos. Corresponde a milhares de vezes mais do que a duração das variações repetidas observadas nos pulsares, que são estrelas de nêutrons em rápida rotação que apresentam variações repetidas várias vezes por segundo.

ASKAP J1832 tem ciclos de intensidade de ondas de rádio a cada 44 minutos, o que o coloca nesta categoria de transientes de rádio de longo período. Usando o Chandra, a equipe descobriu que ASKAP J1832 também varia regularmente em raios X a cada 44 minutos. Esta é a primeira vez que tal sinal de raios X é encontrado num transiente de rádio de longo período.

Usando o Chandra e o ASKAP, foi descoberto que o objeto também diminuiu drasticamente os raios X e as ondas de rádio ao longo de seis meses. Esta combinação do ciclo de 44 minutos em raios X e ondas rádio, além das mudanças que duram meses, é diferente de tudo o que já foi visto na Via Láctea. Os cientistas estão agora tentando descobrir se ASKAP J1832 é representativo dos transientes de rádio de longo período e se o seu comportamento bizarro ajuda a desvendar a origem destes objetos.

Os astrônomos argumentam que é improvável que ASKAP J1832 seja um pulsar ou uma estrela de nêutrons puxando material de uma estrela companheira, porque as suas propriedades não correspondem às intensidades típicas dos sinais de rádio e raios X desses objetos. Algumas das propriedades de ASKAP J1832 poderiam ser explicadas por uma estrela de nêutrons com um campo magnético extremamente forte, chamada magnetar, com uma idade superior a meio milhão de anos. No entanto, outras características de ASKAP J1832, como a sua emissão de rádio brilhante e variável, são difíceis de explicar para um magnetar relativamente antigo.

No céu, ASKAP J1832 parece estar dentro de um remanescente de supernova, os restos de uma estrela que explodiu, que muitas vezes contêm uma estrela de nêutrons formada pela supernova. No entanto, foi determinado que indica provavelmente uma coincidência e que os dois não estão associados, o que conduz a possibilidade de que ASKAP J1832 não contenha uma estrela de nêutrons. 

É possível que uma anã branca isolada não explica os dados, mas que uma estrela anã branca com uma estrela companheira talvez poderia. No entanto, isso exigiria o campo magnético mais forte já conhecido para uma anã branca na nossa Galáxia.

O Chandra detectou ASKAP J1832 em raios X em duas observações realizadas em fevereiro de 2024, num momento em que a fonte estava incomumente intensa no rádio. Uma terceira observação do Chandra ocorreu em agosto de 2024, quando a fonte estava cerca de 1.000 vezes mais fraca em ondas de rádio do que em fevereiro, mas não foram observados raios X. Isso mostra que a fonte tinha diminuído pelo menos dez vezes em raios X desde a observação inicial.

Um artigo foi publicado na revista Nature.

Fonte: Harvard–Smithsonian Center for Astrophysics

Nova medição da expansão do Universo sugere resolução de um conflito

Ao longo da última década, os cientistas têm tentado resolver o que parecia ser uma grande inconsistência no Universo.

© Webb (NGC 1365)

O Universo expande-se ao longo do tempo, cujo ritmo de expansão é refletida pela Constante de Hubble, mas a velocidade a que se expande parece ser diferente consoante se olha para o início da história do Universo ou para os dias de hoje. A ser verdade, isto teria sido um grande problema para o modelo padrão que representa a nossa melhor compreensão do Universo. Mas graças ao telescópio espacial James Webb, cientistas da Universidade de Chicago conseguiram obter novos e melhores dados, sugerindo que, afinal, pode não haver conflito. 

Existem atualmente duas abordagens principais para calcular a velocidade a que o nosso Universo está se expandindo. A primeira abordagem consiste em medir a luz remanescente do Big Bang, que ainda está viajando pelo Universo. Esta radiação, conhecida como radiação cósmica de fundo em micro-ondas, informa sobre as condições nos primeiros tempos do Universo. A segunda abordagem consiste em medir a velocidade a que o Universo está se expandindo neste momento, na nossa vizinhança astronômica local. Paradoxalmente, isto é muito mais complicado do que ver para trás no tempo, porque medir distâncias com precisão é um grande desafio. 

Ao longo do último meio século, os cientistas descobriram uma série de formas de medir distâncias relativamente próximas. Uma delas baseia-se na captação da luz de uma determinada classe de estrelas no seu pico de brilho, quando explodem como supernova no final da sua vida. Se conhecermos o brilho máximo destas supernovas, a medição das suas luminosidades aparentes permite-nos calcular a sua distância. Observações adicionais dizem-nos a que velocidade a galáxia em que a supernova ocorreu está se afastando de nós.

Existem também dois outros métodos que utilizam dois outros tipos de estrelas: as estrelas gigantes vermelhas e as estrelas de carbono. No entanto, há muitas correções que têm de ser aplicadas a estas medições antes de se poder declarar uma distância final. Em primeiro lugar, os cientistas têm de ter em conta a poeira cósmica que obscurece a luz entre nós e estas estrelas distantes nas suas galáxias hospedeiras. Têm também de verificar e corrigir as diferenças de luminosidade que podem surgir ao longo do tempo cósmico. E, finalmente, têm de ser identificadas e corrigidas as incertezas sutis da instrumentação utilizada para efetuar as medições. Mas com os avanços tecnológicos, como o lançamento do muito mais potente telescópio espacial James Webb, em 2021, os cientistas têm conseguido aperfeiçoar cada vez mais estas medições.

O último cálculo efetuado pelos pesquisadores, que incorpora dados do telescópio espacial Hubble e do telescópio espacial James Webb, determina um valor de 70,4 quilômetros por segundo por megaparsec, mais ou menos 3%. Isto coloca o seu valor em concordância estatística com as medições recentes da radiação cósmica de fundo, que é de 67,4, mais ou menos 0,7%. O Webb tem uma resolução quatro vezes superior à do Hubble, o que lhe permite identificar estrelas individuais anteriormente detectadas em grupos desfocados. É também cerca de 10 vezes mais sensível, o que permite uma maior precisão e a capacidade de encontrar objetos de interesse ainda mais tênues. 

Os cientistas ainda estão tentando encontrar falhas no Modelo Padrão que descreve o Universo, o que poderia fornecer pistas sobre a natureza de dois grandes mistérios pendentes, a matéria escura e a energia escura. Mas a Constante de Hubble parece cada vez mais não ser o local onde procurar.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: University of Chicago

Estudo explica formação de planetas com órbitas largas

Nos arredores frios e escuros dos sistemas planetários, muito além do alcance dos planetas conhecidos, misteriosos gigantes gasosos orbitam silenciosamente as suas estrelas, às vezes a milhares de unidades astronômicas (UA) de distância.

© ESO (ilustração do Planeta Nove e o Sistema Solar ao fundo)

Durante anos, os cientistas perguntaram-se como esses planetas de "órbita larga", incluindo o elusivo Planeta Nove teorizado no nosso próprio Sistema Solar, poderiam ter sido formados.

Agora, uma equipe de astrônomos pode finalmente ter encontrado a resposta. Num novo estudo, pesquisadores da Universidade Rice e do PSI (Planetary Science Institute), utilizaram simulações complexas para mostrar que os planetas de órbita larga não são anomalias, mas sim subprodutos naturais de uma fase caótica inicial no desenvolvimento dos sistemas planetários. Esta fase ocorre enquanto as estrelas ainda estão aglomeradas nos seus aglomerados natais e os planetas disputam espaço em sistemas turbulentos.

Para o estudo, foram realizadas milhares de simulações envolvendo diferentes sistemas planetários incorporados em ambientes realistas de aglomerados estelares. Foi modelado uma variedade de condições, desde sistemas como o nosso Sistema Solar, com uma mistura de gigantes gasosos e gelados, até sistemas mais exóticos, incluindo aqueles com dois sóis. Foi descoberto um padrão recorrente: os planetas eram frequentemente empurrados para órbitas largas e excêntricas por instabilidades internas, depois estabilizados pela influência gravitacional de estrelas próximas no aglomerado.

Os pesquisadores definem planetas de órbita larga como aqueles que têm semieixos maiores entre 100 e 10.000 UA, distâncias que os colocam muito além do alcance da maioria dos tradicionais discos de formação planetária. 

As descobertas podem ajudar a explicar o mistério de longa data do Planeta Nove, um planeta hipotético que se pensa orbitar o nosso Sol a uma distância de 250 a 1.000 UA. Embora nunca tenha sido observado diretamente, as órbitas estranhas de vários objetos trans-Netunianos sugerem a sua presença.

As simulações mostram que, se o Sistema Solar primitivo passou por duas fases específicas de instabilidade, o crescimento de Urano e Netuno e a posterior dispersão entre os gigantes gasosos, há uma probabilidade de até 40% de que um objeto semelhante ao Planeta Nove possa ter ficado preso durante esse período. Curiosamente, o estudo também relaciona planetas de órbita larga com a crescente população de planetas flutuantes, ou errantes, mundos expulsos completamente dos seus sistemas.

Os pesquisadores descobriram que os sistemas semelhantes ao Sistema Solar são particularmente eficientes, com probabilidades de retenção de 5 a 10%. Outros sistemas, como aqueles compostos apenas por gigantes gelados ou planetas circumbinários, apresentaram eficiências muito mais baixas. Além disso, o estudo identifica novos alvos promissores para os caçadores de exoplanetas. Sugere que os planetas de órbita larga são mais prováveis de serem encontrados em torno de estrelas com alta metalicidade que já abrigam gigantes gasosos, tornando esses sistemas candidatos ideais para campanhas de imagem profunda. 

Se o Planeta Nove existir, poderá ser descoberto logo após o Observatório Vera C. Rubin entrar em pleno funcionamento. Com a sua capacidade incomparável de observar o céu em profundidade e detalhe, espera-se que o observatório avance significativamente a busca por objetos distantes do Sistema Solar, aumentando a probabilidade de detectar o Planeta Nove ou de fornecer as evidências necessárias para descartar sua existência.

Um artigo foi publicado na revista Nature Astronomy.

Fonte: Planetary Science Institute

terça-feira, 27 de maio de 2025

Encontrado um primo extremo de Plutão?

Uma pequena equipe liderada por Sihao Cheng, da Escola de Ciências Naturais do IAS (Institute for Advanced Study), descobriu um extraordinário objeto trans-Netuniano (OTN) denominado 2017 OF201, no limite do nosso Sistema Solar.

© NASA / Sihao Cheng (OTN e planetas anões)

Os cinco planetas anões reconhecidos pela União Astronômica Internacional, juntamente com o recém-descoberto OTN 2017 OF201.

O OTN é potencialmente grande o suficiente para ser classificado como um planeta anão, a mesma categoria que o muito mais conhecido Plutão. O novo objeto é um dos objetos visíveis mais distantes do nosso Sistema Solar e, significativamente, sugere que a seção vazia do espaço que se pensa existir para além de Netuno, no Cinturão de Kuiper, não está vazia.

Cheng fez a descoberta juntamente com os colegas Jiaxuan Li e Eritas Yang da Universidade de Princeton, utilizando métodos computacionais avançados para identificar a trajetória do objeto no céu. O novo objeto foi oficialmente anunciado pelo Centro de Planetas Menores da União Astronômica Internacional no passado dia 21 de maio de 2025. 

Os objetos trans-Netunianos são planetas menores que orbitam o Sol a uma distância média superior à da órbita de Netuno. O novo OTN é especial por duas razões: a sua órbita extrema e o seu grande tamanho. O afélio do objeto, ou seja, o ponto mais distante da órbita em torno do Sol, é mais de 1.600 vezes superior ao da órbita da Terra. Entretanto, o seu periélio, ou seja, o ponto da sua órbita mais próximo do Sol, é 44,5 vezes superior à órbita da Terra, semelhante à órbita de Plutão. 

Cheng descobriu o objeto como parte de um projeto de pesquisa em curso para identificar OTNs e possíveis novos planetas no Sistema Solar exterior. O objeto foi identificado através da observação de pontos brilhantes numa base de dados de imagens astronômicas do telescópio Victor M. Blanco e do CFHT (Canada–France–Hawaii Telescope), e tentando ligar todos os grupos possíveis desses pontos que pareciam mover-se no céu da mesma forma que um único OTN. 

Esta busca foi efetuada utilizando um algoritmo computacionalmente eficiente produzido por Cheng. Em última análise, identificaram 2017 OF201 em 19 exposições diferentes, captadas ao longo de 7 anos. A descoberta tem implicações significativas para a nossa compreensão do Sistema Solar exterior. A área localizada para além do Cinturão de Kuiper, onde se encontra o objeto, foi anteriormente considerada como estando essencialmente vazia, mas a descoberta da equipe sugere que não é bem assim.

© Jiaxuan Li / Sihao Cheng (localização atual de Plutão, Netuno e 2017 OF201)

A imagem acima mostra a órbita e localização atual do OTN 2017 OF201, o planeta anão plutão e o planeta Netuno.

O 2017 OF201 passa apenas 1% do seu tempo orbital suficientemente perto de nós para ser detectável. A presença deste único objeto sugere que poderá haver mais uma centena de outros objetos com órbita e tamanho semelhantes; estão apenas demasiado longe para serem detectáveis agora. Embora os avanços nos telescópios nos tenham permitido explorar partes distantes do Universo, ainda há muito a descobrir sobre o nosso próprio Sistema Solar.

A detecção também demonstra o poder da ciência aberta. Todos os dados que foram utilizados para identificar e caracterizar este objeto são dados de arquivo que estão disponíveis para qualquer pessoa, não apenas para os astrônomos profissionais. Isto significa que as descobertas inovadoras não estão limitadas àqueles que têm acesso aos maiores telescópios do mundo. Qualquer pesquisador, estudante ou mesmo cientista cidadão com as ferramentas e conhecimentos adequados poderia ter feito esta descoberta, realçando o valor da partilha de recursos científicos.

Fonte: Institute for Advanced Study

Descoberto raro sistema estelar duplo

Astrônomos podem ter descoberto um tipo raro de sistema estelar binário, onde uma estrela costumava orbitar dentro de sua parceira.

© NASA (ilustração de duas estrelas orbitando uma a outra)

No novo estudo, astrônomos exploraram um pulsar conhecido como PSR J1928+1815, localizado a cerca de 455 anos-luz da Terra. 

Um pulsar é um tipo de estrela de nêutrons, o cadáver de uma grande estrela que pereceu em uma explosão catastrófica conhecida como supernova. A atração gravitacional dos restos da estrela teria sido forte o suficiente para comprimir prótons e elétrons para formar nêutrons, o que significa que uma estrela de nêutrons é composta principalmente de nêutrons. Isso a torna muito densa. 

Pulsares são estrelas de nêutrons giratórias que emitem feixes gêmeos de ondas de rádio de seus polos magnéticos. Esses feixes parecem pulsar porque são vistos apenas quando o polo de um pulsar está apontado para a Terra. 

Os pesquisadores estimam que esse pulsar em particular tenha se originado de uma estrela azul quente com mais de oito vezes a massa do Sol. Utilizando o Five hundred meter Aperture Spherical Telescope (FAST) na China, o maior telescópio de prato único do mundo, os astrônomos descobriram que a PSR J1928+1815 tinha uma companheira, uma estrela de hélio com cerca de 1 a 1,6 vezes a massa do Sol. 

Esta estrela perdeu a maior parte de suas camadas externas de hidrogênio, deixando para trás um núcleo composto principalmente de hélio. As estrelas deste par estão atualmente a apenas 1,12 milhão de quilômetros de distância uma da outra, ou cerca de 50 vezes mais perto do que Mercúrio está do Sol. Elas completam uma órbita em torno uma da outra em apenas 3,6 horas. 

O PSR J1928+1815 é um pulsar de milissegundos, o que significa que ele gira extraordinariamente rápido, quase 100 vezes por segundo. Pulsares de milissegundos normalmente atingem essas velocidades vertiginosas à medida que canibalizam companheiros próximos, o material que entra os faz girar cada vez mais rápido.

Pesquisas anteriores sugeriram que, à medida que pulsares de milissegundos se alimentam de seus parceiros, esses sistemas binários podem passar por uma fase de "envelope comum", na qual o pulsar orbita dentro das camadas externas de seu companheiro. No entanto, os cientistas nunca haviam detectado binários tão exóticos, talvez até agora. 

Usando modelos computacionais, os pesquisadores sugerem que os membros desse novo binário começaram a uma distância um do outro cerca de duas vezes maior que a distância entre a Terra e o Sol (299 milhões de km). O pulsar teria então começado a extrair as camadas externas de seu companheiro, formando um envoltório comum ao redor de ambos. Após cerca de 1.000 anos, o pulsar teria espiralado próximo ao núcleo de seu parceiro, o que provavelmente eliminou o restante desse envoltório, deixando para trás um sistema binário fortemente unido. 

Com base no número estimado de estrelas binárias na Via Láctea que correspondem aproximadamente a este sistema recém-descoberto, os pesquisadores sugerem que apenas de 16 a 84 equivalentes de PSR J1928+1815 e sua companheira podem existir em nossa galáxia. Para contextualizar, a Via Láctea abriga cerca de 100 bilhões a 400 bilhões de estrelas. 

Fonte: Science

Localização de gás impulsiona a formação estelar em galáxias distantes

Os astrônomos descobriram que não é a quantidade de gás que uma galáxia tem, mas onde esse gás está localizado, que determina a formação de novas estrelas.

 © ICRAR (NGC 4897)

Na imagem a cor vermelha mostra o conteúdo de gás hidrogênio atômico da galáxia NGC 4897 sobreposto à imagem óptica.

Os pesquisadores do ICRAR (International Centre for Radio Astronomy Research) fizeram esta descoberta sobre as galáxias estudando a distribuição do gás que ajuda a criar estrelas.

Utilizando o radiotelescópio ASKAP (Australian Square Kilometre Array Pathfinder) da CSIRO (Commonwealth Scientific and Industrial Research Organisation), situado em Inyarrimanha Ilgari Bundara, Austrália Ocidental, os pesquisadores exploraram a distribuição de gás em cerca de 1.000 galáxias no âmbito do levantamento WALLABY (Widefield ASKAP L-band Legacy All-sky Blind surveY). 

As descobertas dão novas perspectivas sobre a forma como as estrelas nascem do gás. Enquanto os estudos anteriores só conseguiam mapear a distribuição do gás em algumas centenas de galáxias, o levantamento WALLABY conseguiu mapear o gás hidrogênio atômico numa amostra significativamente maior de galáxias. O levantamento revelou que a existência de mais gás numa galáxia não significa automaticamente que esta criará mais estrelas. Ao invés, as galáxias que estão formando estrelas têm normalmente uma maior concentração de gás nas áreas onde residem as estrelas.

A pesquisao mostrou que a capacidade de efetuar observações de rádio mais detalhadas é fundamental para ajudar os cientistas a compreender como as galáxias crescem e mudam ao longo do tempo. A equipe analisou as ondas de rádio e a luz visível de galáxias próximas para determinar a quantidade de gás nas partes da galáxia onde as estrelas estão nascendo.

Um artigo foi publicado no periódico Publications of the Astronomical Society of Australia.

Fonte: International Centre for Radio Astronomy Research

O brilho no centro de uma galáxia espiral

O que está acontecendo no centro da galáxia espiral NGC 2566?

© Webb (NGC 2566)

Primeiro, os oito raios que parecem estar saindo do centro na imagem infravermelha apresentada não são reais, são picos de difração causados pela estrutura mecânica do próprio telescópio espacial James Webb. 

O centro da NGC 2566 é brilhante, mas não é considerado incomum, o que significa que provavelmente contém um buraco negro supermassivo, embora atualmente não muito ativo.

Localizada na constelação Puppis, a apenas 76 milhões de anos-luz de distância, a luz que vemos da NGC 2566 hoje saiu quando os dinossauros vagavam pela Terra. A pitoresca galáxia está próxima o suficiente para que telescópios terrestres, incluindo os telescópios espaciais Webb e Hubble, possam identificar as nuvens turbulentas de gás e poeira onde as estrelas podem se formar, permitindo assim o estudo da evolução estelar. 

A galáxia NGC 2566 foi descoberta em 6 de Março de 1785 por William Herschel. Ela é semelhante em tamanho à Via Láctea, sendo notável por sua barra central brilhante e seus proeminentes braços espirais externos. 

Veja uma imagem da galáxia NGC 2566 obtida pelo telescópio espacial Hubble, o Very Large Telescope (VLT) e o ALMA (Atacama Large Millimeter/submillimeter Array) no blog: Vendo olho no olho.

Fonte: NASA

sábado, 24 de maio de 2025

Júpiter tinha o dobro do seu tamanho atual e campo magnético mais forte

Compreender a evolução inicial de Júpiter ajuda a iluminar a história mais abrangente de como o nosso Sistema Solar desenvolveu a sua estrutura distinta.

© NASA / JPL-Caltech (composição de Júpiter)

A gravidade de Júpiter, frequentemente designada como o "arquiteto" do nosso Sistema Solar, desempenhou um papel fundamental na definição das trajetórias orbitais dos outros planetas e ao esculpir o disco de gás e poeira a partir do qual se formaram.

Num novo estudo, Konstantin Batygin, professor de ciências planetárias no Instituto de Tecnologia da Califórnia (Caltech); e Fred C. Adams, professor de física e astronomia na Universidade de Michigan; fornecem uma visão detalhada do estado primordial de Júpiter. Os seus cálculos revelam que cerca de 3,8 milhões de anos após a formação dos primeiros sólidos do Sistema Solar, um momento chave em que o disco de material em torno do Sol, conhecido como nebulosa protoplanetária, estava se dissipando, Júpiter era significativamente maior e tinha um campo magnético ainda mais poderoso.

Os pesquisadores abordaram esta questão estudando as pequenas luas de Júpiter, Amalteia e Tebe, que orbitam ainda mais perto de Júpiter do que Io, a menor e mais próxima das quatro grandes luas galileanas do planeta. Dado que Amalteia e Tebe têm órbitas ligeiramente inclinadas, estas pequenas discrepâncias orbitais para calcular o tamanho original de Júpiter: aproximadamente o dobro do seu raio atual, com um volume previsto equivalente a mais de 2.000 Terras. Foi determinado também que o campo magnético de Júpiter nesta época era cerca de 50 vezes mais forte do que é atualmente.

É importante notar que estas informações foram obtidas através de restrições independentes que contornam as incertezas tradicionais dos modelos de formação planetária, que muitas vezes se baseiam em suposições sobre a opacidade do gás, a taxa de acreção ou a massa do núcleo de elementos pesados. Em vez disso, a equipe concentrou-se na dinâmica orbital das luas de Júpiter e na conservação do momento angular do planeta, grandezas que são diretamente mensuráveis.

A análise estabelece um retrato claro de Júpiter no momento em que a nebulosa solar circundante se evaporou, um ponto de transição crucial quando os materiais de construção para a formação de planetas desapareceram e a arquitetura primordial do Sistema Solar ficou estabelecida.

Os resultados acrescentam pormenores cruciais às teorias existentes sobre a formação planetária, que sugerem que Júpiter e outros planetas gigantes em volta de outras estrelas se formaram através da acreção do núcleo, um processo pelo qual um núcleo rochoso e gelado acumula rapidamente gás. Estes modelos fundamentais foram desenvolvidos ao longo de décadas por muitos cientistas. Este novo estudo baseia-se nessa fundação ao fornecer medições mais exatas do tamanho de Júpiter, da sua rotação e das condições magnéticas num instante inicial e crucial.

Um artigo fo publicado na revista Nature Astronomy.

Fonte: California Institute of Technology