O telescópio espacial James Webb captou novos pormenores das auroras no maior planeta do nosso Sistema Solar.
© Webb (observações da aurora de Júpiter)
As luzes dançantes observadas em Júpiter são centenas de vezes mais brilhantes do que as observadas na Terra. Com a sensibilidade avançada do Webb, os astrônomos estudaram estes fenômenos para melhor compreender a magnetosfera de Júpiter.
As auroras são criadas quando partículas altamente energéticas entram na atmosfera de um planeta perto dos seus polos magnéticos e colidem com átomos de gás. Não só as auroras de Júpiter são enormes em tamanho, como também são centenas de vezes mais energéticas do que as auroras da Terra. Aqui, as auroras são causadas por tempestades solares, quando partículas carregadas "chovem" na atmosfera superior, excitam os gases e fazem-nos brilhar com cores vermelhas, verdes e púrpuras.
Entretanto, Júpiter tem uma fonte adicional para as suas auroras; o forte campo magnético do gigante gasoso apanha partículas carregadas da sua vizinhança. Isto inclui não só as partículas carregadas do vento solar, mas também as partículas lançadas para o espaço pela sua lua Io, conhecida pelos seus numerosos e grandes vulcões. Os vulcões de Io expelem partículas que, notavelmente, escapam à gravidade da lua e orbitam Júpiter. Uma barragem de partículas carregadas liberadas pelo Sol durante as tempestades solares também atinge o planeta. O grande e poderoso campo magnético de Júpiter captura as partículas carregadas e acelera-as a velocidades tremendas. Estas partículas velozes atingem a atmosfera do planeta com energias elevadas, o que excita o gás e provoca o seu brilho.
Agora, as capacidades únicas do Webb estão fornecendo novos conhecimentos sobre as auroras de Júpiter. A sensibilidade do telescópio permite o aumento da velocidade do obturador para captar características aurorais que variam rapidamente. Os novos dados foram captados com o instrumento NIRCam (Near-InfraRed Camera) do Webb no dia de Natal de 2023 por uma equipe de cientistas liderada por Jonathan Nichols, da Universidade de Leicester, no Reino Unido.
Os dados revelaram que a emissão do íon trihidrogênio, conhecido como H3+, é muito mais variável do que se pensava. As observações vão ajudar a desenvolver a compreensão dos cientistas sobre a forma como a atmosfera superior de Júpiter é aquecida e arrefecida. O que tornou estas observações ainda mais especiais foi o fato de também obtido fotografias simultaneamente no ultravioleta com o telescópio espacial Hubble.
A luz mais brilhante observada pelo Webb não tinha qualquer equivalência real nas imagens do Hubble. Para causar a combinação de brilho observada pelo Webb e pelo Hubble, é necessária uma combinação aparentemente impossível de grandes quantidades de partículas de energia muito baixa atingindo a atmosfera, como uma tempestade de chuviscos!
A equipe planeja agora estudar esta discrepância entre os dados do Hubble e do Webb e explorar as implicações mais amplas para a atmosfera e o ambiente espacial de Júpiter. Pretendem também dar seguimento a esta investigação com mais observações do Webb, que poderão ser comparadas com dados da nave espacial Juno da NASA para explorar melhor a causa da enigmática emissão brilhante.
Estes conhecimentos podem também apoiar a Juice (Jupiter Icy Moons Explorer), da ESA, que está a caminho de Júpiter para fazer observações pormenorizadas do gigante gasoso e das suas três grandes luas com oceanos: Ganimedes, Calisto e Europa. A Juice irá observar as auroras de Júpiter com sete instrumentos científicos únicos, incluindo duas câmaras. Estas medições de perto ajudarão compreender a forma como o campo magnético e a atmosfera do planeta interagem, bem como o efeito que as partículas carregadas de Io e das outras luas têm na atmosfera de Júpiter.
Os resultados foram publicados na revista Nature Communications.
Fonte: Space Telescope Science Institute