terça-feira, 28 de dezembro de 2010

O buraco negro do centro da Via Láctea poderá ser super ativo?

Um novo estudo dos cientistas do Observatório de Raios-X Chandra da NASA busca calcular a frequência pela qual os maiores buracos negros galácticos conhecidos têm sido ativos nos últimos bilhões de anos. Os resultados foram publicados na edição de 10 de novembro da revista Astrophysical Journal.
galáxias Abell 644 e galáxia SDSS J1021+131
© NASA/Chandra (galáxias Abell 644 e galáxia SDSS J1021+131)
Esta descoberta esclarece a forma pela qual os buracos negros podem crescer e pode trazer implicações para a maneira pela qual o buraco negro gigante no centro da nossa galáxia, a Via Láctea, poderá se comportar no futuro.
A maioria das galáxias, incluindo a nossa, contêm buracos negros supermassivos em seus centros, com massas variando de milhões a bilhões de vezes a massa do nosso Sol. Por razões ainda não totalmente compreendidas, os astrônomos descobriram que esses buracos negros apresentam uma grande variedade de níveis de atividades: desde aqueles que estão literalmente adormecidos, passando pelos que estão em estágio letárgico até chegar aos de atividade hiper violenta.
Os mais ativos buracos negros supermassivos produzem os denominados “núcleos galácticos ativos” (em inglês “active galactic nucleus” – sigla AGN), processando grandes quantidades de gás. O que alimenta o buraco negro central é o gás que espirala em queda em torno da singularidade em velocidades altíssimas. Assim, o gás é ionizado, aquecido e brilha intensamente emitindo radiação no espectro dos raios-X.
Foi descoberto que apenas cerca de 1% das grandes galáxias, com massa semelhante a da Via Láctea, contêm buracos negros supermassivos em sua fase mais ativa. Buscar descobrir quantos desses buracos negros tem se mantido ativos ao longo do tempo é importante para a compreensão de como os buracos negros crescem dentro das galáxias e como este crescimento é afetado pelo seu ambiente.
Este novo estudo envolve a pesquisa chamada ChaMP (Chandra Multiwavelength Project), que abrange 30 graus quadrados do céu, a maior área do céu de estudo que o observatório espacial Chandra de raios-X já cobriu. Combinando as imagens de raios-X do Chandra com as imagens óticas do SDSS (Sloan Digital Sky Survey), cerca de 100 mil galáxias foram analisadas. Um pequeno grupo da amostra, em torno de 1.600 galáxias, brilha intensamente nos raios-X, sinalizando a possível atividade de seus núcleos, ou seja, a existência de AGN.
Os astrônomos consideram que somente galáxias que residem até a distância de 1,6 bilhões de anos-luz da Terra podem significativamente ser comparadas com a Via Láctea. Mesmo assim, galáxias distantes até 6,3 bilhões de anos luz também foram estudadas. As galáxias primariamente isoladas ou as “galáxias de campo” foram incluídas e as galáxias em aglomerados ou grupos foram desconsideradas.
Um objetivo essencial é entender como a atividade dos AGNs tem afetado o crescimento das galáxias. Uma correlação notável entre a massa dos buracos negros gigantes e a massa das regiões centrais da sua galáxia anfitriã sugere que o crescimento de buracos negros supermassivos e suas galáxias estão fortemente ligados. Determinar a fração de AGNs no Universo local é crucial para auxiliar este modelo de crescimento paralelo.
Um dos resultados deste estudo é que a fração de galáxias que contêm AGN depende da massa da galáxia. As galáxias mais massivas têm maior probabilidade de sediar um AGN, enquanto que as galáxias que têm apenas um décimo da massa da Via Láctea tem uma chance cerca de dez vezes menor de conter um AGN.
Outro resultado é que uma diminuição gradual da fração de AGNs é notada ao longo do tempo cósmico desde o Big Bang, confirmando o trabalho feito por outros pesquisadores. Isto implica que tanto o abastecimento de combustível ou do mecanismo de alimentação de combustível para os buracos negros tem mudado com o tempo.
O estudo também tem implicações importantes para a compreensão de como as vizinhanças das galáxias afetam o crescimento de seus buracos negros, porque a fração de AGNs para as galáxias de campo foi considerada indistinguível da fração em galáxias contidas nos aglomerados densos.
É possível que a fração de AGNs tenha evoluído ao longo do tempo cósmico, tanto nos aglomerados galácticos densos como nas galáxias de campo, mas com diferentes taxas. Se a fração de AGNs em aglomerados começou acima das galáxias de campo, como alguns resultados têm sugerido, mas depois diminuiu mais rapidamente, em algum ponto da evolução do Universo a fração dos aglomerados pode ter se tornado igual à fração nas galáxias de campo. Isso pode explicar o que está sendo visto no Universo local.
A Via Láctea contém um buraco negro supermassivo conhecido como Sagittarius A* (Sgr A*). Embora os astrônomos tenham testemunhado uma pequena atividade no Sgr A* usando o Chandra e outros telescópios ao longo dos anos, este buraco negro apresenta um nível muito baixo de atividade. Se a Via Láctea segue as tendências verificadas no levantamento da pesquisa ChaMP, o buraco negro Sgr A* deverá ser cerca de um bilhão de vezes mais brilhante na emissão de raios-X durante aproximadamente 1% do tempo de vida restante do Sol, em torno de 5 bilhões de anos. No entanto, provavelmente, tal atividade deve ter sido mais comum no passado distante.
Sagittarius A
© NASA/Chandra (Sagittarius A)
No entanto nós aqui da Terra não deveríamos nos preocupar com os riscos, se Sgr A* tornar-se um AGN não sofreríamos ameaças para a vida em nosso planeta. Contudo observaríamos um show espetacular de raio-X e ondas de rádio. No entanto, todos os mundos que residem próximos do centro da galáxia, ou diretamente na linha de fogo, receberiam grandes quantidades potencialmente danosas da radiação.
Fonte: NASA

O pôr do Sol em Marte é azul!

Um vídeo do um pôr do Sol marciano foi capturado pela sonda Opportunity da NASA. Apesar da maioria dos vídeos codificar as cores de Marte como vermelhas, o pôr do Sol brilha na cor azul.
© NASA (o pôr do Sol em Marte)
O planeta Marte é conhecido por ser o Planeta Vermelho. A ferrugem na poeira da sua superfície dá ao planeta sua aparência avermelhada e marrom. Suas áreas vastas, secas e poeirentas lembram os desertos da Terra, onde o Sol vermelho-laranja ilumina a areia amarela. Então, quando pensamos no pôr do Sol de Marte, pensamos que ele seja bem avermelhado.
O vídeo, recentemente lançado pela NASA, mostra exatamente o oposto. O Sol emite um brilho azul e frio quando se põe no céu de Marte. É um erro de percepção, e acontece justamente por causa da famosa poeira vermelha.
Na Terra, as partículas da atmosfera dispersam a luz azul. Quando um raio de luz atinge essas partículas, os comprimentos de onda da cor azul são desviados do caminho e são atirados para fora, de forma aleatória. À medida que saem da atmosfera, esses comprimentos de onda atingem outras partículas no ar, e parte volta para a superfície da Terra. Quem está na superfície olha para o céu, vê a luz que está se espalhando para baixo, e diz que o céu é azul. Enquanto isso, a luz direta do Sol perdeu seu comprimento de onda da cor azul: eles se espalharam pelo céu. Aí sobram apenas os comprimentos de onda com cores mais quentes do espectro de luz, então o Sol possui uma cor amarelada. Quando chega o pôr do Sol, a atmosfera filtra mais as cores azuladas, então o Sol parece ficar mais avermelhado.
Em Marte, exatamente o oposto acontece. A poeira vermelha na atmosfera dispersa a luz vermelha, então quem estiver em Marte estará vendo um céu vermelho. Enquanto isso, os comprimentos de onda vermelhos são filtrados e retirados da luz vinda do Sol, deixando a luz com cores mais frias do espectro de luz. Então quem vê o Sol vai achar que ele é azul.
Fonte: NASA

segunda-feira, 27 de dezembro de 2010

Imagem com milhões de galáxias

A 2MASS (Two Micron All Sky Survey) fundada pela NASA (National Aeronautics and Space Administration) e NSF (National Science Fundation) gerou uma imagem espetacular em larga escala do Universo contendo 1,6 milhões de galáxias.
2mass - milhões de galáxias © 2MASS (1,6 milhões de galáxias)
A imagem obtida da maioria destas galáxias é na região infravermelha do espectro, descrevendo a formação e a evolução da estrutura do Universo. Muitas galáxias se uniram devido a atração gravitacional para formar aglomerados. Em contraste, nota-se na imagem que estrelas muito luminosas dentro de nossa própria galáxia produz a faixa vertical azulada.
Fonte: NASA

quinta-feira, 23 de dezembro de 2010

Plutão pode ter oceano abaixo de camada de gelo

Um estudo de cientistas da Universidade da Califórnia, nos Estados Unidos, indica que o planeta anão Plutão pode abrigar um oceano abaixo de sua camada de gelo.
Plutão e as luas Charon & Nix & Hydra
© NASA (Plutão e as luas Charon, Nix e Hydra)
Mesmo possuindo temperaturas extremamente frias, Plutão aparenta ficar aquecido graças a este oceano abaixo da superfície, que preservaria o calor vindo da radioatividade do núcleo do planeta anão. E esse oceano não seria pequeno, de acordo com Guillaume Robuchon, pesquisador da universidade.
O oceano teria entre 100 e 170 km de espessura, estando 200 km abaixo da camada de gelo. Se confirmado, Plutão entra na lista de corpos do Sistema Solar em que se acredita haver água líquida, como exemplos da lista, estão as luas Titã e Enceladus, de Saturno.
A superfície de Plutão, acredita-se, é provavelmente mais fria do que -230°C. O interior de Plutão, sendo formado por este núcleo quente, facilitaria a produção de um oceano abaixo do gelo, também porque as pedras do núcleo do planeta anão contêm aproximadamente 100 partes por bilhão de potássio radioativo. Para um oceano existir, as pedras de Plutão devem se concentrar em um núcleo, com água e gelo na superfície.
Em 2015, a sonda New Horizons chegará a Plutão e ajudará a descobrir se realmente há um oceano no planeta anão.
Fonte: National Geographic

Atividade tectônica em Rhea

As últimas imagens tiradas pela sonda Cassini mostram que a lua de Saturno, Rhea, tem atividade tectônica.
Rhea
© NASA (Rhea)
Pensava-se que o criovulcanismo (vulcões de gelo) teriam feito algumas dessas marcas e exposto algum gelo à superfície, mas as novas imagens mostram que algumas dessas marcas são devidas a atividade tectônica.
A lua Rhea possui grande semelhança com a lua Dione devido a proximidade de ambas, como evidenciado na imagem comparativa a seguir.
Rhea e Dione
© NASA (Rhea e Dione)
A missão da sonda Cassini foi estendida para 2017, consequentemente continuará mapeando as luas de Saturno. Em 11 de janeiro de 2011 a sonda Cassini fará um sobrevoo com distância de 76 Km da superfície de Rhea, propiciando sem dúvida as melhores imagens desta lua.
Fonte: NASA

quarta-feira, 22 de dezembro de 2010

Concentração de Hélio-3 no regolito lunar

O He-3 (Hélio-3) é um gás raríssimo no planeta Terra, que foi encontrado em amostras de rochas lunares trazidas pelos astronautas do Projeto Apollo.
modelo da abundância de He-3 na Lua
© Maurice Collins (modelo da abundância de He-3 na Lua)
Apesar de não ser radioativo, a maior parte hoje em dia advém como subproduto da produção de armamento nuclear. Ele poderia ser usado como combustível em futuras centrais elétricas nucleares, sem deixar qualquer resíduo tóxico.
Recentemente, a sonda chinesa Chang E-1 detectou a abundância de He-3 na Lua. O Hélio-3 é um isótopo estável do Hélio criado por fusão dentro do Sol. Nos últimos bilhões de anos, o He-3 tem sido depositado no regolito lunar pelo vento solar. O He-3 tem sido de grande interesse para um ser um combustível que poderia ser produzido pela fusão com o deutério e fornecer toda a energia que os seres humanos precisam na Terra.
O mapeamento do He-3 foi derivado não de medidas diretas mas de uma complexa modelagem que teve início com as emissões de microondas térmicas medidas pela Chang E-1, com resolução de somente 3-50 Km e penetração de cerca de 10 m.
Os cálculos efetuados por WenZhe Fa e YaQiu Jin, também incluíram a modelagem da variação do vento solar, a retenção de He-3 no regolito, a idade e a abundância de TiO2 (dióxido de titânio) no regolito. Misturando tudo isso com as medidas da abundância de He-3 como função do TiO2 nas amostras trazidas pela Apollo e então se tem o mapa acima. As mais altas concentrações de He-3 estão no Mare Tranquilitatis, Fecunditatis, Moscoviense e no Oceanus Procellarum. O fato das lavas da Serenidade e do Imbrium serem difíceis de serem observadas é devido a falta de uma grande quantidade de TiO2. Esse ainda é um mapa bem bruto e mostra o que acontece até a 10 metros de profundidade na Lua. É difícil dizer exatamente, mas o local de pouso planejado para a Chang E-2 no Sinus Iridum não é uma região de alta concentração de He-3, isso é surpreendente pois a principal razão pela qual a China começou a explorar a Lua foi exatamente para descobrir os locais de concentração de He-3.
A concentração global de He-3 na Lua é estimado em 6.6×108 kg; 3.7×108 kg no lado próximo e 2.9×108 kg no lado afastado.
A energia da fusão do Hélio-3 pode ser a chave da exploração e colonização espacial futura.
Fonte: Chinese Science Bulletin

domingo, 19 de dezembro de 2010

Eclipse total da Lua no início do verão

Na madrugada do dia 21 ocorrerá mais um eclipse total da Lua, quando a sombra da Terra será projetada totalmente sobre o corpo lunar.
eclipse total da Lua
© Cosmo Novas (eclipse total da Lua)
Um eclipse lunar só é possível durante a Lua cheia. Quando o Sol, a Terra e a Lua estão bem alinhados, o satélite natural pode ficar momentaneamente privado de luz solar, caso esteja no cone de sombra da Terra. Além do eclipse, o dia será marcado pela chegada do verão no hemisfério sul.
diagrama do eclipse lunar
© Fred Espanak/NASA e Cosmo Novas (diagrama do eclipse lunar)
No Brasil, apenas parte do fenômeno poderá ser visto. O eclipse terá início às 03h29 (horário de Brasília) e finalizará às 09h04. A Lua começará a entrar na sombra da Terra às 4h32 de terça-feira. A sombra, de contornos claramente visíveis, avançará no disco lunar, voltará a ser eclipse parcial às 8h01 e recuperará depois a plena luminosidade. No entanto, em grande parte do país, principalmente nas regiões Sul e Sudeste, a Lua cheia se põe por volta das 05h30, interrompendo a observação do fenômeno. Nessas localidades o fenômeno será parcial e a totalidade do eclipse só poderá ser vista durante alguns minutos.
Os melhores lugares para se observar o evento são aqueles localizados no extremo oeste do país, principalmente nos estados do Acre, Amazonas, Roraima e Rondônia. O eclipse perde sua exuberância à medida que nos afastamos em direção ao oceano Atlântico.
As condições atmosféricas determinam a cor da Lua no momento do eclipse, e esta pode se apresentar alaranjada, avermelhalada e até marrom escuro. Partículas em suspensão geradas por erupções vulcânicas contribuem para avermelhar ainda mais o satélite durante o evento.
Os eclipses da Lua não representam risco para a vista, ao contrário dos eclipses solares. Para estes é recomendado usar óculos especiais ou realizar observação indireta.
O primeiro eclipse solar parcial de 2011 acontecerá em 4/1/2011. Em caso de bom tempo, será visível na Europa, especialmente na região norte da Suécia, no norte da África, Oriente Médio e Ásia Central.
Quatro eclipses solares parciais e dois eclipses lunares totais estão previstos para 2011, uma combinação rara que acontecerá apenas seis vezes no século XXI.
Fonte: Cosmo Novas

sábado, 18 de dezembro de 2010

Exoplaneta Qatar-1b

Um grupo de astronômos do Harvard-Smithsonian Center for Astrophysics (CfA) e Khalid Al Subai, astrônomo do Qatar descobriram um novo exoplaneta, o Qatar-1b.
ilustração do exoplaneta Qatar-1b
© CfA (ilustração do exoplaneta Qatar-1b)
O exoplaneta é da classe de planetas volumosos denominados Júpiteres quentes. Ele tem um período de 1,4 dias e orbita a cerca de 3,7 milhões de Km da estrela de tipo espectral K localizada a 550 anos-luz. O exoplaneta gira uma vez em seu eixo a cada 34 horas, sendo três vezes mais lento que Júpiter que gira uma vez em 10 horas. O Qatar-1b é 20% maior que Júpiter em diâmetro e 10% mais volumoso.
O grupo de pesquisadores utilizou o telescópio Whipple de 48 polegadas com capacidade de medir trânsitos com grande precisão, associado ao telescópio de 60 polegadas que executa observações espectroscópicas de estrelas binárias.
Foi submetido um artigo para publicação anunciando a descoberta ao periódico Monthly Notices of the Royal Astronomical Society.
Fonte: Harvard-Smithsonian Center for Astrophysics

quinta-feira, 16 de dezembro de 2010

Vulcões de gelo em Titã

A sonda Cassini da Nasa encontrou possíveis vulcões de gelo na lua de Saturno, Titã, que são similares em forma àqueles que conhecemos na Terra e que expelem rocha derretida.
criovulcão em Titã
© NASA (criovulcão em Titã)
No mapa em 3D de Sotra Facula em Titã é possivel observar a impressionante semelhança com os vulcões terrestres como o Etna, na Itália e o Laki, na Islândia.
Dados de topografia e composição de superfície dão a esperança para cientistas de que esses sejam os primeiros vulcões similares aos terrestres no sistema solar, embora tenham evidências de erupções de gelo. Os resultados da pesquisa foram apresentados na reunião da American Geophysical Union em São Franciso, Estados Unidos.
Cientistas debatem há anos se os vulcões de gelo, também chamados de criovulcões, existem nas luas ricas em gelo e, se eles existem, quais as suas características. Por definição haveria algum tipo de atividade geológica que aqueceria o frio ambiente o suficiente para derreter parte do interior do satélite e mandar gelo "macio" ou outros materiais através de uma abertura na superfície. Vulcões na lua de Júpiter Io e na Terra expelem lavaquente rica em silicatos.
Alguns criovulcões se parecem pouco com os vulcões terrestres, como as listras na lua de Saturno Enceladus, onde longas fissuras soltam jatos de água e partículas de gelo que deixam pouquíssimos traços na superfície. Em outros locais, a erupção de materiais mais densos podem esculpir picos vulcânicos. Quando padrões assim foram vistos em Titã, teorias os explicaram como processos não-vulcânicos, como rios depositando sedimentos. Em Sotra Facula, no entanto, vulcões de gelo são a melhor explicação para dois picos de mais de aproximadamente um quilômetro de altura com profundas crateras vulcânicas.
Fonte: Jet Propulsion Laboratory

Luminosidade das rajadas escuras de raios gama em estrelas massivas

Um estudo realizado por cientistas do Instituto Max Planck para a Física Extraterrestre, utilizando o instrumento GROND (Gamma-Ray Optical and Near-infrared Detector), montado no telescópio MPG do ESO (Observatório Europeu do Sul), explica a fraca luminosidade das rajadas escuras de raios gama, um dos fenômenos mais energéticos do Universo.
rajadas escuras de raios gama
© ESO (rajadas escuras de raios gama)
Este é considerado o maior estudo já realizado sobre as rajadas. As rajadas de raios gama são geradas a partir da explosão de estrelas massivas, criando feixes de luz tão brilhantes que podem ser vistos a uma distância de 13 bilhões de anos-luz, perto dos limites do Universo observável. Porém, algumas rajadas de raios gama têm um brilho abaixo do espectro visível, parecendo que lhes falta esta característica, o que deixou os pesquisadores perplexos durante os últimos 10 anos.
Essa fraca luminosidade explica-se como uma combinação de várias causas, sendo a mais importante a presença de poeira entre a Terra e o fenômeno. O estudo indica que a maioria das rajadas escuras de raios gama são aquelas cuja pequena quantidade de radiação visível foi completamente absorvida pela poeira antes de chegar à Terra.
A NASA lançou o satélite Swift em 2004, para orbitar por cima da atmosfera terrestre e conseguir detectar explosões de raios gama e comunicar imediatamente as suas posições a outros observatórios para estudo dos brilhos residuais.
Foram utilizados dados registrados pelo Swift e também novas observações do GROND, que se dedica à observação continua de rajadas de raios gama. Combinando os dados, foi determinada a quantidade de radiação emitida pelo brilho residual a comprimentos de onda muito distintos. Assim, foi medida a quantidade de poeira que obscurece a radiação no percurso do raio até a Terra.
Foi descoberto que as rajadas escurecem para uma marca entre 60% e 80% da intensidade original com que foi emitida devido à poeira. Para rajadas mais distantes, a intensidade transforma-se para apenas entre 30% e 50%.
Estudos anteriores já haviam apontado que rajadas de raios gama podem ser capazes de ajudar a monitorar a taxa na qual as estrelas formam-se e morrem em distantes galáxias, confirmando as estimativas anteriores de que 25% das vezes as estrelas massivas se formam em locais repletos de poeira de estrelas, e que a poeira se forma provavelmente nas nuvens ao redor de estrelas em formação.
Além disso, indicam que pode haver muito mais poeira do que se suspeitava e que as rajadas escuras de raios gama poderiam fornecer uma maneira de descobrir a quantidade de formações estelares que estão acontecendo no Universo.
Fonte: ESO

terça-feira, 14 de dezembro de 2010

Desaparecimento de lua pode ter levado à formação dos anéis de Saturno

Por intermédio de simulações feitas no Instituto Southwest de Pesquisa possibilitou explicar como os anéis de Saturno e suas luas interiores de gelo se formaram após uma colisão com um satélite natural do tamanho da maior lua do planeta, Titã.
anéis de Saturno
© NASA (anéis de Saturno)
Os anéis de Saturno são atualmente formados de 90 a 95% de gelo. Como poeira e detritos poluíram os anéis, acreditava-se que eles eram formados de puro gelo quando foram criados. Essa composição é incomum se comparada à mistura de aproximadamente metade gelo e metade rocha, que é esperada para materiais no Sistema Solar. De maneira parecida, as baixas densidades das luas interiores do planeta também são, como um grupo, ricas em gelo.
A principal teoria anterior para a origem dos anéis sugere que eles se formaram quando um pequeno satélite natural colidiu com um cometa e se partiu em inúmeros pedaços. "Esse cenário muito provavelmente resultaria em anéis formados de uma mistura de gelo e rocha, diferente da constituição rica em gelo do anéis que vemos hoje", disse o autor do estudo, Robin M. Canup.
Já a nova teoria liga a formação dos anéis à formação dos satélites de Saturno. Enquanto Júpiter tem quatro grandes satélites, Saturno tem apenas um, Titã. Trabalhos anteriores sugerem que várias luas similares a Titã formaram-se originalmente no planeta, mas que aquelas que tinham uma órbita mais próxima de Saturno que Titã se perderam quando suas órbitas colidiram com a do planeta.
Quando a última lua perdida se aproximou de Saturno, o aquecimento causado pela mudança em seu formato devido à força de gravidade do planeta provocou o derretimento do gelo e fez com que a rocha afundasse em seu centro.
Foram utilizadas simulações numéricas para mostrar que conforme o satélite cruzava a região do atual anel B, forças arrancavam gelo de suas camadas superiores, enquanto seu núcleo rochoso permanecia intacto e eventualmente colidiu com o planeta. Esse processo produziu um anel inicial de gelo que é muito maior que os anéis atuais de Saturno. Com o tempo, colisões no anel foram fazendo com que ele se espalhasse e diminuísse em massa.
O novo modelo propõe que os anéis são primordiais, formados pelos mesmos eventos que fizeram com que Titã fosse o único satélite de Saturno. A implicação é que os anéis e as luas internas do planeta dividem a mesma origem e são os últimos remanescentes de um companheiro perdido de Titã.
Fonte: Nature

segunda-feira, 13 de dezembro de 2010

Encontrada estrela constituída de zircônio

Recentemente, um grupo de cientistas do Observatório de Armagh na Irlanda do Norte descobriu uma estrela que é envolvida por nuvens brilhantes de zircônio!
ilustração da estrela LS IV-14 116
© Natalie Behara (ilustração da estrela LS IV-14 116)
A estrela focalizada é uma anã branca denominada LS IV-14 116, que está localizada a 2.000 anos-luz. Na imagem as nuvens brancas são ricas em zircônio, que estão situadas acima da superfície azulada da estrela.
Usando um espectroscópio acoplado ao telescópio de 3,9 metros foi possível identificar a presença de zircônio que só deveria existir numa temperatura de 20.000 ºC.
A abundância de zircônio é causada pela formação de camadas de nuvem na atmosfera da estrela, cuja concentração é 10.000 vezes da encontrada no Sol. A estrela LS IV-14 116 não tem uma coroa como o Sol, e o excesso de zircônio está localizado na fotosfera.
O estágio de evolução desta estrela demonstra a ocorrência da transição de uma gigante fria e brilhante para uma anã quente e tênue. Agora, esta estrela é mais um coadjuvante no processo de evolução estelar.
Fonte: Universe Today

quinta-feira, 9 de dezembro de 2010

Encontrado primeiro exoplaneta rico em carbono

Uma equipe de cientistas da Universidade de Princeton, dos Estados Unidos, descobriu que o planeta WASP-12b, um dos exoplanetas mais quentes já descobertos, tem uma relação carbono-oxigênio maior que a vista no nosso sistema solar. Os especialistas chegaram a essa conclusão após analisar a luz que o planeta reflete.
moléculas presentes no exoplaneta WASP-12b
© NASA (moléculas presentes no exoplaneta WASP-12b)
O diagrama acima mostra a presença de moléculas (água, metano e monóxido de carbono) no exoplaneta WASP-12b através da relação do brilho relativo e o comprimento de onda.
O WASP-12b orbita uma estrela ligeiramente mais quente que o Sol a uma distância quarenta vezes mais próxima que aquela que a Terra tem do Sol, por isso é considerado um dos exoplanetas mais quentes conhecidos até o momento, com uma temperatura de superfície de 2.200ºC, mostra o estudo.
É possível que o planeta tenha altas quantidades de grafite, diamante e ainda outras formas não conhecidas de carbono em seu interior. Até o momento, astrônomos não têm a tecnologia para observar o interior dos exoplanetas, mas suas teorias trazem possibilidades intrigantes.
O planeta Terra tem muitas rochas, como o quartzo, que são feitas de sílica, oxigênio e outros elementos. Mas o planeta onde o carbono fosse predominante seria um lugar muito diferente. Isso significa que, nesse mundo o diamante não seria uma pedra preciosa.
O carbono é um componente comum nos sistemas planetários e um ingrediente chave para a vida na Terra. A medição da relação carbono-oxigênio tem a finalidade de obter uma ideia da composição química dos astros.
Fonte: Nature

quarta-feira, 8 de dezembro de 2010

Água lunar parece ser um pouco salgada

A sonda LCROSS (NASA Lunar Crater Observing and Sensing Satellite) se chocou com a cratera Cabeus no polo sul lunar no dia 9 de Outubro de 2009. A colisão levantou e tornou visível aproximadamente 300 kilogramas de água congelada que estava no fundo da cratera, de acordo com a equipe da LCROSS.
cratera Cabeus
© NASA (cratera Cabeus)
Ela também adicionou aproximadamente 1,5 kilogramas de sódio, um dos elementos do sal (cloreto de sódio) à pluma de água, relatou a equipe do Goddard Spaceflight Center da NASA em Greenbelt, Maryland. Na revista Geophysical Research Letters a equipe relatou observações feitas com o telescópio McMath-Pierce no Arizona que revelaram um espectro químico dessa pluma.
Análises futuras são necessárias para determinar a origem do sódio e da água nos polos lunares, mas há suspeita de que o sódio estava quimicamente misturado com outros elementos voláteis no gelo de água da cratera e se liberou como sódio livre somente quando a temperatura atingiu 1000 graus Celsius devido ao impacto da sonda LCROSS.
Fonte: Geophysical Research Letters

Descoberto 4º planeta na estrela mais próxima do Sistema Solar

Foi localizado, por astronômos canadenses, um quarto planeta que orbita a estrela HR 8799, a mais próxima do nosso Sistema Solar.
ilustração do exoplaneta HR 8799
© ESO (ilustração do exoplaneta HR 8799)
O planeta tem aproximadamente a mesma massa que os outros três planetas que orbitam ao redor da citada estrela, mas a formação dos quatro estão sendo analisadas.
Segundo o cientista Christian Marois, do Conselho Nacional de Pesquisa do Canadá, centenas de planetas fora de nosso sistema foram detectados, mas poucos são suficientemente grandes e brilhantes para que seja possível obter imagens diretas.
Há dois anos, Marois e seus colegas divulgaram imagens em infravermelho de três planetas gigantes que orbitavam em torno da estrela HR 8799, que de alguma maneira lembravam os três planetas mais afastados do nosso Sistema Solar, mas muito maiores.
As novas imagens, feitas em um período de 15 meses, revelam a presença deste quarto planeta gigante no sistema HR 8799, mas está mais perto da estrela que os outros três.
Estes quatro planetas parecem ter cinco vezes a massa de Júpiter, agregam os astrônomos.
Fonte: Nature