quarta-feira, 19 de janeiro de 2011

Planck observa nuvem molecular de Perseus

Não só de estrelas é feita uma galáxia, na verdade, muitos outros materiais preenchem essas ilhas cósmicas. No comprimento de onda das microondas, o Planck consegue observar elétrons se movendo através da galáxia e poeira sendo aquecida pela luz das estrelas que estão se formando.
nuvem molecular de Perseus
© Planck (nuvem molecular de Perseus)
Na imagem acima, as cores têm os seguintes significados: azul, representa os elétrons se movendo através da galáxia; verde a poeira aquecida pelas estrelas e vermelho a emissão anômala observada pelo Planck.
Esses componentes do meio interestelar têm sido estudados exaustivamente por algumas décadas. Os elétrons são conhecidos por emitir primariamente ondas de rádio (baixa frequência) enquanto que os grãos de poeira primariamente emitem no infravermelho distante (altas frequências). Na década de 1990, as emissões eram observadas mas não podiam ser explicadas e por isso tornaram-se conhecidas como AME (Emissão de Microondas Anômala).
Algumas teorias propuseram a origem dessa emissão e agora com os comprimentos de onda cobertos pelo Instrumento de Baixa Frequência do Planck é possível observar e caracterizar essa emissão. Uma vantagem que o Planck tem é que ele combina dois instrumentos e com isso consegue cobrir uma grande gama de comprimentos de onda, o que permite separar essa emissão anômala dos componentes que podem ser melhor compreendidos.
“Nós agora estamos ficando mais confiantes de que a emissão é devido à rotação dos grãos de poeira em nano-escala, que gira a milhares de milhões de vezes por segundo”, disse Clive Dickinson da University of Manchester, que lidera as análises do AME usando os mapas do Planck. Esses são os menores grãos de poeira conhecidos, compostos somente por 10 a 50 átomos, a partir de colisões com átomos ou fótons eles emitem radiação nas frequências entre 10 e 60 GHz.
Essa região na constelação de Perseus, foi uma das duas regiões dentro da nossa galáxia que foi estudada em detalhe. Graças a grande sensibilidade do Planck e devido a sua cobertura espectral sem precedente, tem sido possível caracterizar as emissões anômalas provenientes desses dois objetos em grande detalhe de modo que muitas das teorias alternativas puderam ser descartadas e assim é possível mostrar que a significante contribuição da AME, é devido a rotação das partículas de grãos em nano escala.
Fonte: ESA

segunda-feira, 17 de janeiro de 2011

Redshift 7 em versão gratuita

Explore o universo através de seu computador com a versão grátis (Launcher) do software astronômico Redshift 7.
planetas Saturno e Marte
© USM Digital Media (planetas Saturno e Marte)
É uma exibição espetacular do Universo que utiliza dados científicos precisos permitindo obter um vasto conhecimento de todos os tipos de objetos no céu. Você pode simular o céu noturno para qualquer hora e desvendar astros como: satélites, asteroides, cometas, estrelas, galáxias, planetas e exoplanetas até os limites do Universo como nós conhecemos até hoje.
cinturão de asteróides
© USM Digital Media (cinturão de asteroides)
Esta versão possui a seguinte configuração:
*Mais de 100.000 estrelas, 1.800 agrupamentos de estrela, 20.000 objetos do céu profundo, 15.000 asteroides, 1.500 cometas entre outros.  
*Nova interface de programa e desempenho excelente.  
*Modelo realístico em 3D de nossa Galáxia.  
*Navegação em 3D ao redor da galáxia e 20 excursões de multimídias. 
*Com controle de joystick, um vídeo atualizado e galeria de fotografias.
*Inclui planetas anões e exoplanetas. 
*Conexão rápida para o site da Web Redshift ao vivo para carregar novas excursões e workspaces.
*Atualizações individuais por plugins para personalizar o software Redshift e adicionar mais funções. Com os plugins você pode adiconar mais estrelas, objetos do céu profundo, controle de telescópio, publicar seu workspaces, alterar panoramas e áudio, obter galeria de fotos e dicionário, e muito mais para fazer o software Redshift um planetário ideal.
Redshift 7 Launcher
O download do Redshift 7 Launcher está disponível para o sistema operacinal Windows 7/Vista/XP no link:
Fonte: Cosmo Novas

Rebaixamento de Plutão foi precipitado?

No mês em que completa seis anos de descobrimento, o planeta-anão Éris e a sua participação no rebaixamento de Plutão em 2006, continuam causando polêmica.
plutão
© NASA (concepção artísitica de Plutão)
Um grupo de astrônomos liderados por Bruno Sicardy, do Observatório de Paris, disse ter feito uma nova medição que comprovaria que Éris é menor do que Plutão.
Por enquanto, eles não dizem o quão menor. Os detalhes serão divulgados num artigo na revista científica Nature.
Embora a diferença não deva passar de poucos quilômetros, o anúncio já foi suficiente para animar o grupo que quer rever o status de ex-planeta de Plutão.
O que se sabe, até agora, é que a nova medição foi feita no ano passado, aproveitando o momento em que uma estrela passou por trás de Éris, permitindo a visibilidade do experimento.
"Éris é claramente menor", disse Alain Maury, que também observou o fenômeno, no Observatório San Pedro de Atacama, no Chile.
Em 2005, quando foi localizado em um ponto distante do Sistema Solar, Éris trouxe um problema para os astrônomos.
Como seu diâmetro parecia maior do que o de Plutão, só havia duas alternativas: reconhecê-lo como o décimo planeta ou rebaixar o outro.
A IAU (União Astronômica Internacional) resolveu colocar ordem na casa e criou uma série de critérios para classificar um planeta. Regras que, apesar de séculos de estudos astronômicos, ainda não existiam. Com isso, nasceu também um novo conceito: o de planeta-anão, em que Éris e Plutão foram colocados.
Tanto cuidado tem várias explicações, mas um dos motivos mais fortes era o receio dos astrônomos de que, com os instrumentos de observação cada vez mais potentes, haveria uma enxurrada de novos planetas no nosso Sistema Solar.
Batizado em homenagem à deusa grega da discórdia, Éris fica bem mais distante do Sol do que Plutão.
Além da distância, existe um outro complicador para medições precisas: a baixa luminosidade do Cinturão Kuiper, onde eles estão.
Nem mesmo o tamanho de Plutão é considerado definitivo. Nos mais de 80 anos desde seu descobrimento, a estimativa de seu diâmetro já mudou várias vezes.
Uma medição muito precisa deve acontecer em 2015, quando a sonda New Horizons, da NASA, chegar até próximo dele.
Nesta disputa não é apenas o tamanho que importa, mas também deve ser considerado o critério da órbita solidária, que neste caso Plutão não possui.
Fonte: The New York Times

Um par de galáxias dançantes

A WISE (Wide-Field infrared Survey Explorer) da NASA captou a imagem das galáxias M81 e M82 efetuando uma verdadeira dança intergaláctica. As galáxias se encontraram a centenas de milhões de anos atrás, e provavelmente continuarão a interagir várias vezes antes de eventualmente se fundirem formando uma única galáxia. O encontro relativamente recente disparou uma espetacular explosão de nascimento de estrelas visíveis em ambas as galáxias.
galáxias M81 e M82
© NASA (galáxias M81 e M82)
Essa imagem foi construída a partir de observações feitas com todos os quatro detectores infravermelhos que viajam a bordo do WISE. As cores azul e ciano (azul e verde) representam a luz infravermelha com comprimento de ondas de 3.4 e 4.6 mícron, que são principalmente emitida pelas estrelas. As cores verde e vermelho representam a luz com 12 e 22 mícron que é gerada principalmente pela emissão proveniente da poeira aquecida.
A M81 (na parte inferior da imagem) é protótipo de uma galáxia espiral com seus pronunciados e bem definidos braços espiralando em direção ao núcleo. Nos comprimentos de onda obtidos pelo WISE, esses belos braços mostram áreas comprimidas de gás e poeira interestelar, que apresentam um aumento de formação estelar. A densidade das ondas espirais que criam essa compressão e a formação de estrelas foram impulsionadas pela interação gravitacional próxima com a sua parceira a M82 (na parte superior da imagem), fazendo com que os braços apareçam mais proeminente do em galáxias espirais similares que vivem isoladas.
A M82 também é uma galáxia espiral, contudo ela é vista de lado desde o nosso ponto de vista. Ela foi originalmente classificada como uma galáxia irregular, até 2005, quando os astrônomos foram capazes de observar a sua estrutura espiral em imagens feitas no infravermelho próximo (similares aos comprimentos de onda vistos pelo WISE). Quando observada no comprimento de onda visível, essa galáxia aparece como tendo longos e finas barras, e por isso recebe o nome popular de Galáxia do Charuto.
A M82 também é uma galáxia de explosão de estrelas, significando que ela está atualmente em um período de taxa excepcionalmente elevada de formação de estrelas. Essa grande atividade explosiva foi causada pelo seu contato imediato com a M81, de modo que a influência gravitacional fez com que o gás próximo da região central da M82 fosse comprimido de forma rápida. Essa compressão disparou uma explosão de formação de estrelas concentradas próximo ao seu centro. A intensa radiação de todas as estrelas massivas recém formadas criam um super vento galáctico que está soprando massivas quantidade de gás e poeira perpendicularmente ao plano da galáxia. Esse material ejetado (visto como as áreas laranjas e amarelas se estendendo para cima e para baixo) é constituído principalmente de hidrocarbonetos aromáticos policíclicos, que são produtos comuns da combustão na Terra. Essa feição pode muito bem ser pensada como a fumaça do charuto.
NGC 3077
© Hubble (galáxia NGC 3077)
Uma terceira, galáxia menor, a NGC 3077, pode ser vista no canto inferior esquerdo. Essa galáxia espiral pertence ao mesmo grupo da M81 e M82, um grupo que inclui no mínimo uma dezena de galáxias que estão gravitacionalmente atreladas. A NGC 3077 está também experimentando uma grande explosão de geração de estrelas, provavelmente essa explosão foi disparada pela sua interação com a M81.
As galáxias M81 e M82 são ambas muito brilhantes. Na luz visível a M81 é uma das galáxias mais brilhantes que se pode observar. A M82 não é tão brilhante na luz visível, mas na luz infravermelha ela é a galáxia mais brilhante de todo o céu.
Fonte: NASA

sábado, 15 de janeiro de 2011

A pulsação de um buraco negro

A imagem abaixo na região óptica e infravermelha do espectro realizada pelo Digitized Sky Survey mostra o campo coroado ao redor do sistema binário GRS 1915+105 (ou apenas GRS 1915) localizado próximo do plano da Via Láctea.
GRS 1915 105 no infravermelho-óptico-raios-X
© Chandra (GRS 1915+105 no infravermelho, óptico e raios-X)
O detalhe mostrado na parte superior esquerda destaca a imagem feita pelo Chandra do GRS 1915, e o detalhe na parte inferior direita mostra o gráfico parecido com um gráfico que mede o batimento do coração visto em raios-X desse sistema. Usando o Chandra e o Rossi X-ray Timing Explorer (RXTE), os astrônomos descobriram o que causa esses batimentos e ganharam uma nova luz sobre a maneira como os buracos negros podem regular o seu influxo e diminuir severamente seu crescimento.
O GRS 1915 possui um buraco negro que é aproximadamente 14 vezes mais massivo que o Sol que está se alimentando de material proveniente de uma estrela companheira próxima.
ilustração de um buraco negro absorvendo matéria da estrela
© Chandra (buraco negro absorvendo matéria da estrela)
À medida que o material gira em direção ao buraco negro, um disco se forma. O buraco negro no GRS 1915 estima-se que tem uma rotação máxima possível, permitindo que o material no seu disco interno tenha uma órbita muito próxima ao buraco negro, num raio somente 20% maior que o horizonte de eventos, onde o material viaja a uma velocidade igual a 50% da velocidade da luz.
O sistema de buraco negro foi monitorado com o Chandra e com o RXTE por um período de mais de oito horas. Na observação o GRS 1915 emitia um rápido pulso brilhante de raio-X, com um período de aproximadamente 50 segundos. Esse tipo de ritmo cíclico se aproxima muito a um eletrocardiograma feito de um coração humano. Sabia-se anteriormente que o GRS 1915 poderia desenvolver esse tipo de batimento, mas os pesquisadores ganharam um novo entendimento sobre o que governa esses batimentos, e usaram os pulsos para entender o que controla  quanto material o buraco negro consome a partir dos dados do RXTE.
Foi utilizado o espectrógrafo de alta resolução do Chandra para estudar os efeitos dessa variação nos batimentos em regiões do disco longe do buraco negro, a uma distância de aproximadamente 100.000 a um milhão de vezes o raio do horizonte de eventos. Analisando o espectro registrado pelo Chandra, eles descobriram um vento muito forte sendo dirigido para longe da parte externa do disco. A taxa da massa expelida nesse vento é impressionantemente alta, mais de 25 vezes a taxa máxima da matéria que cai dentro do buraco negro. Esse vento massivo drena material do disco externo e eventualmente gera a variação observada nos batimentos.
Fonte: Smithsonian Astrophysical Observatory

quinta-feira, 13 de janeiro de 2011

Encontrado o mais distante aglomerado de galáxias do Universo

Foi encontrarado o aglomerado de galáxias mais distante e jovem já conhecido. É uma coleção de galáxias antigas presumivelmente se transformou em uma galáxia moderna similar às galáxias enormes que podemos ver hoje.
aglomerado COSMOS-AzTEC3
© NASA/Subaru (aglomerado COSMOS-AzTEC3)
O aglomerado em desenvolvimento, chamado COSMOS-AzTEC3, é um grupo de galáxias em crescimento com aspecto de um proto-aglomerado, que foi descoberto por diversos telescópios explorando vários comprimentos de onda, como os telescópios espaciais Spitzer, Chandra e o Hubble, e também os observatórios terrestres Subaru e o W.M. Keck.
O COSMOS-AzTEC3 é o proto-aglomerado mais distante conhecido, e também o mais jovem, pois é visto quando o Universo, ele mesmo, ainda era muito jovem. O aglomerado está a cerca de 12,6 bilhões de anos-luz da Terra. Estima-se que o Universo tenha 13,7 bilhões de anos. Anteriormente, versões mais maduras desse aglomerado já tinham sido encontradas a 10 bilhões de anos-luz.
Fonte: NASA

Nova técnica possibilita achar galáxia satélite da Via Láctea

A astrônoma Sukanya Chakrabarti, da Universidade da Califórnia em Berkeley, nos Estados Unidos, afirma ter encontrado um método para encontrar galáxias satélites de outras maiores, possíveis de serem observadas pelas perturbações em nuvens de hidrogênio de conjuntos de estrelas espirais como a Via Láctea.
distribuição de hidrogênio na galáxia Whirlpool (M51)
© S. Chakrabarti (distribuição de hidrogênio na galáxia M51)
A imagem acima mostra a distribuição de hidrogênio na galáxia Whirlpool (M51), que possibilita predizer a localização de galáxias satélites, especialmente aquelas compostas por matéria escura.
Segundo a especialista, a técnica matemática já possibilitou estimar que uma galáxia satélite existe no lado oposto da posição da Terra na Via Láctea. O conjunto de estrelas não foi previsto anteriormente por conta da interferência da poeira e do gás no disco da galáxia nas observações a partir de nosso planeta.
A "galáxia X" estaria a 300 mil anos-luz de distância e teria 50 mil anos-luz de comprimento. A astrônoma Barbara Whitney já requisitou tempo de pesquisa com o Telescópio Espacial Spitzer, especializado em observações com radiação infravermelha, para tentar confirmar o suposto conjunto de estrelas.
"Minha esperança é que esse método possa servir como uma ferramenta para desvendar galáxias satélites, da mesma forma que a lente gravitacional é, atualmente, uma forma de descobrir galáxias muito distantes", afirma Chakrabarti.
Os astrônomos acreditam que corpos grandes como a Via Láctea tenham galáxias satélites, algumas com luz muito fraca para serem observadas. Elas seriam dominadas também por energia e matéria escuras, componentes de 85% do Universo. A existência desses integrantes do Universo ainda não foram comprovadas por instrumentos de detecção. A seguir a imagem mostra uma simulação da evolução da galáxia M51 e sua satélite NGC 5195 num período de 875 milhões de anos.
simulação da evolução da galáxia M51 e sua satélite NGC 5195
© S. Chakrabarti (evolução da galáxia M51 e sua satélite NGC 5195)
As duas galáxias satélites da Via Láctea mais conhecidas são a Grande e a Pequena Nuvens de Magalhães, visíveis a olho nu em locais com pouca poluição luminosa no hemisfério sul terrestre. Elas orbitam a nossa galáxia a uma distância de 160 mil e 200 mil anos-luz, respectivamente.
Pequena Nuvem de Magalhães       Grande Nuvem de Magalhães
© NASA (Pequena e Grande Nuvem de Magalhães respectivamente)
A procura pela galáxia X por meio de perturbações em outros astros lembra o caso da caça ao planeta X, um astro tido erroneamente, há mais de 100 anos, como um possível décimo planeta do Sistema Solar, detectável por oscilações na órbita de Netuno.
Fonte: NASA

Mapa em cores do Universo

O centro de pesquisa digital do céu SDSS-III (Sloan Digital Sky Survey) divulgou o mapa em cores do Universo mais completo até o momento. A seguir as imagens dos hemsférios galácticos norte e sul.
hemisfério galáctico norte
© SDSS (hemisfério galáctico norte)
hemisfério galáctico sul
© SDSS (hemisfério galáctico sul)
O mapa, feito desde 1998, reúne milhões de imagens de 2.8 megapixels, resultando em uma imagem final de mais de um trilhão de pixels. A imagem é tão grande e detalhada que seriam necessárias 500 mil TVs de alta definição para conseguir vê-la na totalidade de sua definição.
Essa nova imagem possibilita a visão mais abrangente do céu já realizada. Os dados do SDSS-III já foram usados para descobrir cerca de meio bilhão de objetos astronômicos, incluindo asteroides, estrelas e galáxias. Os mais recentes e mais precisos posicionamentos, cores e formatos desses objetos também foram divulgados. Os dados agora liberados ao público contêm imagens de 14.555 graus quadrados do céu (ou mais que um terço de toda a esfera celeste) e espectros de mais de 800 mil galáxias, 100 mil quasares e 500 mil estrelas para análise científica.
A imagem começou a ser realizada em 1998, com o que era então a maior câmera digital existente (de 138 megapixels). Durante a última década, os pesquisadores fizeram registros de um terço do céu usando essa câmera, que foi aposentada e fará parte da coleção do museu Smithsonian.
Fonte: Sloan Digital Sky Survey

quarta-feira, 12 de janeiro de 2011

Fusão de buracos negros

Essa imagem da NGC 6240 contém os novos dados coletados pelo Chandra, que são aqui mostrados em vermelho, laranja e amarelo, que tem sido combinados com a imagem óptica obtida pelo Telescópio Espacial Hubble originalmente lançada em 2008.
NGC 6240
© Chandra (nebulosa NGC 6240)
Em 2002, os dados do Chandra levaram à descoberta de buracos negros que estão se fundindo, eles estão a uma distância de somente 3000 anos-luz de separação. Eles são vistos na imagem como as fontes brilhantes como pontos localizadas no centro. Os cientistas acham que esses buracos negros estão tão perto um do outro pois eles estão se espiralando um em direção ao outro, um processo que começou a aproximadamente 30 milhões de anos atrás. Estima-se que os buracos negros continuarão se aproximando e eventualmente podem se unir formando um único buraco negro gigantesco, mas isso deve acontecer a dezenas ou centenas de milhões de anos a partir de agora. Encontrar e estudar buracos negros no processo de fusão tem se tornado um campo muito ativo de pesquisa em astrofísica. Desde 2002, existe um intenso interesse em seguir as observações da NGC 6240, bem como pesquisar por sistemas similares a esse. Entender o que acontece quando esses exóticos objetos interagem entre si é uma questão intrigante para os cientistas. A formação de múltiplos sistemas de buracos negros supermassivos deve ser comum no universo, desde que muitas galáxias em colisão e fusão com outras galáxias, possuem buracos negros em seu interior. Acredita-se que os pares de buracos negros massivos possam explicar alguns dos comportamentos incomuns observados no crescimento de buracos negros supermassivos como a distorção e o desvio visto nos poderosos jatos que eles produzem. Os pares de buracos negros massivos em processo de fusão são esperados ser a mais poderosa fonte de ondas gravitacionais no universo.
Fonte: NASA

Descoberto buraco negro em galáxia anã

Um buraco negro foi identificado por astrônomos americanos com um milhão de vezes a massa do Sol, em uma jovem galáxia anã próxima. Esta descoberta que pode ajudar a entender melhor a origem do Universo.
galáxia Henize 2-10
© Chandra (galáxia Henize 2-10)
O anúncio, realizado pela Sociedade Americana de Astronomia, destaca que a descoberta em uma galáxia anã é pouco comum e leva a pensar que os buracos negros se formam antes que as galáxias.
"Isto parece confirmar a hipótese segundo a qual os buracos negros precederiam a formação do coração galáctico", destaca Amy Reines, astrofísica da Universidade de Virgínia.
A da galáxia que contém o buraco negro, chamada Henize 2-10, está a 30 milhões de anos luz da Terra. No centro da maioria das grandes galáxias, como a Via Láctea, há buracos negros com centenas de milhões de vezes a massa do Sol.
No Universo há uma relação constante entre a massa da galáxia e o buraco negro que ela aloja. Há dois anos, uma equipe internacional de astrônomos descobriu que os buracos negros das galáxias jovens têm uma massa maior.
Segundo Amy Reines, isto indica que os buracos negros se formam antes que as galáxias que os cercam, o que Henize 2-10 parece confirmar.
Fonte: Nature

Registro de ondas cósmicas na Via Láctea

A ESA (agência espacial europeia) divulgou uma imagem feita pelo telescópio Planck Suveyor, que mostra a Via Láctea em ondas de radiação cósmica em micro-ondas.
distribuição estelar através da Via Láctea feita pelo Planck
© ESA (distribuição estelar na Via Láctea feita pelo Planck)
Um rastro de poeira é visível no sentido horizontal. Ao norte e ao sul da imagem, a variação de temperatura da radiação cósmica também pode ser observada.
Lançado em maio de 2009, o telescópio providenciou, desde então, um catálogo de imagens com aproximadamente 15 mil novos objetos celestiais, além de mais 30 aglomerados de galáxias.
O Planck, que está a 1,5 milhão de quilômetros da Terra, é essencialmente designado para captar até as menores variações de energia liberadas depois do Big Bang.
Ainda em andamento, o estudo sobre a radiação cósmica de fundo em micro-ondas (CMB), a radiação remanescente do Big Bang e uma de suas maiores evidências, deve ser publicado em 2013.
Uma das tarefas que o telescópio tem superado é remover uma "névoa" de emissões de micro-ondas, um brilho difuso que durante décadas tem distorcido a visão de regiões empoeiradas do espaço profundo.
Os dados coletados pelo Planck confirmam a teoria de que a "névoa" vem dos grãos em escala nanométrica espalhados ao rodopiar várias dezenas de bilhões de vezes por segundo, por colisão com átomos em grande movimento ou com raios de luz ultravioleta.
Os cientistas agora devem ser capazes de filtrar este sinal, podendo se concentrar nos vestígios genuínos de CMB nas ricas quantidades de dados do Planck.
"Estes novos resultados são peças vitais de um quebra-cabeça que pode nos dar um quadro completo da evolução do próprio quintal cósmico em que vivemos, a Via Láctea, bem como do início da história de todo o Universo", afirmou David Parker, diretor de ciência espacial da ESA.
A grande ferramenta do Planck é um telescópio de 1,5 metro de comprimento que concentra a radiação em dois conjuntos de detectores, que são refrigerados a quase zero absoluto. O telescópio já realizou sua missão de 15 meses, mas as suas operações já foram prorrogadas por dois anos.
Fonte: ESA

terça-feira, 11 de janeiro de 2011

Telescópio detecta tempestades ejetando antimatéria para o espaço

O telescópio espacial Fermi, especializado na observação de raios gama, detectou feixes de antimatéria produzidos acima das tempestades na Terra, um fenômeno nunca visto antes.
flash de raios gama terrestre
© NASA (flash de raios gama terrestre)
Os cientistas acreditam que as partículas de antimatéria foram formadas em um flash de raios gama terrestre (TGF), uma rápida explosão produzida no interior das tempestades de raios.
Estima-se que cerca de 500 TGFs ocorram diariamente em todo o mundo, mas a maioria não é detectada.
"Esses sinais são o primeiro indício direto de que as tempestades produzem feixes de partículas de antimatéria", afirma Michael Briggs, da Universidade do Alabama, nos Estados Unidos.
Ele apresentou os resultados das pesquisas com o telescópio da NASA durante uma entrevista coletiva na reunião da Sociedade Astronômica Americana, em Seattle.
O telescópio Fermi foi projetado para monitorar os raios gama, a forma mais energética da luz. Quando a antimatéria colide com uma partícula de matéria normal, ambas são aniquiladas, produzindo uma emissão de raios gama. Menos de 2 milissegundos depois de ser gerado na tempestade, o feixe de elétrons-pósitrons atingiu a altitude do telescópio Fermi.
feixe de elétrons-pósitrons
© NASA (feixe de elétrons-pósitrons)
O instrumento GBM (Gamma-ray Burst Monitor) do telescópio Fermi detectou raios gama com energias de 511.000 elétron-volts, um sinal que um elétron encontrou sua contraparte de antimatéria, o pósitron.
O aparelho já identificou 130 TGFs desde o lançamento de Fermi, em 2008.
O TGF que permitiu a detecção da antimatéria ocorreu em 14 de dezembro de 2009, sobre o Egito. Mas a tempestade ativa estava em Zâmbia, cerca de 4.500 quilômetros ao sul.
A emissão de raios gama gerou elétrons e pósitrons, que trafegam nas linhas do campo magnético da Terra até atingir o detector do telescópio. O feixe passou pelo Fermi, atingindo um local conhecido como ponto espelho, onde seu movimento se inverteu e, em seguida, atingiu o observatório uma segunda vez, apenas 23 milésimos de segundo depois.
Nas duas vezes, os pósitrons colidiram com elétrons no telescópio, onde as partículas se aniquilaram, emitindo raios gama, que foram detectados pelo GBM.
Fonte: NASA

Descoberto o mistério da coroa solar ser mais quente que a superfície

Um dos maiores mistérios do Sol acaba de ser solucionado: o fato de sua coroa ser milhões de graus mais quente que sua superfície. Cientistas descobriram a maior fonte de gás quente que reabastece a coroa lançando jatos de plasma acima da superfície solar.
espículas no Sol observadas pela sonda SDO
© NASA (espículas no Sol observadas pela sonda SDO)
A descoberta foi publicada na revista Science e chama atenção para uma questão fundamental na astrofísica: como a energia se move do interior do Sol para criar calor na atmosfera.
"Sempre foi um quebra-cabeças descobrir por que a atmosfera solar é mais quente que a superfície", diz Scott McIntosh, físico solar do NCAR (Centro Nacional de Pesquisa Atmosférica). Identificar como esses jatos inserem plasma na atmosfera solar aumenta o conhecimento sobre a sutil influência do Sol na atmosfera terrestre.
"Estas observações fornecem uma nova compreensão sobre a produção de energia do Sol e outras estrelas", diz Rich Behnke, da Divisão de Ciências Atmosféricas e Geoespaciais.
A pesquisa estava focada em jatos de plasma conhecidos como espículas, fontes de plasma propagados da superfície solar para a atmosfera. Por décadas os cientistas acreditaram que as espículas poderiam mandar calor para a coroa, até a década de 80, quando se descobriu que as espículas não alcançavam as temperaturas da coroa.
O aquecimento das espículas a milhões de graus nunca foi diretamente observado, então seu papel no aquecimento da coroa foi abandonado.
Em 2007, De Pontieu, McIntosh, e seus colegas identificaram uma nova classe de espículas que se moviam muito mais rápido, frequentemente a 100 Km por segundo, e tinham uma vida média menor que as tradicionais.
O rápido desaparecimento desses jatos sugeriram que o plasma carregado poderia ser muito quente, mas a observação desse processo estava faltando. Os pesquisadores usaram então a observação da sonda SDO (Solar Dynamics Observatory) da NASA.
A alta resolução espacial e temporal dos novos instrumentos foi crucial para revelar, pela primeira vez, a conexão entre o plasma a milhões de graus e as espículas que inserem esse plasma na coroa.
Fonte: Science

Telescópio Hubble detecta estrelas jovens dentro de bolha verde

O telescópio espacial Hubble registrou a primeira imagem de uma bolha de gás verde, gigante e misteriosa, e descobriu que ela é estranhamente "viva". A foto foi divulgada pela NASA durante uma reunião na Sociedade Astronômica Americana, em Seattle, Washington.
IC 2497
© NASA/Hubble (IC 2497)
A bolha brilhante e bizarra, que tem o tamanho da Via Láctea e está a 650 milhões de anos-luz de distância da Terra (cada ano-luz equivale a cerca de 9,46 trilhões de quilômetros), dá à luz novas estrelas, algumas com "apenas" 2 milhões de anos, em áreas remotas do Universo onde os astros normalmente não se formam.
Essa "mancha verde" foi descoberta pela primeira vez em 2007, pela professora holandesa Hanny van Arkel, e chamada de Hanny's Voorwerp, ou seja, objeto de Hanny. Segundo a professora, quando ela viu o estranho objeto há mais de três anos, ele parecia azul e menor. A foto do Hubble fornece uma imagem mais clara e melhor explicação para o que está acontecendo ao redor da bolha. "Na verdade, parecia uma mancha azul. Agora parece um sapo dançando no céu, porque é verde", compara Hanny.
Partes da bolha estão em colapso, e a consequente pressão no local acaba gerando as estrelas. Os berçários estelares estão localizados fora de uma galáxia normal, que é geralmente onde os astros vivem. Isso faz com que eles sejam "estrelas recém-nascidas extremamente solitárias", localizadas "no meio do nada", classifica o astrônomo Bill Keel, da Universidade do Alabama, que examinou a bolha.
A mancha é formada na maior parte por gás hidrogênio, que gira no encontro de duas galáxias. A região brilha porque é iluminada por um quasar, objeto luminoso e cheio de energia alimentado por um buraco negro, em uma das galáxias.
Desde a descoberta da holandesa, os astrônomos têm procurado por bolhas de gás semelhantes e encontraram 18 delas, mas todas têm cerca da metade do tamanho da Voorwerp.
Fonte: NASA

segunda-feira, 10 de janeiro de 2011

Sonda Kepler da NASA descobre o menor exoplaneta

A missão da sonda Kepler da NASA detectou o menor planeta já descoberto fora do Sistema Solar. Chamado de Kepler 10-b, o exoplaneta é rochoso, mede 1,4 vez o tamanho da Terra, tem massa de 4,6 vezes da Terra e densidade média de 8,8 gramas por centímetro cúbico, similar à de um haltere de ferro.
 ilustração do exoplaneta Kepler-10b
© NASA (ilustração do exoplaneta Kepler-10b)
O achado baseia-se em 8 meses de dados coletados pela sonda, entre maio de 2009 e janeiro de 2010. "Todas as melhores ferramentas da Kepler convergiram para produzir a primeira evidência sólida de um planeta rochoso que orbita uma estrela diferente do Sol", disse Natalie Batalha, da equipe do Centro de Pesquisas Ames, órgão ligado à NASA.
Em 2010, a equipe da sonda assumiu o compromisso de encontrar rastros de pequenos planetas nos dados obtidos, e agora surgiram os primeiros resultados.
O fotômetro ultrapreciso da Kepler mede a pequena diminuição no brilho de uma estrela quando um planeta passa na frente dela. O tamanho do planeta pode ser derivado dessas depressões periódicas no brilho. A distância entre o planeta e a estrela é calculada medindo o tempo entre essas sucessivas oscilações enquanto o planeta orbita a estrela.
A Kepler é a primeira missão da NASA capaz de encontrar planetas do tamanho da Terra dentro ou perto da zona considerada habitável, região em um sistema planetário onde a água líquida pode existir na superfície. No entanto, uma vez que mantém uma órbita de 0,84 dia (o que significa que completa uma volta em torno de sua estrela principal, a Kepler 10, a cada 20 horas), o exoplaneta Kepler 10-b está mais do que 20 vezes mais próximo de sua estrela do que Mercúrio está do Sol, ou seja, fora da zona habitável.
A Kepler 10 é a primeira estrela identificada que poderia abrigar um planeta em trânsito de pequeno porte, o que a coloca no topo da lista de observações terrestres feitas pelo telecópio de 10 metros do Observatório W.M. Keck, no Havaí.
A descoberta do exoplaneta Kepler 10-b, embora não esteja na zona habitável,  é um marco significativo na busca por planetas semelhantes ao nosso, graças à missão da sonda.
Fonte: Astrophysical Journal