segunda-feira, 14 de fevereiro de 2011

Via Láctea revisitada

Não faltam mitos e lendas sobre a Via Láctea, o agrupamento de poeira, gás e algo como 400 bilhões de estrelas mantidas relativamente próximas pela força gravitacional no qual se insere o Sistema Solar.
Via Láctea
© ESO (Via Láctea)
Os antigos egípcios acreditavam que a galáxia era uma bifurcação do Nilo, um rio no firmamento. Para muitos povos, a água era seu elemento central e as estrelas se encontravam fixadas no céu. Alguns índios brasileiros a chamavam de Tapirapé, o caminho das antas. Observado a olho nu desde tempos imemoriais em dias de céu limpo, o aspecto aparentemente leitoso da formação estelar serviu de inspiração para seu nome. O próprio termo galáxia – em grego, gala quer dizer “leite” – deriva dessa analogia. Ideias míticas ou fantasiosas sobre a Via Láctea, como as citadas acima, são postas à prova e derrubadas desde que Galileu Galilei apontou seu telescópio para a abóbada celeste há quatro séculos. Hoje a quantidade de informação científica acumulada sobre a galáxia é enorme, mas, segundo alguns astrofísicos, é enganosa a sensação de que a conhecemos em detalhes.
Dois trabalhos recentes e independentes de pesquisadores brasileiros questionam a visão mais difundida sobre um dos traços mais marcantes da nossa galáxia, os braços da Via Láctea. No final de novembro, Augusto Damineli e Jacques Lépine, ambos astrofísicos da Universidade de São Paulo (USP), passaram quatro dias debatendo as características da estrutura espiral da Via Láctea ao lado de outros 60 cientistas da Europa, Estados Unidos, Japão e América Latina num hotel à beira-mar no balneário chileno de Bahia Inglesa, na região desértica do Atacama. A ideia do workshop era confrontar as observações feitas por vários grupos de pesquisa com as teorias vigentes nessa área. Novos dados divulgados por Damineli sugerem que algumas regiões estelares associadas aos braços da galáxia estão até 50% mais próximas da Terra do que medições anteriores apontavam. Talvez a extensão da própria Via Láctea seja menor do que se pensa. Já o estudo de Lépine indica que alguns trechos dos braços podem ser retos em vez de espiralados e que pode haver um pequeno braço periférico que exibe uma inusitada curvatura voltada para fora da galáxia. “O que determina a forma dos braços é a órbita das estrelas em torno do centro galáctico”, diz Lépine, autor do livro de divulgação A Via Láctea, nossa ilha no universo (Edusp). “É falsa a ideia de que os braços de nossa galáxia sejam espirais quase perfeitas.” A Via Láctea seria então meio quadradona?
Tecnicamente, a Via Láctea é descrita como uma galáxia espiral barrada. Além de ser circundada por um halo com baixa densidade de matéria, é formada por um grande disco achatado, do qual os braços fazem parte, e por um bojo esférico de formato parecido ao de uma bola de futebol americano em sua região central. Apresenta ainda uma concentração de estrelas que atravessa o bojo e origina uma estrutura de contornos similares a uma barra. Nesse tipo de galáxia, os braços “nascem” geralmente nas pontas da barra. As estrelas mais velhas, de cor entre o amarelo e o vermelho, se concentram na região central. As de maior massa e mais novas, em tons azulados, delineiam os braços. Bem no coração da galáxia, no centro do bojo, há evidência de que se esconde um buraco negro, um tipo de objeto celeste misterioso que suga toda a matéria à sua volta e do qual não escapa nem a luz. Nem todas as partes da galáxia se formaram de uma vez. As estrelas mais antigas da Via Láctea têm mais de 13 bilhões de anos, mas os braços devem ter pouco mais da metade dessa idade.
Embora importantes pontos de consenso tenham sido estabelecidos nas últimas décadas, não faltam divergências de interpretação e lacunas de dados sobre algumas características centrais da Via Láctea. “Nossa visão esquemática da galáxia não mudou muito nos últimos 20 anos, mas sim a compreensão de seus detalhes e mecanismos”, explica o astrofísico português André Moitinho, da Universidade de Lisboa, outro participante do encontro ocorrido no deserto chileno. A massa total e o tamanho da Via Láctea, parâmetros que pareciam razoavelmente bem determinados há tempos, ainda suscitam questionamentos periódicos. Não se sabe ao certo a distância do Sol e de outras estrelas em relação do centro da galáxia, tampouco a velocidade de rotação da matéria em cada ponto do raio galáctico.
De todas as dúvidas, talvez o tema que gere mais debates e revisões seja mesmo a estrutura espiral da Via Láctea. Afinal, a galáxia tem quatro ou dois dos braços principais? Como eles seriam e onde exatamente estariam? “Achei que estaríamos caminhando para um consenso sobre essa questão depois de tantas décadas de estudos”, diz Damineli. “Mas os resultados dos diferentes métodos de observação usados para analisar os braços nem sempre são convergentes.”
A técnica mais segura para determinar a distância de um objeto celeste da Terra é baseada no cálculo do ângulo da paralaxe trigonométrica, procedimento usado para esta finalidade há quase dois séculos. O astrônomo mede a variação da posição aparente de uma estrela contra um fundo fixo em dois momentos distintos de observação, em geral pontos opostos da órbita da Terra. A paralaxe é esse suposto deslocamento da estrela e é dada por um ângulo, variável-chave utilizada numa triangulação que permite descobrir quão longe o objeto está de nosso planeta. O método, no entanto, tem uma limitação: não serve para determinar a localização de objetos muito longínquos ou de brilho excessivamente tênue. No caso da Via Láctea, as estrelas que estão do lado completamente oposto ao do Sol, no outro canto da galáxia, não podem, em geral, ser estudadas por meio do cálculo da paralaxe.
Em seu trabalho, Damineli e seus colaboradores, entre os quais se destacou o então aluno de doutorado Alessandro Moisés, usaram uma variante moderna desse método. Analisaram uma enorme série de espectros e imagens obtidas ao longo de 14 anos, no comprimento de onda do infravermelho próximo, por três telescópios instalados no Chile (Blanco, Gemini e Soar) e ainda se utilizaram de registros no infravermelho médio fornecidos pelo satélite Spitzer, da NASA, a agência espacial americana. Com todos esses dados, os pesquisadores calcularam a distância de 35 regiões HII da galáxia, a maioria delas de gigantescas dimensões.
região HII
© NASA (região HII)
Formada por nuvens de gás (hidrogênio) ionizado, esse tipo de região é caracterizada por intensa formação de estrelas de grande massa. “As regiões HII são consideradas boas indicadoras de onde devem passar os braços da Via Láctea”, diz Damineli. O estudo do grupo da USP foi publicado on-line no dia 25 de novembro passado na edição eletrônica da revista científica britânica Monthly Notices of the Royal Astronomical Society e mostrou que boa parte desses berçários estelares se encontra até 50% mais próxima da Terra do que sugerem trabalhos feitos com o emprego do chamado método cinemático. Por essa segunda técnica, também clássica, os astrofísicos inferem a distância do gás que envolve as estrelas a partir do cálculo de sua velocidade de aproximação ou de afastamento do Sistema Solar.
De acordo com o artigo de Damineli, 14 das 35 HII analisadas estão mais perto do que o sugerido por estudos feitos pelo método cinemático, enquanto duas se encontram mais distantes. Para as demais regiões HII, os resultados foram inconclusivos (10 casos) ou bateram com estudos anteriores (nove casos). Se os dados do estudo estiverem certos, o diâmetro da Via Láctea – não confundir o tamanho com a massa da galáxia – pode ser menor do que os difundidos 100 mil anos-luz. “Conhecer as distâncias dos objetos é fundamental para compreender melhor a nossa galáxia e todo o Universo”, afirma Damineli. Um ano-luz equivale à distância percorrida pela luz em um ano, cerca de 9,5 trilhões de quilômetros.
O estudo de Lépine usou o método cinemático para construir um mapa de como seriam os braços da galáxia. Além de utilizar uma técnica distinta, o astrofísico optou por analisar um tipo diferente de indicador da estrutura espiral da Via Láctea. Um grupo de radioastrônomos chilenos obteve a velocidade de 870 fontes de emissão do gás monossulfeto de carbono, que haviam sido identificadas a partir de medições no infravermelho realizadas pelo satélite espacial Iras. Com as velocidades, Lépine calculou a distância dos objetos. O monossulfeto de carbono é uma molécula associada à presença de regiões HII de pequeno porte, ou seja, a zonas em que há grande densidade de estrelas jovens. “Nenhum outro estudo sobre as clássicas regiões HII empregou mais objetos para desenhar os braços da galáxia do que o nosso”, afirma Lépine, cujo artigo, escrito em parceria com colegas brasileiros e um russo, já foi aceito para publicação também na Monthly Notices of the Royal Astronomical Society.
Os contornos que emergem do ma­peamento de Lépine desafiam a visão mais tradicional da Via Láctea. De acordo com o estudo, a galáxia pode ter apenas dois grandes braços em sua porção central, mas, sem dúvida, quatro na vizinhança solar. O detalhe mais surpreendente é que, sempre segundo o trabalho, os braços não formam espirais logarítmicas perfeitas. Alguns de seus trechos exibiriam ângulos retos. Dessa forma, a Via Láctea poderia ter braços que geram uma figura com aparência de losango. “A gente vê com certa frequência esse tipo de estrutura em outras galáxias”, comenta Lépine, um dos principais pesquisadores de um projeto temático da FAPESP sobre a formação e evolução de estruturas no Universo. Outro achado do estudo é a aparente presença na periferia da galáxia de um desconhecido e pequeno braço, denominado pelo brasileiro de Sagitário-Cefeu por estar situado perto dessas constelações. Com curvatura voltada para fora da Via Láctea, o braço estaria a uma distância aproximada de 33 mil anos-luz do centro da galáxia.
Estudar a Via Láctea impõe uma dificuldade única que, por definição, nenhuma outra galáxia jamais apresentará aos astrofísicos. Estamos dentro do objeto a ser observado e, para tornar as coisas ainda mais complicadas, num ângulo nada favorável para visualização. O Sol está apenas cinco graus acima do plano de toda a matéria que compõe a galáxia. “Como não podemos viajar para uma galáxia próxima, dar meia-volta e tirar uma foto da Via Láctea, precisamos usar outros métodos para construir uma ‘imagem’ dela”, afirma Mark Reid, do Harvard-Smithsonian Center for Astrophysics, de Cambridge, Estados Unidos, um dos maiores estudiosos da galáxia. “Toda vez que medimos a distância de uma estrela jovem podemos colocar um ponto no mapa da Via Láctea.” Os astrofísicos acreditam que a feição dos braços seja ditada essencialmente pela presença de grandes concentrações de gás e estrelas jovens em certas partes da galáxia.
Há ainda outros empecilhos que as técnicas observacionais tentam contornar para melhor entender a natureza da Via Láctea. Em nossa galáxia, como em qualquer outra, apenas uma parte de sua matéria total pode ser vista na faixa de luz visível do espectro eletromagnético. Frequentemente é preciso recorrer a outros comprimentos de onda, como os raios X, ultravioleta ou infravermelho, para estudar certos objetos. A existência de poeira em meio aos gases que compõem o espaço interestelar também não facilita em nada essa tarefa. Seus grãos absorvem e espalham as radiações emitidas pelas estrelas em diversos comprimentos de onda, inclusive no da luz visível. Na prática, o fenômeno da extinção, como é conhecido o efeito causado por essas finas partículas, altera o brilho de muitos objetos e inviabiliza observações em certos cantos e distâncias da galáxia. No infravermelho, comprimento de onda usado tanto nos estudos de Damineli e Lépine, o efeito da extinção é menor.
Embora os estudos dos dois astro­físicos da USP não apontem para uma mesma configuração dos braços da Via Láctea, ambos concordam num ponto: seus colegas do telescópio Spitzer deveriam corrigir a ilustração mais difun­dida sobre a galáxia. Trata-se de um belo mapa, divulgado no início de 2008, que mostra a Via Láctea com apenas dois braços espirais principais, Escudo-Centauro e Perseu. Outros dois braços, Norma e Carina-Sagitário, que se encontram entre os braços maiores, foram rebaixados à condição de secundários. Surgem mais tênues, com traços enfraquecidos. “Eles praticamente sumiram com o braço de Carina, a região mais visível da galáxia”, reclama Damineli. Aparecem ainda na figura um minibraço recentemente descoberto, quase reto e que corre em paralelo à barra central da galáxia, e também o pequeno braço (ramo) de Órion, onde está o Sol.
braços da Via Láctea em 2008
© NASA/JPL-Caltech (braços da Via Láctea em 2008)
Na versão anterior do mapa, de 2005, também disponibilizada pelo Spitzer, os quatro braços principais tinham o mesmo status.
braços da Via Láctea em 2005
© NASA/JPL-Caltech (braços da Via Láctea em 2005)
A crítica de vários astrofísicos ao mapa, no qual a simetria da estrutura é perfeita demais para ser real, é quase sempre a mesma. “O desenho reflete uma visão mais artística do que científica e não usou os melhores indicadores dos braços da galáxia”, afirma a francesa Delphine Russeil, do Observatório de Marselha, outra especialista no tema. “Se analisarmos a presença de objetos jovens na Via Láctea, todos concordam que há quatro braços, ainda que não saibamos direito como as diferentes partes dessas estruturas se interconectam se vistas dos hemisférios Sul e Norte.”
O astrofísico americano Robert Benjamin, da Universidade de Wisconsin, um dos envolvidos na confecção do polêmico mapa, explica como o desenho foi concebido. “É extraordinariamente difícil encapsular numa única imagem os resultados de mais de 50 anos de pesquisas, feitas por nós e por outros grupos no mundo”, diz Benjamin. “Algumas populações de estrelas parecem indicar que há dois braços mais fortes e outros mais fracos. O mapa foi a nossa melhor tentativa de refletir esses dados.” Aprimorar periodicamente a ilustração é um objetivo do time do Spitzer, e uma nova versão da ilustração deve ser produzida até o fim deste ano.
Não são só os braços da Via Láctea que provocam polêmica. Recentemente, sua massa e a posição de segunda maior galáxia de sua vizinhança cósmica foram postos em xeque. Até uns poucos anos, todas as evidências indicavam que Andrômeda tinha o dobro da massa da Via Láctea e era a maior das mais de 45 galáxias que formam o chamado grupo local. “Parece que a Via Láctea e Andrômeda têm mais ou menos a mesma massa total”, afirma o astrofísico Mark Reid, do Harvard-Smithsonian Center for Astrophysics. “Essa é a interpretação mais simples e direta de nossos dados”. No início de 2009, Reid divulgou medições consideradas bastante precisas que aumentaram em cerca de 15% a velocidade de rotação atribuída à Via Láctea. O estudo indicava que a galáxia girava a 966 mil quilômetros por hora em vez de 805 mil quilômetros por hora, conforme se acreditava.
Se o cálculo de Reid estiver correto, e quase ninguém duvida disso, uma conclusão indireta do trabalho é que a galáxia precisa ter o dobro de sua massa total (matéria comum mais a misteriosa matéria escura) para girar a essa velocidade. A massa extra pode significar uma má notícia no longo prazo: nossa galáxia poderia se chocar com Andrômeda daqui a menos tempo do que os previstos 5 bilhões de anos.
Outra descoberta recente, de novembro de 2010, pode, a exemplo da questão dos braços da Via Láctea, render muita discussão. Dados do satélite Fermi sugerem que existem duas gigantescas bolhas formadas por raios gama acima e abaixo do plano da galáxia.
bolhas de raios gama na galáxia
© Fermi (bolhas de raios gama na galáxia)
As surpreendentes bolhas seriam produzidas pela suposta atividade do buraco negro localizado no núcleo galáctico. Mais debates e polêmicas à vista, pelo jeito.
Fonte: FAPESP (Pesquisa)

sexta-feira, 11 de fevereiro de 2011

Berçário de novas estrelas em nebulosa

A NASA divulgou nesta sexta-feira a imagem da nebulosa LBN 114,55 +00.22, vizualizada pela sonda WISE (Wide-field Infrared Survey Explorer).
nebulosa LBN 114,55  00.22
© NASA/WISE (nebulosa LBN 114,55 +00.22)
O astrônomo Beverly T. Lynds publicou um catálogo de nebulosas em 1965, denominado LBN (Lynds Bright Nebulae). Os números referem-se às coordenadas na Via Láctea, servindo como uma espécie de endereço na galáxia.
As nebulosas são enormes nuvens de poeira e gás que ocupam o espaço entre as estrelas. Os astrônomos classificaram a nebulosa LBN 114,55 +00.22 como de emissão, por ser responsável por emitir luz. As nebulosas de emissão são berçários de estrelas, ou seja, lugares onde elas se formam. As cores usadas na imagem representam determinados comprimentos de onda da luz infravermelha. Azul e turqueza marcam a luz emitida em comprimentos de onda predominantemente de estrelas. Verde e vermelho representam a luz emitida principalmente pela poeira.
Fonte: NASA

Elementos gerados na supernova Cassiopeia A

Numa observação de 14 horas realizada em Janeiro de 2000 pelo Chandra da parte remanescente de uma supernova conhecida como Cassiopeia A, forneceu dados para elaborar o melhor mapa de elementos pesados ejetados na explosão de uma supernova.
imagens em raios-X da supernova Cassiopeia A
© NASA/GSFC/U.Hwang (supernova Cassiopeia A em raios-X)
No canto superior esquerdo, apresenta-se a imagem de banda larga de raios-X da Cassiopeia A (Cas A), no canto superior direito apresenta-se a imagem feitas por raios-X dos íons de silício, no canto inferior esquerdo está a imagem feita por raios-X dos íons de cálcio e no canto inferior direito está a imagem feita por raios-X dos íons de ferro. Todas as imagens tem 8,5 arcos de minuto de um lado, o que corresponde a 28,2 anos-luz a uma distância de 11.000 anos-luz.
Essas imagens são designadas para mostrar a distribuição de alguns dos elementos ejetados na explosão que produziu a Cas A. Os elementos são parte do gás que tinha uma temperatura de aproximadamente 50 milhões de graus Celsius. As cores representam a intensidade de raios-X, com a cor amarela sendo a emissão mais intensa, do que a vermelha, roxa e verde.
A imagem de banda larga, que mostra todos os raios-X detectados da Cas A, é mais simétrica que as outras. Isso poderia ser devido à presença de raios-X de radiação síncrotron por partículas de energia extremamente alta espiralando no campo magnético da parte remanescente ou por ondas de choque viajando através do material expandido milhares de anos antes da explosão da supernova.
A imagem de silício mostra um jato largo e brilhante quebrando-se do lado superior esquerdo da remanescente e correntes apagadas na direção oposta. Esse jato pode existir devido a assimetria no momento da explosão.
A imagem do cálcio é similar à imagem do silício, mas menos brilhante. A imagem do ferro mostra diferenças significantes das outras imagens. Como o ferro é o elemento mais pesado mostrado, esses mapas indicam que as camadas da estrela foram se transformando antes ou durante a explosão.
Fonte: NASA/Chandra

Asteroide bate recorde de aproximação

Na semana passada, um pequeno asteroide até então desconhecido passou raspando pela Terra. Segundo a NASA, o 2011 CQ1, com cerca de um metro de diâmetro, passou a apenas 5.480 quilômetros da superfície do planeta.
asteroide 2011 CQ1
© Observatório Remanzacco (asteroide 2011 CQ1)
Este é um recorde histórico, constituindo a maior aproximação já registrada. Se tivesse sido detectado antes, a probabilidade de colisão teria sido calculada próxima aos 100%.
O recorde anterior havia sido registrado em 2004, mas o 2004 FU162 passou a mais 6.400 quilômetros da superfície do planeta.
E a aproximação inédita gerou também um outro fato inusitado: ao passar pela Terra, o asteroide fez a curva mais fechada que os astrônomos já haviam registrado para um corpo celeste.
Como era muito pequeno e passou muito perto, a gravidade da Terra exerceu uma influência forte o suficiente para alterar completamente sua órbita, fazendo-o virar à esquerda em 60 graus.
trajetória do asteroide 2011 CQ1
© NEO (trajetória do asteroide 2011 CQ1)
A curva foi tão fechada que foi suficiente para mudar a categoria do asteroide.
"Antes da recente aproximação com a Terra, este objeto estava na chamada órbita de classe Apolo, que fica na maior parte do tempo fora da órbita da Terra," explicaram Don Yeomans e Paul Chodas, do Programa NEO (Near-Earth Object).
"Depois da aproximação, a atração gravitacional da Terra modificou a órbita do objeto para uma órbita classe Atenas, quando o objeto passa a maior parte do tempo dentro da órbita da Terra," explicaram os astrofísicos.
Fonte: NASA/NEO

quinta-feira, 10 de fevereiro de 2011

Anel de Einstein para estudo de galáxias

Uma pesquisa realizada no Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) da USP traz informações mais precisas sobre o valor e a distribuição da massa de 58 galáxias. O estudo foi feito pelo professor Laerte Sodré Júnior e pelo pós-doutorando Antonio Guimarães a partir das análises do fenômeno conhecido como “anel de Einstein” e da dinâmica estelar.
anéis de Einstein
© NASA/ESA (anéis de Einstein)
A imagem acima mostra lentes gravitacionais conhecidas como “anéis de Einstein”, vistas pelo Telescópio Espacial Hubble.
De acordo com Guimarães, as galáxias estudadas se encontram a uma distância média de 2,4 bilhões de anos-luz do Sistema Solar. “A luz das galáxias que estão atrás das outras que tiveram suas massas medidas estão muito mais distantes, algo como 5,7  bilhões de anos-luz”, conta.
Na pesquisa foram utilizados dois métodos de medição. O primeiro, baseado no efeito de lentes gravitacionais, analisa a distorção da imagem de uma galáxia que se encontra atrás da galáxia da qual se quer medir a massa. Como essa distorção, conhecida como “anel de Einstein”, é provocada pela ação gravitacional da galáxia que está na frente, torna-se possível calcular a massa responsável pela intensidade do efeito. Esse método só pode ser usado quando são observadas duas galáxias alinhadas, o que é um evento raro.
As 58 galáxias que atendiam a essa condição também foram analisadas por meio de outra forma de medição de massa, chamada análise de dinâmica estelar. Nesse procedimento, o cálculo é feito aplicando-se leis da Física à velocidade observada das estrelas da galáxia da qual se quer medir a massa.
A medição da massa de uma galáxia é feita de forma indireta, a partir de grandezas que podem ser observadas. Por isso, a estimativa da massa depende de alguns “graus de liberdade”. A combinação de métodos de medição limita essas liberdades, aumentando a determinação do cálculo.
“Comparando as duas medidas podemos dizer, além de qual é a massa da galáxia, qual é o seu perfil de densidade”, explica Guimarães, que é o autor principal do estudo. O perfil de densidade é a informação mais importante sobre a distribuição da massa na galáxia, e pode ser aplicado em pesquisas de Astrofísica abordando formação de galáxias e o estudo de matéria escura (material no Universo cuja existência é inferida, mas que possui natureza ainda desconhecida).
O trabalho de Guimarães e Sodré utilizou dados do Telescópio Espacial Hubble e do projeto Sloan Digital Sky Survey, que faz a catalogação de galáxias. Os cálculos foram realizados no IAG, com apoio da Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp) e do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).
Fonte: Agência USP e The Astrophysical Journal

terça-feira, 8 de fevereiro de 2011

Encontrados restos de outra galáxia dentro da Via Láctea

Uma equipe internacional de astrônomos descobriu uma nova corrente de estrelas na Via Láctea, remanescente de uma outra galáxia menor, que foi atraída e incorporada pela força gravitacional da nossa própria galáxia.
visualização do fluxo de Aquário
© AIP, Arman Khalatyan (visualização do fluxo de Aquário)
A corrente foi batizada de "Fluxo de Aquário" (Aquarius Stream).
Essa atração, fatal para a outra galáxia, deve ter ocorrido há cerca de 700 milhões de anos, calculam os cientistas.
Isto torna o Fluxo de Aquário extremamente jovem, os outros fluxos de estrelas conhecidos têm bilhões de anos de idade e estão localizados na periferia da nossa galáxia.
Ao contrário de praticamente todos os fluxos de estrelas conhecidas, o Fluxo de Aquário está dentro do disco galáctico, onde a alta concentração de estrelas da Via Láctea torna difícil sua identificação.
A descoberta realizada no Observatório Siding Spring, na Austrália, é parte de uma campanha denominada RAVE (Radial Velocity Experiment), que pretende rastrear até 1 milhão de estrelas da nova Via Láctea até 2012, na tentativa de entender o processo de formação da nossa galáxia.
O projeto RAVE é chamado pelos astrônomos de "arqueologia galáctica", e está coletando dados de todo o céu em busca de informações sobre a história da formação da Via Láctea.
"Queremos descobrir qual foi a frequência desses eventos de fusão com galáxias vizinhas no passado e quantos podemos esperar no futuro," explica o Dr. Matthias Steinmetz, coordenador do projeto RAVE.
A Via Láctea terá sua próxima grande colisão com a vizinha galáxia de Andrômeda, aproximadamente daqui a três bilhões de anos, se alguma das galáxias anãs descobertas durante os últimos anos em nossa redondeza cósmica não chegar primeiro.
Fonte: The Astrophysical Journal

Nebulosa Medusa é fotografada por sonda

A sonda norte-americana WISE da NASA fotografou a nebulosa colorida Medusa (chamada em inglês de nebulosa Jellyfish) que é remanescente da supernova IC 443.
nebulosa Jellyfish
© NASA (nebulosa Jellyfish)
Os dados fornecidos sobre como as explosões estelares interagem com o ambiente são muito importantes.
Assim como outros seres vivos, as estrelas têm um ciclo de vida que passa pelo nascimento, amadurecimento e eventualmente chega à morte, recebendo o nome de supernova. A IC 443 são os restos de uma estrela que virou uma supernova entre 5.000 a 10 mil anos atrás.
No canto esquerdo superior da imagem, vê-se um composto de filamentos formado por ferro, neônio e silício que emitem luz, além de partículas de poeira, todas aquecidas devido à explosão da supernova.
A área de cor turquesa brilhante, na metade inferior da imagem, é constituída por aglomerados densos com poeira aquecida e hidrogênio que também emitem luz.
Já a parte verde é uma nuvem que corta a IC 443 do noroeste para o sudeste. Todas as nuances da IC 443 foram captadas na região do infravermelho.
Fonte: NASA

sábado, 5 de fevereiro de 2011

Quasar é captado por radiotelescópio gigante

As imagens do quasar 3C196, um buraco negro em uma galáxia distante, foram tiradas em janeiro de 2011 pelo Internacional LOFAR Telescope (ILT).
quasar 3C196
© ASTRON e LOFAR (quasar 3C196)
O LOFAR (Low Frequency Array) é uma rede de radiotelescópios criado para estudar o céu nas frequências mais baixas de rádio acessível a partir da superfície da Terra com uma resolução sem precedentes. Um conjunto de radiotelescópios foi conectado pela primeira vez em vários locais da Europa, criando o maior telescópio do mundo com quase 1000 km de largura.
O telescópio baseado no Reino Unido no Observatório Chilbolton em Hampshire, foi adicionado à rede, e é o telescópio mais ocidental da LOFAR.
quasar 3C196 através do LOFAR
© ASTRON e LOFAR (quasar 3C196 através do LOFAR)
As novas imagens são três vezes mais nítidas do que foi anteriormente possível com LOFAR, melhorando a resolução e sensibilidade. Os sinais dos radiotelescópios do LOFAR na Holanda, França, Alemanha e Reino Unido têm sido combinadas com sucesso no supercomputador BlueGene. A conexão entre o telescópio e o supercomputador Chilbolton exige uma velocidade de internet de 10 gigabits por segundo, mais de 1000 vezes mais rápido que a velocidade de banda larga típica.
As imagens mostram uma região do céu de 15 graus de largura centrado no quasar 3C196. À luz visível, o quasar 3C196 visto através do Telescópio Espacial Hubble parece ser um único ponto. Ao adicionar as estações internacionais, foi possível observar dois pontos brilhantes pincipais.
O LOFAR foi projetado e construído pela ASTRON (Netherlands Institute for Radio Astronomy) na Holanda e atualmente está sendo estendido por toda a Europa. Bem como a cosmologia profunda, LOFAR será usado para monitorar a atividade do Sol, planetas, estudar mais sobre os raios e tempestades geomagnéticas. O LOFAR contribuirá também para o planejamento do radiotelescópio global da próxima geração, a Square Kilometer Array (SKA).
Fonte: Universe Today

quinta-feira, 3 de fevereiro de 2011

Movimentação das dunas de Marte

As dunas de areia da região norte de Marte, que até agora estavam congeladas, apresentam movimentos bruscos e gradativos, segundo revelaram as imagens da sonda de reconhecimento MRO (Mars Reconnaisance Orbiter) da NASA.
movimentação das dunas de Marte
© NASA (movimentação das dunas de Marte)
Os cientistas tinham considerado que as dunas, formadas no passado quando os ventos na superfície do planeta eram mais fortes que na atualidade, eram praticamente estáticas. No entanto, as mudanças detectadas pela câmera de alta resolução da sonda MRO sugerem que se trata de um das paisagens mais ativas de Marte.
Os pesquisadores da Universidade de Tucson (Arizona), responsáveis pela análise das imagens da câmera da sonda, estudaram as fotografias tiradas em um período de dois anos marcianos, equivalentes a quatro anos da Terra. "A quantidade e a magnitude das mudanças foram realmente surpreendentes", assinalou Candice Hansen, diretora do Laboratório Lunar e Planetário da Universidade do Arizona.
O estudo apontou que o movimento sazonal de dióxido de carbono, que no inverno se congela e na primavera volta a estar em estado gasoso, junto com rajadas de vento maiores do que se pensava, são os dois responsáveis pelo fenômeno. Este fluxo de gás desestabiliza as dunas de Marte, causando avalanches de areia e a criação de novos nichos, barrancos e rampas de areia. O nível de erosão em só um ano de Marte foi realmente surpreendente. Em alguns lugares se desprenderam centenas de metros cúbicos de areia como em um desmoronamento.
A análise também descobriu que as "cicatrizes" das avalanches de areia podem ser apagadas parcialmente em apenas um ano marciano, que equivale a 687 dias na Terra. A sonda espacial MRO foi enviada ao planeta Marte no dia 12 de agosto de 2005 e entrou na órbita marciana em 10 de março de 2006.
Operado no Laboratório de Propulsão a Jato (JPL) da NASA, a sonda MRO conta com câmeras de alta definição e uma antena de 3 metros de diâmetro com a capacidade de transmitir 6 megabits por segundo. Em 2008 foi finalizada a primeira fase de prospecção científica que continuou depois as pesquisas da superfície e da atmosfera do planeta.
Além do descobrimento de grandes massas de água nas latitudes médias do planeta, o MRO determinou que a água esculpiu a superfície de Marte há milhões de anos e determinou que em sua superfície existiram diversos ambientes hidrográficos, alguns ácidos e outros alcalinos.
Fonte: Science

quarta-feira, 2 de fevereiro de 2011

Descobertos 6 planetas que orbitam estrela similar ao Sol

A NASA anunciou o descobrimento de seis pequenos planetas que orbitam ao redor de uma estrela semelhante ao Sol, graças aos dados do telescópio espacial Kepler.
ilustração da estrela Kepler-11 e os seis planetas
© NASA (ilustração da estrela Kepler-11 e os seis planetas)
Os planetas são formados por uma mistura de rochas e gases, possivelmente incluindo água. O sistema planetário está distante 2 mil anos-luz da Terra.
Os planetas orbitam dentro de um sistema denominado Kepler-11, e que chamou a atenção dos cientistas por estar composto por um elevado número de planetas, de pequenas dimensões e muito próximos uns dos outros. Todos os planetas que orbitam a estrela são maiores que a Terra, com os maiores podendo ser comparados a Urano e Netuno.
A descoberta é importante porque poucas são as estrelas conhecidas que têm mais de um planeta circulando ao seu redor, e Kepler-11 é a primeira descoberta a ter mais de três. Há certamente muito menos do que 1% de estrelas que têm sistemas como o Kepler-11. Estes planetas precisam ainda de acompanhamento para verificar se existem realmente.
Os cinco planetas mais interiores do novo sistema planetário são mais próximos de Kepler-11 do que qualquer planeta do Sistema Solar é do Sol. Os cinco primeiros têm órbitas que variam entre 10 e 47 dias, com massas de 2,3 a 13,5 vezes maiores que a Terra, enquanto o mais afastado completa sua órbita em 118 dias, mas ainda não teve a massa definida. A imagem a seguir mostra o tamanho relativo à Terra dos planetas Keplerianos em função do período orbital.
tamanho relativo em função do período orbital
© NASA (tamanho relativo em função do período orbital)
O telescópio Kepler da NASA, lançado em março de 2009, está medindo a luz de 100 mil estrelas nas constelações Cisne e Lira. A esperança é encontrar planetas com tamanho e composição semelhantes às da Terra, dentro da chamada zona habitável, quente o suficiente para que exista água líquida, mas não quente demais para abrigar vida.
Desde o início da missão Kepler, foram descobertos 68 candidatos a planetas do tamanho da Terra e 288 maiores que o nosso planeta. Outros 662 planetas descobertos têm o tamanho de Netuno, 165 são comparáveis a Júpiter, o maior planeta do Sistema Solar. Outros 19 são maiores que qualquer planeta do nosso sistema.
Com os dados do Kepler, astrônomos da Universidade da Califórnia de Santa Cruz (UCSC) analisaram a dinâmica orbital deste sistema planetário, cujos resultados serão publicados na edição de fevereiro da revista científica Nature. A imagem a seguir mostra o tamanho dos planetas Keplerianos comparados com a Terra e Júpiter.
planetas Keplerianos comparados com a Terra e Júpiter
© NASA (planetas Keplerianos comparados com a Terra e Júpiter)
Para determinar o tamanho e as massas dos planetas, a equipe analisou as medições realizadas pelo observatório Kepler, que captou a luminosidade em transformação da estrela por volta da qual os planetas giram quando passam em frente a ela.
O fotômetro sensível do telescópio capta este momento em que se interrompe o brilho da estrela. Com as imagens, é possível conhecer o tamanho e a massa de cada planeta medindo seu raio. "Isso não só é um sistema planetário surpreendente, mas também valida um novo e poderoso método para medir as massas dos planetas", assinalou Daniel Fabrycky da UCSC, que dirigiu a análise da dinâmica orbital junto a Jack Lissauer, cientistas da NASA.
Fonte: NASA

Uma galáxia de disco puro

A galáxia brilhante NGC 3621 parece ser um exemplar perfeito de uma espiral clássica. No entanto, é bastante invulgar, pois esta galáxia não tem bojo central e é por isso descrita como uma galáxia de disco puro.
© ESO (galáxia espiral NGC 3621)
A NGC 3621 é uma galáxia espiral situada a cerca de 22 milhões de anos-luz de distância na constelação da Hidra. É relativamente brilhante e pode ser observada com um telescópio de tamanho médio. Esta imagem foi obtida com o instrumento Wide Field Imager montado no telescópio MPG/ESO de 2,2 metros, instalado no observatório do ESO de La Silla, Chile. Os dados foram selecionados, a partir de arquivo do ESO, por Joe DePasquale, que participou no concurso Tesouros Escondidos. O concurso deu aos astrônomos amadores a oportunidade de procurar no seio dos vastos arquivos de dados astronômicos do ESO, na busca de jóias escondidas que necessitaram de polimento por parte dos concorrentes. A imagem da NGC 3621 submetida por Joe ao concurso valeu-lhe o quinto lugar nesta competição.
Foram obtidas múltiplas imagens monocromáticas através de quatro filtros de cor diferentes que foram combinadas para obter esta fotografia.
A galáxia tem a forma de uma panqueca achatada, o que indica que ainda não interagiu de forma direta com outra galáxia, sofrendo por exemplo uma colisão galáctica, o que teria perturbado o fino disco de estrelas e criado um pequeno bojo no seu centro. A maioria dos astrônomos pensa que as galáxias crescem por fusão com outras galáxias, num processo chamado formação hierárquica de galáxias. Com o tempo este processo deverá criar bojos grandes no centro das espirais. Investigações recentes sugeriram, no entanto, que galáxias espirais sem bojo, ou de disco puro, como a NGC 3621, são na realidade bastante comuns.
Esta galáxia torna-se igualmente interessante na medida em que, encontrando-se relativamente próxima, permite-nos estudar uma grande variedade de objetos astronômicos que se encontram no seu interior, incluindo maternidades estelares, nuvens de poeira e estrelas pulsantes, as chamadas variáveis Cefeides. Estas últimas são utilizadas como marcos de distância no Universo. As variáveis Cefeides são estrelas muito brilhantes, cerca de 30.000 vezes mais brilhantes que o nosso Sol, cujo brilho varia a intervalos regulares em períodos de vários dias, semanas ou meses. O período desta variação em brilho está relacionado com o brilho verdadeiro da estrela, conhecido como magnitude absoluta. Sabendo a magnitude absoluta de uma estrela e medindo o brilho observado, podemos calcular a sua distância à Terra. As variáveis Cefeides são, por isso, vitais no estabelecimento da escala do Universo. No final do século passado, a NGC 3621 foi uma das 18 galáxias selecionadas para um programa importante do Telescópio Espacial Hubble: observar variáveis Cefeides e medir a taxa de expansão do Universo com uma precisão maior do que a conseguida até então. Neste projeto, que correu bastante bem,  foram observadas, apenas nesta galáxia, 69 Cefeides.
Foram obtidas múltiplas imagens monocromáticas através de quatro filtros de cor diferentes que foram combinadas para obter esta fotografia.
Fonte: ESO

sábado, 29 de janeiro de 2011

Quasar tipo 2 visto pelo Chandra

No painel abaixo, a imagem da esquerda é feita com raios-X e a imagem da direita é feita com o comprimento de onda óptico do espectro e mostram um buraco negro.
buraco negro
© Chandra (buraco negro)
A imagem da esquerda foi construída com dados do Observatório de Raios-X Chandra e mostra a poderosa fonte pontual de raios-X. A imagem da direita foi construída com dados do Telescópio Espacial Hubble e mostra a galáxia espiral com a qual a fonte de raios-X está associada. A fonte de raios-X está localizada no centro da galáxia, e tem um déficit de raios-X de baixa energia consistente com a absorção por uma espessa nuvem de gás. A combinação da poderosa emissão de raios-X e da absorção dos raios-X de baixa energia e a relativamente normal aparência óptica da galáxia sugere que a fonte é um raro tipo de buraco negro chamado de quasar Tipo 2.
A aparência espalhada da fonte de raios-X é um artefato instrumental. A distribuição de raios-X é consistente com essa fonte como sendo um ponto. As imagens em raios-X e óptica tem a mesma escala, com 10 arcos de segundo de lado.
Fonte: Harvard-Smithsonian Center for Astrophysics

quarta-feira, 26 de janeiro de 2011

Uma estrela supergigante com disco

A estrela exótica HD 62623 é uma supergigante muito quente que está localizada na constelação do Cisne perto da supergigante brilahnte Deneb.
imagem em 3-D da estrela HD 62623
© OCA (imagem em 3-D da estrela HD 62623)
As supergigantes são as estrelas mais massivas que existem, possuindo de 10 a 70 massas solares, produzindo um brilho 30.000 a 100.000 vezes maior que o Sol.
Foi observado na HD 62623 um disco de gás e poeira, que é comum em estrelas jovens com menor massa, que poderam dar origem a planetas. Porém, as estrelas bastante massivas não têm esses discos de poeira, porque esse disco é dispersado pela intensidade da onda de choque durante o nascimento da estrela. Por exemplo, a estrela Deneb não apresenta tal disco.
Os astrônomos utilizaram o Very Large Telescope interferometer do ESO para capturar as imagens em 3-D que evidenciam a presença do disco ao redor da estrela. A pesquisa foi liderada pelo francês Florentin Millour do Observatoire de la Côte d’Azur (OCA).
A estrela HD 62623 possui um tempo de vida muito curto, cerca de centenas de milhares de anos ou pouco mais de alguns milhões de anos. A trajetória final deste tipo de estrela é sua detonação que a transformará numa supernova do tipo II.
Fonte: Universe Today

Descoberta uma galáxia que pode ser a mais distante detectada

Um grupo de astrônomos descobriu uma galáxia que pode ser a mais distante detectada até o momento. Ela está situada a cerca de 13,2 bilhões de anos-luz.
galáxia UDFj-39546284
© NASA (galáxia UDFj-39546284)
Uma equipe de astrônomos que analisava imagens cósmicas registradas pelo telescópio espacial Hubble aumentou seu alcance até 480 milhões de anos após o Big Bang, quando o Universo tinha 4% de sua idade atual.
"Estamos nos aproximando das primeiras galáxias, que achamos que foram formadas entre 200 milhões e 300 milhões de anos depois do Big Bang", ressaltou Garth Illingworth, professor de astronomia e astrofísica da Universidade da Califórnia (EUA) e um dos autores do estudo.
Em sua pesquisa, Illingworth e Rychard Bouwens, da Universidade de Leiden (Holanda), utilizaram dados do Hubble reunidos pela câmara Wide Field Camera 3 (WFC3).
Os astrônomos observaram as mudanças que se produziram nas galáxias de 480 milhões a 650 milhões de anos depois do Big Bang e detectou que a taxa de nascimento das estrelas no Universo aumentou cerca de dez vezes durante esse período de 170 milhões de anos. Para Illingworth, isso é um "aumento assombroso em um período de tempo tão curto, somente 1% da idade atual do Universo".
Os astrônomos também registraram mudanças significantes no número de galáxias detectadas. "Nossas buscas anteriores tinham encontrado 47 galáxias quando o Universo possuía cerca de 650 milhões de anos", disse Illingworth. Ele acrescentou que "o Universo está mudando muito rapidamente em um período de tempo muito curto".
Já Bouwens afirmou que os resultados dos estudos são consistentes com a imagem hierárquica da formação das galáxias, segundo a qual estas cresceram e se uniram sob a influência gravitacional da matéria escura.
Para chegar à nova descoberta, os astrônomos calcularam a distância de um objeto no espaço com base em seu redshift, fenômeno que ocorre quando a radiação eletromagnética, normalmente a luz visível, que se emite de um objeto tende ao vermelho no final do espectro.
Sua medida é considerada pela comunidade astronômica internacional como o procedimento mais confiável para calcular distâncias espaciais, a galáxia recém-descoberta alcançou um nível provável de redshift de 10,3 pontos.
Os especialistas acrescentaram que a galáxia em questão é pequena se for comparada às enormes já vistas no Universo, como a Via Láctea, pelo menos cem vezes maior.
Fonte: Nature

segunda-feira, 24 de janeiro de 2011

Uma estrela azul fugitiva

A estrela azul próxima do centro dessa imagem é a Zeta Ophiuchi. Quando observada utilizando o comprimento de onda da luz visível ela aparece como uma estrela vermelha relativamente apagada envolta por outras estrelas apagadas e sem poeira.
Zeta Ophiuchi
© NASA/WISE (estrela Zeta Ophiuchi)
Contudo, essa imagem infravermelha feita pelo WISE (Wide field Infrared Survey Explorer) da NASA, fornece uma visão completamente diferente da estrela. A Zeta Ophiuchi é na verdade uma estrela muito massiva, quente, brilhante e azul, avançando em seu caminho para fora da grande nuvem de gás e poeira interestelar.
As cores usadas nessa imagem representam comprimentos de onda específicos da luz infravermelha. Azul e ciano (azul esverdeado) representa a luz emitida com comprimento de onda de 3.4 e 4.6 mícron, emitidas de forma predominante pelas estrelas. Verde e vermelho representam a luz com comprimento de onda de 12 e 22 mícron respectivamente, emitida predominantemente pela poeira.
A Zeta Ophiuchi provavelmente fazia parte de um sistema binário de estrelas com uma parceira ainda mais massiva. Quando a companheira explodiu como uma supernova, ela expeliu grande parte de sua massa, e a Zeta Ophiuchi foi repentinamente liberada de sua parceira empurrada para longe se movendo a 24 quilômetros por segundo. A Zeta Ophiuchi é aproximadamente 20 vezes mais massiva e 65.000 mais luminosa do que o Sol. Se ela não fosse envolvida por tanta poeira ela seria uma das estrelas mais brilhantes do céu e apareceria azul para os nossos olhos. Como todas as estrelas com esse tipo de massa e potência extrema, ela tem um tempo de vida curto e morre jovem. Ela se encontra aproximadamente na metade  de sua vida de 8 milhões de anos. Em comparação o Sol está na metade da sua vida de 10 bilhões de anos. Enquanto o Sol eventualmente se tornará uma calma anã branca, a Zeta Ophiuchi irá explodir num violento evento se tornando uma supernova.
Talvez, as feições mais interessantes nessa imagem estejam relacionadas com o gás e a poeira interestelar que envolve a Zeta Ophiuchi. Nos lados da imagem e no plano de fundo existem nuvens de poeira relativamente calmas que aparecem em verde, lembrando muito as auroras encontradas na Terra. Próximo à Zeta Ophiuchi, essas nuvens parecem um pouco diferentes. A nuvem em todas as direções ao redor da estrela é mais brilhante e avermelhada, isso ocorre devido as extremas quantidades de radiação ultravioleta emitida pela estrela que está aquecendo a nuvem causando o brilho mais brilhante no infravermelho do que o normal.
Mais impressionante ainda é a aparência de uma curva que brilha em amarelo diretamente acima da Zeta Ophiuchi. Esse é um impressionante exemplo de uma onda de choque. Nessa imagem, a estrela fugitiva, está voando desde o canto inferior direito em direção ao canto superior esquerdo. À medida que ela se desloca, seu poderoso vento estelar está empurrando o gás e a poeira (o vento estelar se estende além da porção visível da estrela criando uma bolha invisível ao seu redor). E diretamente em frente à passagem do vento estelar está o gás sendo comprimido e essa compressão faz com que ele brilhe intensamente no infravermelho, criando a onda de choque. Essa caractrística é completamente invisível à luz visível. As imagens infravermelhas como essa do WISE geram novas interpretações sobre a região.
Fonte: NASA