sexta-feira, 25 de março de 2016

A formação de estrelas no Universo foi reduzida por quasares antigos

A diminuição na formação de estrelas nos primordios do Universo foi elucidada por pesquisadores.

ilustração do vento galáctico aquecido emanado de quasar brilhante

© Johns Hopkins University (ilustração do vento galáctico aquecido emanado de quasar brilhante)

As galáxias atingiram o seu ápice na formação de estrelas a cerca de 11 bilhões de anos atrás, e então essa taxa de formação começou a ficar mais lenta.

Essa questão que vem intrigando os astrofísicos por muitos anos, parece ter atualmente um motivo. A resposta pode estar na energia dos quasares dentro das galáxias onde as estrelas estão nascendo. A intensa radiação e os ventos em escala galáctica emitidos pelos quasares aqueceram as nuvens de gás e poeira. O calor evita que o material esfrie e forme nuvens mais densas, e eventualmente estrelas.

Para chegar a essa conclusão, os cientistas observaram 17.468 galáxias e descobriram um traçador de energia, conhecido como efeito Sunyaev-Zel’dovich (efeito SZ).

O fenômeno que recebeu esse nome em homenagem aos dois físicos que previram esse efeito a aproximadamente 50 anos atrás, aparece quando os elétrons de alta energia, perturbam a Radiação Cósmica Micro-ondas de Fundo (CMB), uma radiação remanescente do nascimento superaquecido do Universo a 13,8 bilhões de anos atrás.

Os níveis de energia térmica foram analisados para ver se eles surgiam acima do que era previsto para cessarem a formação das estrelas. Um grande número de galáxias foi analisado para dar ao estudo uma confiabilidade estatística.

Para que o retorno de energia possa parar a formação de estrelas, ele precisa acontecer de maneira vasta no Universo. Para realizar essas medidas de temperaturas que mostrassam o efeito SZ, a equipe usou informações adquiridas por dois telescópios, um telescópio óptico no Apache Point Observatory no Novo México e o Atacama Cosmology Telescope no norte do Chile, e o instrumento Spectral and Photometric Imaging Receiver (SPIRE) a bordo do Herschel Space Observatory da ESA.

A utilização de vários instrumentos com diferentes intensidades na pesquisa do efeito SZ é algo relativamente novo. Esse é um tipo diferente de termômetro.

Embora essa não seja uma descoberta totalmente conclusiva, pois serão necessárias mais análises, pode ser a primeira evidência observacional convincente da presença do retorno de energia dos quasares, quando o Universo tinha somente um quarto da sua idade atual, quando a formação de estrelas era mais vigorosa.

Fonte: Monthly Notices of the Royal Astronomical Society

Detectado um flash de luz de uma companheira de supernova

Uma equipe de astrônomos, incluindo Robert P. Kirshner e Peter Challis do Harvard-Smithsonian Center for Astrophysics (CfA), detectou um flash de luz de uma companheira de supernova.

supernova SN 2012cg

© CfA/P. Challis (supernova SN 2012cg)

O ponto azul-branco no centro desta imagem é a supernova SN 2012 cg. Esta supernova está tão distante que a sua galáxia hospedeira, a espiral NGC 4424, aparece aqui apenas como um esfregaço prolongado de luz roxa.

Esta é a primeira vez que os astrônomos têm testemunhado o impacto da explosão de uma estrela em sua vizinha. Ela fornece a melhor evidência do tipo de sistema estelar binário que leva à supernovas de Tipo Ia. Este estudo revela as circunstâncias para a morte violenta de algumas estrelas anãs brancas e fornece compreensão mais profunda para a sua utilização como ferramentas para traçar a história da expansão do Universo. Estes tipos de explosões estelares permitiram a descoberta da energia escura, expansão acelerada do Universo que é um dos maiores problemas na ciência hoje.

O assunto de como surgem supernovas de Tipo Ia tem sido um tópico de debate entre os astrônomos.

“Nós pensamos que as supernovas Tipo Ia surgem de explosão de anãs brancas com uma companheira binária,” disse Howie Marion da Universidade do Texas em Austin (UT Austin), o principal autor do estudo. “A teoria remonta de 50 anos ou mais, mas não houve qualquer evidência concreta de uma estrela companheira antes deste momento."

Os astrônomos têm analisado ideias concorrentes, debatendo se o companheiro era uma estrela normal ou outra anã branca.

“Esta é a primeira vez que um tipo Ia tem sido associada com uma estrela companheira binária,” disse o membro da equipe e professor de astronomia J. Craig Wheeler (UT Austin).

A teoria indaga que a estrela progenitora do binário com supernovas de Tipo Ia resultam de uma violenta explosão de uma estrela anã branca. Deve ser adicionada massa a essa anã branca, retirada da estrela companheira, para provocar a sua explosão. Quando o fluxo de massa atinge seu limite, a anã branca está suficientemente quente e densa para inflamar o carbono e oxigênio em seu interior, iniciando uma reação termonuclear que faz com que a anã branca exploda como uma supernova Tipo Ia.

Durante muito tempo, a principal teoria diz que a companheira era uma estrela gigante vermelha antiga que inchou e perdeu material para a anã branca, mas as observações recentes praticamente descartou essa noção. No gigante vermelha é visto. O novo trabalho apresenta evidências de que a estrela fornecendo massa ainda está queimando hidrogênio em seu centro, ou seja, que esta estrela companheira ainda está no auge da vida.

“Se um branco explode anão ao lado de uma estrela comum, você deve ver um pulso de luz azul que resulta de aquecimento que o companheiro. Isso é o que os teóricos previram e isso é o que nós vimos,” de acordo com Kirshner.

A supernova SN 2012cg está localizada a 50 milhões de anos-luz de distância na constelação de Virgem, e foi descoberta em 17 de Maio de 2012 pelo Lick Observatory Supernova Search. A equipe de Marion começou a estudá-la no dia seguinte com os telescópios do Harvard-Smithsonian Center for Astrophysics.

A equipe continuou observando o brilho da supernova durante várias semanas usando muitos telescópios diferentes, incluindo o telescópio de 1,2 metros Fred Lawrence Whipple Observatory e seu instrumento KeplerCam, o telescópio espacial de raios gama Swift, o telescópio Hobby-Eberly no McDonald Observatory, entre outros.

A equipe encontrou evidências nas características da luz a partir da Supernova, indicando que poderia ser causada por uma companheira do binário. Especificamente, foi descoberto um excesso de luz azul proveniente da explosão. Este excesso é compatível aos modelos amplamente aceitos criados por U.C. Berkeley astrônomo Dan Kasen da U.C. Berkeley.

"A supernova está fundindo-se com a estrela companheira. O lado da estrela companheira que é atingido fica quente e brilhante. O excesso de luz azul está vindo do lado da estrela companheira que fica aquecido," explicou Wheeler.

Combinado com os modelos, as observações indicam que a estrela companheira binária tem uma massa mínima de seis sóis.

"Esta é uma interpretação que é consistente com os dados", disse Jeffrey Silverman, membro da equipe e pesquisador pós-doutorado na UT Austin. Salientando que não é uma prova concreta do tamanho exato da companheira, como viria de uma fotografia do sistema de estrelas binárias.

O trabalho foi publicadono periódico The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

quinta-feira, 24 de março de 2016

Os confins do Grupo Local

A imagem a seguir mostra a galáxia solitária chamada Wolf-Lundmark-Melotte (WLM).

galáxia Wolf-Lundmark-Melotte

© ESO/VST (galáxia Wolf-Lundmark-Melotte)

Embora se considere que este objeto faz parte do nosso Grupo Local de dezenas de galáxias, WLM encontra-se isolada na periferia do grupo, sendo um dos seus membros mais remotos. De fato, esta galáxia é tão pequena e afastada que pode nunca ter interagido com outras galáxias do Grupo Local, ou talvez até com qualquer outra galáxia na história do Universo.

Como uma tribo isolada vivendo no interior da Amazônia ou numa ilha na Oceania, a galáxia WLM oferece uma visão rara sobre a natureza primordial das galáxias que foram pouco perturbadas pelo meio ao seu redor.
A WLM foi descoberta em 1909 pelo astrônomo alemão Max Wolf e identificada como galáxia cerca de 15 anos depois pelos astrônomos Knut Lundmark e Philibert Jacques Melotte, o que explica o seu nome incomum. Esta galáxia tênue está situada na constelação da Baleia, a cerca de três milhões de anos-luz de distância da Via Láctea, a qual é uma das três galáxias espirais dominantes do Grupo Local.
A WLM é muito pequena e sem estrutura, daí a sua classificação de galáxia anã irregular. Mede cerca de 8.000 anos-luz no seu maior comprimento, uma medida que inclui um halo de estrelas extremamente velhas descoberto em 1996.
Os astrônomos pensam que pequenas galáxias primordiais semelhantes interagiram gravitacionalmente umas com as outras e em muitos casos se fundiram, dando origem a galáxias compostas muito maiores. Ao longo de bilhões de anos, este processo de fusão formou as grandes galáxias elípticas e em espiral que hoje parecem ser bastante comuns no Universo moderno. Este tipo de congregação de galáxias é semelhante à maneira como as populações humanas se deslocaram ao longo de milhares de anos e se juntaram em povoações cada vez maiores, dando eventualmente origem às atuais megacidades.
A WLM, no entanto, desenvolveu-se isoladamente, longe da influência de outras galáxias e das suas populações estelares. Assim, tal como uma população humana escondida, com contatos limitados com o exterior, a WLM representa um “estado de natureza” relativamente imperturbável, onde quaisquer mudanças que vão ocorrendo ao longo da sua vida são praticamente independentes da atividade que ocorre em outros locais.
Esta pequena galáxia apresenta um extenso halo de estrelas vermelhas muito tênues, que se estende na escuridão do espaço à sua volta. Este tom avermelhado é indicativo da idade avançada das estrelas. É provável que este halo tenha se originado na formação inicial da própria galáxia, fornecendo-nos assim pistas interessantes sobre os mecanismos que deram origem às primeiras galáxias.
As estrelas no centro da WLM parecem ser mais jovens e mais azuis em termos de cor. Nesta imagem, as nuvens cor de rosa correspondem a regiões onde a radiação intensa emitida pelas estrelas jovens ionizou o hidrogênio gasoso ambiente, fazendo-o brilhar com um característico tom avermelhado.
Esta imagem detalhada foi captada pela câmera de grande angular OmegaCAM, uma câmera enorme montada no telescópio de rastreio do VLT (VST) do ESO no Chile, um telescópio de 2,6 metros dedicado exclusivamente a rastreios no visível do céu noturno. Os 32 detectores CCD da OmegaCAM criam imagens de 256 megapixels, o que nos dá uma vista de grande angular muito detalhada do cosmos.

Fonte: ESO

O flash inicial da explosão de uma estrela

Com o telescópio espacial Kepler, os astrônomos capturam, pela primeira vez no visível, o flash brilhante da onda de choque de uma explosão estelar.

ilustração do momento em que uma estrela se transforma em supernova

© NASA (ilustração do momento em que uma estrela se transforma em supernova)

Uma equipe internacional liderada por Peter Garnavich, professor de astrofísica da Universidade de Notre Dame no estado americano de Indiana, analisou luz captada de 500 galáxias distantes pelo Kepler a cada 30 minutos ao longo de um período de três anos, pesquisando por entre cerca de 50 trilhões de estrelas. Eles estavam à procura de sinais de enormes explosões que assinalam a morte de uma estrela, fenômeno a que chamamos supernovas.

Em 2011, duas destas estrelas titânicas, chamadas supergigantes vermelhas, explodiram no campo de visão do Kepler. O primeiro colosso, KSN 2011a, tem quase 300 vezes o tamanho do nosso Sol e está a uns meros 700 milhões de anos-luz da Terra. O segundo, KSN 2011d, tem cerca de 500 vezes o tamanho do nosso Sol e está a 1,2 bilhões de anos-luz de distância.

"Para colocar o seu tamanho em perspectiva, a órbita da Terra ao redor do Sol caberia confortavelmente dentro destas estrelas colossais," comenta Garnavich.

Quer seja um acidente de avião, de carro ou uma supernova, a captura de imagens de eventos súbitos e catastróficos é extremamente difícil mas tremendamente útil para perceber a causa. Tal como a difusão de câmaras móveis tornou os vídeos forenses mais comuns, o olhar firme do Kepler permitiu, finalmente, a visualização de uma onda de choque de uma supernova assim que chegou à superfície de uma estrela. A libertação da onda de choque, propriamente dita, dura apenas cerca de 20 minutos, de modo que a captura do flash de energia é um marco de investigação para os astrônomos.

"Para vermos algo que acontece em escalas de tempo de minutos, como a libertação da onda de choque, precisamos de ter uma câmara que monitoriza continuamente o céu," afirma Garnavich. "Nós não sabemos quando é que uma supernova está prestes a ocorrer, e a vigilância do Kepler permitiu-nos ser uma testemunha da explosão."

As supernovas deste gênero, conhecidas como Tipo II, começam quando a fornalha interna de uma estrela esgota o seu combustível nuclear, fazendo que o seu núcleo colapse à medida que a gravidade assume liderança.

As duas supernovas têm boas correspondências com os modelos matemáticos das explosões do Tipo II, reforçando as teorias existentes. Mas também revelaram o que poderá vir a ser uma variedade inesperada nos detalhes individuais destes eventos estelares cataclísmicos.

Embora ambas as explosões ostentassem um poder energético semelhante, na mais pequena das supergigantes não foi observado o momento da libertação da onda de choque. Os cientistas pensam que é provavelmente devido à estrela menor estar rodeada por gás, talvez o suficiente para mascarar a onda de choque quando atingiu a superfície da estrela.

A compreensão da física destes eventos violentos permite aprender mais sobre o modo como as sementes da complexidade química e da própria vida foram espalhados no espaço e no tempo na nossa Galáxia, a Via Láctea.

"Todos os elementos pesados no Universo vêm de explosões de supernovas. Por exemplo, toda a prata, o níquel e o cobre na Terra, e até nos nossos corpos, veio da agonia explosiva da morte das estrelas," afirma Steve Howell, cientista de projeto para as missões Kepler e K2 da NASA no Centro de Pesquisa Ames em Silicon Valley, Califórnia. "A vida existe por causa das supernovas."

Garnavich faz parte de uma equipe de pesquisa conhecida como KEGS (Kepler Extragalactic Survey). A equipe está quase terminando a mineração de dados da missão primária do Kepler, que terminou em 2013 com a avaria das rodas de reação que ajudam a manter o observatório apontado. No entanto, com o reinício do Kepler pela missão K2 da NASA, a equipe está agora vasculhando ainda mais dados em busca de eventos de supernovas em galáxias ainda mais distantes.

"Enquanto o Kepler abriu a porta para a observação do desenvolvimento destes eventos espetaculares, a missão K2 vai empurrá-la ainda mais na observação de outras dúzias de supernovas," comenta Tom Barclay, pesquisador no Centro de Pesquisa Ames. "Estes resultados são um preâmbulo tentador do que está para vir com o K2!"

Fonte: Ames Research Center

Um exoplaneta excêntrico dá sinais de luz refletida

Uma equipe de astrônomos liderados por Stephen Kane, da Universidade Estatal de São Francisco, EUA, avistou um exoplaneta a cerca de 117 anos-luz da Terra que possui a órbita mais excêntrica vista até agora.

ilustração do exoplaneta excêntrico

© NASA (ilustração do exoplaneta excêntrico)

Além do mais, Kane e colegas foram capazes de detectar um sinal de luz refletida do exoplaneta conhecido como HD 20782 b, uma emissão de luz estelar que ressaltou para fora atmosfera do planeta excêntrico enquanto este fazia a sua maior aproximação à estrela.

Neste caso, "excêntrico" não se refere a um estado de espírito, mas ao invés descreve quão elíptica é a órbita do planeta em torno da sua estrela hospedeira. Enquanto os planetas no nosso Sistema Solar têm órbitas quase circulares, já foram descobertos vários exoplanetas com órbitas altamente elípticas ou excêntricas.

O HD 20782 b tem a órbita mais excêntrica conhecida, com uma excentricidade medida de 0,96. Isto significa que o planeta se move quase numa elipse achatada, percorrendo uma enorme distância para longe da sua estrela e depois fazendo uma passagem íntima, veloz e furiosa no periélio.

O HD 20782 b proporciona uma oportunidade de observação particularmente lucrativa para o estudo da atmosfera de um planeta altamente excêntrico, um tipo não visto no nosso próprio Sistema Solar. Ao estudar a luz refletida por HD 20782 b, os astrônomos podem aprender mais sobre a estrutura e composição de uma atmosfera planetária que pode resistir a uma breve, mas alucinante, exposição à sua estrela.

No ponto mais distante da sua órbita, o exoplaneta está a 2,5 vezes a distância entre o Sol e a Terra. Na sua maior aproximação, passa a 0,06 vezes dessa mesma distância Terra-Sol, muito mais próximo que Mercúrio está do Sol. "Tem aproximadamente a massa de Júpiter, mas balança-se em redor da sua estrela como se fosse um cometa," salienta Kane, professor assistente de física e astronomia.

Uma observação anterior do HD 20782 b sugeriu que o exoplaneta poderia ter uma órbita extremamente excêntrica. Kane e colegas foram capazes de confirmar a sua excentricidade extrema e o resto dos seus parâmetros orbitais como parte do levantamento TERMS (Transit Ephemeris Refinement and Monitoring Survey), um projeto liderado por Kane para detectar planetas extrassolares que passam em frente das suas estrelas.

Usando estes novos parâmetros para calendarizar as suas observações, os cientistas também usaram um telescópio espacial para recolher dados de luz do planeta à medida que este passava mais próximo da estrela. Foram capazes de detectar uma mudança no brilho que parece ser um sinal de luz refletida pela atmosfera do planeta.

A luz refletida poderá dizer mais sobre o modo como a atmosfera de um exoplaneta como HD 20782 b responde quando passa a maior parte do seu tempo longe da estrela, e em seguida, tem uma passagem muito próxima e acalorada pela estrela.

A porcentagem de luz refletida por um planeta, ou quão brilhante aparece no céu, é determinada em parte pela composição da sua atmosfera. Os planetas envoltos em nuvens de partículas geladas, como Vênus e Júpiter, por exemplo, são muito refletivos. Mas se um planeta como Júpiter se deslocasse muito perto do Sol, o calor removeria o material gelado das suas nuvens.

Em alguns dos exoplanetas do tamanho de Júpiter que trilham pequenas órbitas circulares, este fenômeno parece "roubar" partículas refletivas das atmosferas, fazendo com que os planetas pareçam "escuros". Mas no caso do HD 20782 b, "a atmosfera do planeta não tem hipótese de responder," afirma Kane. "O tempo que leva para dar a 'volta' à estrela é tão pequeno que não há tempo para remover todos aqueles materiais gelados que tornam a atmosfera tão refletiva."

Os astrônomos não podem determinar a composição exata da atmosfera do HD 20782 b, mas esta observação nova sugere que pode ter uma cobertura altamente refletiva como a de Júpiter.

Os exoplanetas como HD 20782 b contêm uma "arca do tesouro" de perguntas para os astrônomos, realça Kane. "Quando vemos um planeta como este numa órbita excêntrica, pode ser muito difícil explicar como chegou a esta forma," explica. "É como olhar para a cena de um crime, como aquelas pessoas que estudam padrões de sangue nas paredes. Sabemos que algo de mau aconteceu, mas precisamos de descobrir o que provocou tal coisa."

Kane acrescenta que, no caso do HD 20782 b, existem alguns possíveis "suspeitos". Pode ser que originalmente houvessem mais planetas no sistema. Um desenvolveu uma órbita instável e aproximou-se demasiado de HD 20782 b. Esta colisão poderá ter expelido um planeta para fora do sistema e empurrado o HD 20782 b para a sua órbita excêntrica. O exoplaneta encontra-se num sistema binário, por isso também pode ser o caso que a segunda estrela no binário fez uma aproximação que enviou HD 20782 b para uma órbita menos circular.

Kane faz parte da equipe científica de duas missões espaciais em desenvolvimento: O TESS (Transiting Exoplanet Survey Satellite) da NASA e o CHEOPS (Characterizing ExOPLanet Satellite) da ESA, que terão os seus olhos apontados para o HD 20782 b depois do lançamento em 2018.

A descoberta foi anunciada na revista The Astrophysical Journal.

Fonte: San Francisco State University

segunda-feira, 21 de março de 2016

A geração de protoestrelas na nebulosa escura LDN 1768

A região escura que serpenteia por esta imagem de um campo de estrelas na constelação de Ofiúco não é exatamente o que parece.

LDN 1768

© ESO/ALMA (LDN 1768)

Embora pareça não existir estrelas neste local, o fato é que elas estão escondidas por trás desta densa nuvem de poeira que bloqueia a luz. Esta nuvem escura em particular chama-se LDN 1768.
Apesar da sua aparência simples, as nebulosas escuras como LDN 1768 são de grande interesse para os astrônomos, já que é nestes lugares que as estrelas se formam. No interior destas enormes maternidades estelares encontram-se protoestrelas, estrelas na fase mais jovem das suas vidas, ainda formando-se a partir do gás e da poeira da nuvem.
As protoestrelas são relativamente frias e ainda não começaram a produzir energia suficiente para emitirem radiação visível. Emitem no entanto radiação nos comprimentos de onda do submilímetro, a qual não é detectada pelo olho humano. Felizmente, ao contrário da radiação visível, a luz no submilímetro não é absorvida pela poeira ao seu redor. Utilizando telescópios especiais sensíveis à radiação submilimétrica, tais como o observatório Atacama Large Millimeter/submillimeter Array (ALMA), podemos ver além da poeira e descobrir muito mais sobre as protoestrelas situadas no interior da nuvem.
Eventualmente, as protoestrelas irão se tornar suficientemente densas e quentes para dar início as reações nucleares que produzirão radiação visível, começando assim a brilhar. Quando isto acontece, a estrela “sopra" para longe o casulo de poeira que a rodeia e faz com que o restante gás emita radiação, criando assim um belo espetáculo luminoso conhecido por região H II.

Fonte: ESO

domingo, 20 de março de 2016

O W de Cassiopeia

Um familiar zigue-zague, com a forma de W, na constelação meridional de Cassiopeia é perfilada por cinco estrelas brilhantes neste amplo mosaico colorido.

o W de Cassiopeia

© Rogelio Bernal Andreo (o W de Cassiopeia)

Estendendo-se cerca de 15 graus pelos ricos campos estelares, a cena celeste inclui nuvens escuras, nebulosas brilhantes e aglomerados de estrelas ao longo da Via Láctea. Em tons de amarelo-laranja aparece destacada a estrela Shedar, alfa de Cassiopeia. A estrela gigante amarelada é mais fria do que o Sol, com mais de 40 vezes o diâmetro solar, e tão luminosa que brilha na noite terrestre desde os seus 230 anos-luz de distância. A estrela massiva no centro do W é a brilhante Gama Cas, que está a cerca de 550 anos-luz de distância. A estrela azulada Gamma Cas é muito mais quente que o Sol. A intensa radiação ultravioleta desta estrela ioniza os átomos de hidrogêniodas nuvens interestelares próximas para produzir emissão H-alfa vermelha visível, quando os átomos se recombinam com elétrons. Naturalmente, os observadores noturnos no sistema estelar Alpha Centauri também verão o contorno reconhecível traçado por estrelas brilhantes de Cassiopeia. Mas a partir de sua perspectiva, de apenas 4,3 anos-luz de distância, veriam o nosso Sol como uma sexta estrela brilhante em Cassiopeia, estendendo-se o padrão em zigue-zague pouco além da margem esquerda deste imagem.

Fonte: NASA

sexta-feira, 18 de março de 2016

Descoberta fonte que acelera raios cósmicos no centro da Via Láctea

Há já mais de dez anos que o observatório H.E.S.S. (High Energy Stereoscopic System) tem vindo a mapear o centro da nossa Galáxia em raios gama altamente energéticos.

ilustração de nuvens moleculares gigantes que rodeiam o Centro Galáctico

© Mark A. Garlick (ilustração de nuvens moleculares gigantes que rodeiam o Centro Galáctico)

Na imagem acima as nuvens moleculares gigantes que rodeiam o Centro Galáctico são bombardeadas por prótons altamente energéticos acelerados na vizinhança do buraco negro central, que subsequentemente brilham em raios gama.

Estes raios gama são produzidos por raios cósmicos oriundos da região mais interna da Via Láctea. Uma análise detalhada dos dados mais recentes do H.E.S.S. revela pela primeira vez uma fonte desta radiação cósmica em energias nunca antes observadas na Via Láctea: o buraco negro supermassivo no centro da Galáxia, que provavelmente acelera os raios cósmicos até energias 100 vezes superiores àquelas obtidas no maior acelerador de partículas da Terra, o LHC (Large Hadron Collider) no CERN (European Organization for Nuclear Research).

A Terra é constantemente bombardeada por partículas de alta-energia (prótons, elétrons e núcleos atômicos) de origem cósmica, partículas que compõem a chamada "radiação cósmica". Estes raios cósmicos são eletricamente carregados e são, portanto, fortemente desviados pelos campos magnéticos interestelares que permeiam a nossa Galáxia. O seu percurso através do cosmos é randomizado por estes desvios, o que torna impossível a identificação direta das fontes astrofísicas responsáveis pela sua produção. Assim, durante mais de um século, a origem dos raios cósmicos continua sendo um dos mistérios mais duradouros da ciência.

Felizmente, os raios cósmicos interagem com a luz e o gás na vizinhança das suas fontes, produzindo raios gama. Estes raios gama viajam em linhas retas e não são desviados pelos campos magnéticos, podendo, portanto, ser traçados até à sua origem. Quando um raio gama altamente energético atinge a Terra, interage com uma molécula na atmosfera superior, produzindo uma chuva de partículas secundárias que emitem um curto pulso de "luz de Cherenkov". Ao detectar estas emissões de luz usando telescópios equipados com grandes espelhos, foto-detectores sensíveis e eletrônica avançada, foram identificadas, ao longo das três últimas décadas, mais de 100 fontes de raios gama. O observatório H.E.S.S. na Namíbia representa a última geração destas redes de telescópios. É operado por cientistas de 42 instituições em 12 países, com contribuições principais de MPIK Heidelberg, Alemanha, CEA e CNRS, França.

Hoje sabemos que os raios cósmicos com energias até cerca de 100 TeV (tera elétron-volt) são produzidos na nossa Galáxia por objetos como remanescentes de supernovas e nebulosas alimentadas por ventos de pulsares. Os argumentos teóricos e as medições diretas dos raios cósmicos que alcançam a Terra indicam, no entanto, que as fábricas de raios cósmicos na nossa Galáxia devem ser capazes de fornecer partículas com, pelo menos, até 1 PeV (peta elétron-volt). Apesar de muitos aceleradores multi-TeV terem sido descobertos nos últimos anos, até agora a procura das fontes dos raios cósmicos galácticos mais energéticos foi infrutífera.

Observações detalhadas do Centro Galáctico, feitas pelo H.E.S.S. ao longo dos últimos 10 anos, finalmente fornecem indicações diretas da aceleração de raios cósmicos até níveis PeV. Durante os primeiros três anos de observações, o H.E.S.S. descobriu uma fonte muito poderosa de raios gama na região do Centro Galáctico, bem como emissão difusa de raios gama das nuvens moleculares gigantes que o rodeiam numa zona com aproximadamente 500 anos-luz de diâmetro. Estas nuvens moleculares são bombardeadas por raios cósmicos que se deslocam quase à velocidade da luz, que produzem raios gama através das suas interações com a matéria nas nuvens. Uma notavelmente boa coincidência espacial entre os raios gama observados e a densidade de material nas nuvens indica a presença de um ou mais aceleradores de raios cósmicos nessa região. No entanto, a natureza da fonte permanecia um mistério.

Observações mais profundas obtidas pelo H.E.S.S. entre 2004 e 2013 lançaram nova luz sobre os processos que alimentam os raios cósmicos na região. De acordo com Aion Viana (MPIK, Heidelberg), "a quantidade sem precedentes de dados e o progresso feito nas metodologias permite-nos medir simultaneamente a distribuição espacial e a energia dos raios cósmicos." Com estas medições únicas, os cientistas do H.E.S.S. conseguiram, pela primeira vez, identificar a origem destas partículas: "em algum lugar entre os 33 anos-luz centrais da Via Láctea, existe uma fonte astrofísica capaz de acelerar prótons para energias de aproximadamente 1 PeV, continuamente, durante pelo menos 1.000 anos," explica Emmanuel Moulin (CEA, Saclay). Numa analogia com o "Tevatron", o primeiro acelerador de partículas construído pelo Homem que alcançou energias de 1 TeV, esta nova classe de acelerador cósmico foi apelidada de "Pevatron". "Com o H.E.S.S., somos agora capazes de rastrear a propagação dos prótons PeV na região central da Galáxia," acrescenta Stefano Gabici (CNRS, Paris).

O centro da nossa Galáxia é o lar de muitos objetos capazes de produzir raios cósmicos altamente energéticos, incluindo, em particular, um remanescente de supernova, uma nebulosa alimentada por ventos de um pulsar e um aglomerado compacto de estrelas massivas. No entanto, "o buraco negro supermassivo localizado no centro da Galáxia, chamado Sgr A*, é a fonte mais plausível dos prótons PeV," afirma Felix Aharonian (MPIK, Heidelberg e DIAS, Dublin), acrescentando que "várias possíveis regiões de aceleração podem ser consideradas, quer na proximidade imediata do buraco negro, quer mais longe, onde uma fração do material que cai para o buraco negro é expelido de volta para o ambiente, iniciando-se assim a aceleração de partículas."

A medição H.E.S.S. dos raios gama pode ser usada para inferir o espetro dos prótons que foram acelerados pelo buraco negro central, revelando que Sgr A* está provavelmente acelerando prótons para energias a níveis PeV. Atualmente, estes prótons não conseguem explicar o fluxo total de raios cósmicos detectados na Terra. Se, no entanto, o nosso buraco negro central tivesse sido mais ativo no passado, então poderia ser realmente responsável pela maior parte dos raios cósmicos galácticos que são observados hoje na Terra. A ser verdade, isso poderia influenciar o debate de um século sobre a origem destas partículas enigmáticas.

Uma análise detalhada dos dados mais recentes do H.E.S.S. foram publicados na revista Nature.

Fonte: Centre National de la Recherche Scientifique

Revelados novos aspectos de Plutão e das suas luas

Há um ano atrás, Plutão era apenas um pontinho brilhante nas câmaras a bordo da sonda New Horizons da NASA, não muito diferente do seu aspeto telescópico desde que Clyde Tombaugh descobriu o então nono planeta em 1930.

camadas de neblina no limbo de Plutão

© NASA/JHUAPL/SwRI/New Horizons (camadas de neblina no limbo de Plutão)

Mas esta semana, cientistas da New Horizons divulgam o primeiro conjunto compreensivo de artigos que descrevem os resultados da passagem por Plutão do verão passado. "Estes cinco documentos detalhados transformam completamente a nossa visão de Plutão, revelando que o antigo planeta é um mundo com geologia ativa e diversa, química superficial exótica, uma atmosfera complexa, uma interação misteriosa com o Sol e um sistema intrigante de pequenas luas," afirma Alan Stern, pesquisador principal da New Horizons do SwRI (Southwest Research Institute) em Boulder, no estado americano do Colorado.

Após uma viagem de 9,5 anos e 4,82 bilhões de quilômetros, lançada mais rápida e mais longe do que qualquer outra sonda para atingir o seu objetivo principal, a New Horizons passou por Plutão no dia 14 de julho de 2015. Os sete instrumentos científicos da New Horizons recolheram 50 gigabits (6,25 gigabytes) de dados digitais.

As primeiras imagens revelaram uma grande característica em forma de coração esculpida à superfície de Plutão, dizendo aos cientistas que este "novo" tipo de mundo planetário - o maior, o mais brilhante e o primeiro a ser explorado da distante "terceira zona" do nosso Sistema Solar conhecida como Cinturão de Kuiper - seria ainda mais interessante e intrigante do que os modelos previam.

Os artigos recém-publicados confirmam isso mesmo.

"A observação de Plutão e Caronte de perto levou-nos a reavaliar completamente que tipo de atividade geológica pode ser sustentada em corpos planetários isolados nesta distante região do Sistema Solar, mundos que anteriormente se pensava serem relíquias pouco alteradas desde a formação do Cinturão de Kuiper," afirma Jeff Moore, autor principal do artigo de geologia do Centro de Pesquisa Ames da NASA em Moffett Field, Califórnia.

Os cientistas que estudam a composição de Plutão dizem que a diversidade da sua paisagem resulta de eras de interação entre o metano altamente volátil e móvel, gelos de nitrogênio e monóxido de carbono com água gelada inerte e resistente. "Vemos variações na distribuição dos gelos voláteis de Plutão que apontam para ciclos fascinantes de evaporação e condensação," afirma Will Grundy do Observatório Lowell, em Flagstaff, Arizona, autor principal do artigo sobre a composição. "Estes ciclos são muito mais ricos do que os da Terra, onde há basicamente apenas um material que se condensa e evapora, a água. Em Plutão, existem pelo menos três materiais, e enquanto estes interagem de formas que ainda não compreendemos totalmente, vemos definitivamente os seus efeitos em toda a superfície de Plutão."

Acima da superfície, os cientistas descobriram que a atmosfera de Plutão contém neblinas em camadas e é mais fria e compacta do que se esperava. Isto afeta o modo como a atmosfera superior de Plutão é perdida para o espaço e como interage com o fluxo de partículas carregadas do Sol conhecido como vento solar. "Nós descobrimos que as estimativas anteriores obtidas pela New Horizons sobrestimaram em muito a perda de material da atmosfera de Plutão," afirma Fran Bagenal, da Universidade do Colorado, Boulder, autora principal dos artigos de partículas e plasma. "O pensamento era que a atmosfera de Plutão escapava como um cometa, mas na verdade escapa a um ritmo muito mais parecido com o da atmosfera da Terra."

Randy Gladstone, do SwRI em San Antonio é o autor principal do artigo científico sobre as descobertas atmosféricas. Ele salienta, "nós também descobrimos que o metano, não o nitrogênio, é o principal gás que escapa de Plutão. Isto é muito surpreendente, dado que perto da superfície de Plutão a atmosfera é mais de 99% nitrogênio."

Os cientistas também estão analisando as primeiras imagens de perto das pequenas luas Styx, Nix, Kerberos e Hydra. Descobertas entre 2005 e 2012, as quatro luas variam, em diâmetro, entre os 40 km para Nix e Hidra até 10 km para Styx e Kerberos. Os cientistas da missão observaram ainda que os pequenos satélites têm velocidades de rotação anômalas e orientações polares uniformemente invulgares, bem como superfícies geladas com brilhos e cores distintamente diferentes das de Plutão e Caronte.

Encontraram evidências de que algumas das luas resultaram da fusão de corpos ainda mais pequenos, e que as suas superfícies têm pelo menos 4 bilhões de anos. "Estes dois últimos resultados reforçam a hipótese de que as luas pequenas foram formadas na sequência de uma colisão que produziu o sistema binário Plutão-Caronte," afirma Hal Weaver, cientista do projeto New Horizons do Laboratório de Física Aplicada da Universidade Johns Hopkins em Laurel, no estado americano de Maryland, e autor principal do artigo científico sobre as pequenas luas de Plutão.

Cerca de metade dos dados recolhidos durante o voo rasante da New Horizons já foram transmitidos a partir de distâncias onde os sinais de rádio, à velocidade da luz, levam quase cinco horas para chegar à Terra, e espera-se que os dados sejam todos enviados até ao final de 2016.

"É por isto que exploramos," afirma Curt Niebur, cientista do programa New Horizons na sede da NASA em Washington. "As muitas descobertas da New Horizons representam o melhor da humanidade e inspiram-nos a continuar a viagem de exploração ao Sistema Solar e mais longe."

Os artigos foram publicados na revista Science.

Fonte: Ames Research Center

Quatro novos exoplanetas ao redor de estrelas gigantes

Uma equipe internacional de astrônomos detectou quatro novos exoplanetas gigantes orbitando estrelas muito maiores que o Sol.

ilustração de um exoplaneta gigante

© NASA/JPL-Caltech (ilustração de um exoplaneta gigante)

Os exoplanetas descobertos são enormes, com massas variando de 2,4 a 5,5 vezes a massa do planeta Júpiter, e possuem um longo período orbital variando de dois a quatro anos terrestres.

A equipe, liderada por Matias Jones da Pontifical Catholic University do Chile, fez a descoberta durante suas observações realizadas usando o programa de velocidade radial EXPRESS (EXoPlanets aRound Evolved StarS). Eles utilizaram dois telescópios localizados no deserto do Atacama no Chile, o telescópio de 1,5 metros do Observatório Inter-Americano de Cerro Tololo, e o telescópio de 2,2 metros do Observatório de La Silla. Observações complementares foram feitas com o telescópio Anglo-Australiano de 3,9 metros na Austrália.

Através de espectrógrafos montados nesses telescópios, os pesquisadores monitoraram uma amostra de 166 estrelas gigantes brilhantes que são observáveis no hemisfério sul. Eles registraram o espectro  para cada uma das estrelas na amostra, graças aos instrumentos que estavam utilizando. A campanha de observação foi de 2009 a 2015. Os astrônomos computaram uma série de medidas precisas de velocidade radial de quatro estrelas gigantes: HIP8541, HIP74890, HIP84056 e HIP95124. Essas velocidades mostram sinais de variações periódicas. A equipe concluiu que a explicação mais provável para esses sinais periódicos de velocidade radial, nessas estrelas era a presença de companheiros planetários.

Essas velocidades mostraram sinais periódicos, com semi-amplitudes entre aproximadamente 50 a 100 ms−1, que são muito provavelmente causados pelo desvio doppler induzido por companheiros orbitais.

Foram realizados testes padrões (emissão cromosférica, análise de bissetor e variabilidade fotométrica) com o objetivo de estudar se esses sinais de velocidade radial tinham uma origem estelar intrínseca. Foi descoberto que não existia correlação entre o indicador estelar intrínseco com as velocidades observadas.

O HIP8541b é o mais massivo dos recém-descobertos exoplanetas. Com uma massa de cerca de 5,5 vezes a massa do planeta Júpiter, esse exoplaneta também tem o maior período orbital de todos, equivalente a 1.560 dias. Sua estrela é um pouco mais massiva que o Sol e tem um raio aproximado de oito vezes o raio solar.

O HIP74890b e o HIP84056b são muito similares em termos de massa e período orbital. A massa do HIP74890b é estimada em 2,4 vezes a massa de Júpiter, que é cerca de 92% da massa do HIP84056b. O planeta mais massivo desses dois tem um período orbital de aproximadamente 819 dias, cerca de 3 dias menos do que o outro exoplaneta. Suas estrelas são também similares em massa e em tamanho, cerca de 1,7 vezes a massa do Sol, com um raio de 5,03 e 5,77 vezes o raio solar, respectivamente.

Entre os exoplanetas recém-descobertos, o que tem o período orbital menor, cerca de 562 dias, é designado como HIP95124b. Sua massa é de cerca de 2,9 vezes a massa de Júpiter e ele orbita uma estrela que tem aproximadamente duas vezes mais massa que o Sol, com um raio equivalente a 5,12 vezes o raio do Sol.

A descoberta desses exoplanetas também levou a interessantes resultados sobre as correlações entre as propriedades estelares e a taxa de ocorrência de planetas. Os pesquisadores encontraram que os planetas gigantes são preferencialmente detectados em torno de estrelas ricas em metal.

Os pesquisadores apresentaram uma análise estatística da correlação de massa e metalicidade das estrelas que abrigam planetas. Eles mostraram que a fração de planetas gigantes aumenta com a massa estelar num intervalo entre 1 a 2,1 vezes a massa solar, apesar do fato dos planetas serem mais fáceis de serem detectados ao redor de estrelas de menor massa.

A equipe concluiu que a alta fração de múltiplos sistemas observados em estrelas gigantes é uma consequência natural do mecanismo de formação de planetas ao redor de estrelas de massa intermediária.

Fonte: Astronomy & Astrophysics

quarta-feira, 16 de março de 2016

Descobertas variações inesperadas nas manchas brilhantes de Ceres

Observações recentes revelaram variações inesperadas nas manchas brilhantes do planeta anão Ceres.

ilustração de Ceres

© Dawn/ESO/L.Calçada (ilustração de Ceres)

Embora Ceres pareça pouco mais que um ponto de luz quando visto a partir da Terra, estudos detalhados da sua radiação mostram não apenas as variações esperadas nas manchas devido à rotação de Ceres, mas também que estas estruturas se tornam mais luminosas durante o dia, entre outras variações. Estas observações sugerem que o material destas manchas é volátil e se evapora com o calor da luz solar.

Ceres é o maior corpo do cinturão de asteroides situado entre Marte e Júpiter e o único objeto deste tipo classificado como planeta anão. A sonda Dawn da NASA está em órbita de Ceres há mais de um ano e mapeou a sua superfície com grande detalhe. Uma das maiores surpresas foi a descoberta de manchas muito brilhantes, que refletem muito mais radiação do que o solo ao seu redor, muito mais escuro. A mais proeminente destas manchas situa-se no interior da cratera Occator e sugere que Ceres pode ser um mundo muito mais ativo do que a maioria dos seus vizinhos asteroides. Manchas brilhantes foram também vistas, embora muito menos claramente, em imagens de Ceres obtidas anteriormente pelo telescópio espacial Hubble da NASA/ESA em 2003 e 2004.
Novas observações muito precisas obtidas com o espectrógrafo HARPS, montado no telescópio de 3,6 metros do ESO, em La Silla, no Chile, detectaram não apenas o movimento destas manchas devido à rotação de Ceres em torno do seu eixo, mas também descobriram variações adicionais inesperadas que sugerem que o material das manchas é volátil e se evapora com a luz do Sol.
O autor principal deste novo estudo, Paolo Molaro do INAF - Observatório Astronômico de Trieste, explica: “Assim que a sonda Dawn revelou a presença de misteriosas manchas brilhantes na superfície de Ceres, pensei imediatamente nos possíveis efeitos que podiam ser medidos a partir da Terra. À medida que Ceres gira, as manchas aproximam-se da Terra e depois afastam-se outra vez, o que afeta o espectro da radiação solar refletida que chega à Terra.”
Ceres faz uma rotação em torno de si mesmo a cada 9 horas, e os cálculos mostram que o efeito devido ao movimento de aproximação e afastamento causado por esta rotação é muito baixo, da ordem de 20 km/h. No entanto, este movimento é suficientemente elevado para poder ser medido por efeito Doppler com instrumentos de alta precisão como o HARPS.
A equipe observou Ceres com o HARPS durante pouco mais de duas noites em julho e agosto de 2015. “O resultado foi surpreendente. Encontramos efetivamente as variações no espectro que esperávamos devido à rotação de Ceres, mas mais do que isso, encontramos também outras variações consideráveis de noite para noite,” acrescenta Antonino Lanza, do INAF - Observatório Astrofísico de Catania.
A equipe concluiu que as variações observadas podem ser devidas à presença de substâncias voláteis que se evaporam sob a ação da radiação solar. Foi sugerido que o material altamente reflexivo nas manchas de Ceres pode ser gelo de água exposto recentemente ou sulfatos de magnésio hidratado. Quando as manchas no interior da cratera Occator estão no lado iluminado pelo Sol, formam plumas que refletem a radiação solar de modo muito eficaz. Estas plumas evaporam-se depois rapidamente, perdem refletividade e produzem as variações observadas. Este efeito, no entanto, varia de noite para noite, dando origem a padrões aleatórios adicionais, tanto para escalas de tempo curtas como para escalas de tempo mais longas.
Se esta interpretação se confirmar, Ceres parece ser muito diferente de Vesta e de outros asteroides do cinturão principal de asteroides. Apesar de estar relativamente isolado, o objeto parece ser internamente ativo. Muitos dos corpos internamente ativos do Sistema Solar, tais como os grandes satélites de Júpiter ou Saturno, estão sujeitos a fortes efeitos de maré devido à sua proximidade aos planetas massivos. Sabe-se que Ceres é rico em água, mas não é claro se este fato está relacionado com as manchas brilhantes. A fonte de energia que origina esta perda contínua de material da superfície também é desconhecida.
A sonda Dawn continua estudando Ceres e o comportamento das suas misteriosas manchas. Observações feitas a partir do solo com o HARPS e outros instrumentos poderão continuar mesmo após o final da missão espacial.

Este trabalho foi descrito num artigo científico intitulado “Daily variability of Ceres’ Albedo detected by means of radial velocities changes of the reflected sunlight”, de P. Molaro et al., que foi publicado na revista especializada Monthly Notices of the Royal Astronomical Society.

Fonte: ESO

segunda-feira, 14 de março de 2016

Detectado disco de gás ao redor de uma estrela bebê

Pesquisadores usando o Atacama Large Millimeter/submillimeter Array (ALMA) fizeram as primeiras observações diretas delineando o disco de gás ao redor de uma estrela bebê do envelope de gás em queda.

gás denso em torno da estrela

© ESO/NAOJ/NRAO/ALMA (gás denso em torno da estrela)

Essa descoberta preenche uma importante lacuna no nosso entendimento sobre as fases iniciais da evolução estelar.

A equipe de pesquisa, liderada por Yusuke Aso (um estudante da Universidade de Tóquio) e Nagayoshi Ohashi (um professor no Subaru Telescope, National Astronomical Observatory do Japão) observou a estrela bebê conhecida como TMC-1A localizada a cerca de 450 anos-luz de distância da Terra, na constelação de Touro. A TMC-1A é uma protoestrela, uma estrela que ainda está no seu processo de formação. Desse modo, uma grande quantidade de gás ainda está presente em torno da TMC-1A.

As estrelas se formam em densas nuvens de gás. Estrelas bebês crescem se alimentando do gás ao redor, como se fosse um feto que se alimenta da placenta da mãe. Nesse processo, o gás não pode fluir diretamente para a estrela. Ao invés disso, ele primeiro se acumula e forma um disco ao redor da estrela, e então, o disco alimenta a estrela. Contudo, ainda é desconhecido quando no processo de formação de estrelas, esse disco aparece e como ele desenvolve. A falta de sensibilidade e de resolução em observações feitas no comprimento de onda de rádio dificulta observar esse fenômeno.

“Os discos ao redor das estrelas jovens, são locais onde os planetas irão se formar”, disse Aso. “Para entender o mecanismo de formação do disco, nós precisamos diferenciar o disco do envelope externo precisamente e apontar o local dessa borda”.

Usando então o ALMA, a equipe observou diretamente a fronteira entre o disco interno em rotação e o envelope externo em queda com grande precisão pela primeira vez. Como o gás do envelope externo está caindo continuamente no disco, é difícil identificar a região de transição nos estudos anteriores. Em particular, o gás tênue em alta velocidade nos discos em rotação não é fácil de ser observado. Mas o ALMA tem sensibilidade suficiente para destacar esse componente e ilustrar a velocidade e a distribuição do gás no disco com muita precisão. Isso permitiu que a equipe pudesse distinguir o disco do envelope em queda.

A equipe descobriu que a fronteira entre o disco e o envelope está localizada a 90 UA (unidades astronômicas) da estrela bebê central. A distância é três vezes maior do que a órbita de Netuno, o planeta mais externo do Sistema Solar. O disco observado obedece a chamada rotação Kepleriana, ou seja, o material orbitando próximo da estrela central gira mais rápido do que o material externo.

A alta sensibilidade das observações forneceram outra importante informação sobre o objeto. A partir de detalhadas medidas da velocidade de rotação, o grupo de pesquisa calculou que a massa da estrela bebê é de 0,68 vezes a massa do Sol. A equipe também determinou que o gás cai a uma taxa de um milionésimo da massa do Sol por ano, com uma velocidade de 1 km/s. A gravidade faz com que o gás caia em direção a estrela bebê central, mas a velocidade medida é muito menor do que a velocidade de queda livre. Algo então está diminuindo a velocidade do gás. Os pesquisadores suspeitam que um campo magnético ao redor da estrela bebê, possa estar reduzindo a velocidade do gás.

Estes resultados foram publicados com o título "ALMA Observations of the Transition from Infall Motion to Keplerian Rotation around the Late-phase Protostar TMC-1A" no Astrophysical Journal.

Fonte: National Astronomical Observatory of Japan

Nebulosas escuras na constelação do Touro

Às vezes até mesmo a poeira escura do espaço interestelar tem uma beleza serena.

nebulosas escuras na constelação do Touro

© Oliver Czernetz/DSS (nebulosas escuras na constelação do Touro)

Um tal lugar ocorre na direção da constelação de Touro. Os filamentos vistos na imagem acima podem ser encontrados no céu entre o aglomerado estelar das Plêiades e a nebulosa Califórnia. Essas nuvens de poeira são conhecidas não pelo seu brilho, mas sim pelo seu grau de absorção e opacidade.

Diversas estrelas brilhantes são visíveis com sua luz azulada sendo observada refletidas na opaca poeira marrom. Outras estrelas parecem incomumente avermelhadas a medida que sua luz fracamente atravessa as colunas de poeira escura, sendo a cor vermelha a luz remanescente depois que os tons de azul são dispersos.

Além disso, mais estrelas estão atrás dos pilares de poeira tão densos que suas luzes não são observáveis nessa imagem telescópica, no espectro visível.

Apesar de parecer sereno, o cenário retratado apresenta na realidade um contínuo tumulto e renascimento. Isso é causado pelos massivos nós de gases e poeira que gravitacionalmente colapsam para formar novas estrelas, que não só criam mais poeira em suas atmosferas como também destroem as nuvens antigas com sua luz energética e seus ventos.

Fonte: NASA

sábado, 12 de março de 2016

A Grande Muralha!

A Lua é um lugar escarpado, onde algumas montanhas tem altitude de mais de 8 km!

cratera Antoniadi

© NASA/GSFC/ASU (cratera Antoniadi)

A imagem cima foi captada recentemente pela sonda Lunar Reconnaissance Orbiter (LRO) quando estava a 40 km da superfície lunar, e mostra parte do anel de picos de Antoniadi, enquadrado com a vertente leste da cratera, uma impressionante muralha com 4 km de altura. Junto ao anel de picos podemos ver uma outra cratera, com aproximadamente 12 km de diâmetro. Esta estrutura é relativamente recente e contém no seu interior o local mais profundo da Lua, um ponto situado mais de 9 km abaixo do raio médio lunar.

localização da cratera Antoniadi

© NASA/GSFC/DLR/ASU (localização da cratera Antoniadi)

A topografia vista acima foi calculada a partir de observações da câmera LROC Wide Angle.

Antoniadi é uma cratera lunar com cerca de 144 km de diâmetro, localizada no interior da gigantesca bacia de impacto de South Pole–Aitken (SPA), no hemisfério lunar mais distante da Terra. Formada entre duas antigas crateras (Numerov e Minneart), esta estrutura é particularmente interessante por diversas razões. Em primeiro lugar, o seu interior exibe um pequeno pico central rodeado por um anel de picos, o que a coloca, do ponto de vista morfológico, numa posição de transição entre as crateras complexas e as bacias com múltiplos anéis de picos centrais. Em segundo lugar, o solo de Antoniadi contém materiais de origem vulcânica, provavelmente escavados das camadas mais profundas da crosta lunar. Por último, o manto ao seu redor encontra-se crivado de numerosas crateras secundárias, possivelmente criadas por impactos subsequentes ao de Antoniadi.

Uma incrível coincidência entre a Terra e a Lua é a existência de praticamente o mesmo relevo; perto de 20 km a partir do ponto mais alto ao ponto mais baixo. O relevo lunar total é ainda mais surpreendente quando se considera o diâmetro da Lua sendo apenas um quarto que o da Terra.

Fonte: Arizona State University

sexta-feira, 11 de março de 2016

Um elemento raro no início do Sistema Solar

Cientistas encontraram evidências num meteorito de que um elemento raro, o cúrio, estava presente durante a formação do Sistema Solar.

meteorito carbonáceo Allende

© François Tissot (meteorito carbonáceo Allende)

O meteorito carbonáceo Allende, salpicado com inclusões que têm uma química parecida com cerâmica (nesta imagem a cores falsas, vermelho para o cálcio, azul para o alumínio, verde para o magnésio).

A descoberta termina um debate de 35 anos sobre a sua possível presença no início do Sistema Solar, e desempenha um papel crucial na reavaliação dos modelos de evolução estelar e de síntese de elementos nas estrelas.

"O cúrio é um elemento elusivo. É um dos elementos mais pesados conhecidos, no entanto, não ocorre naturalmente porque todos os seus isótopos são radioativos e decaem rapidamente numa escala de tempo geológico," afirma François Tissot, autor principal do estudo e pós-doutorado do Instituto de Tecnologia de Massachusetts.

Tissot e os pesquisadores Nicolas Dauphas e Lawrence Grossman, da Universidade de Chicago, encontraram evidências de cúrio numa inclusão cerâmica invulgar a que chamam "Marie Curiosa", retirada de um meteorito carbonáceo. O cúrio tornou-se incorporado na inclusão quando se condensou a partir da nuvem gasosa que formou o Sol no início do Sistema Solar.

Marie Curiosa e o cúrio têm o nome de Marie Curie, cujo trabalho pioneiro estabeleceu as bases da teoria da radioatividade. O cúrio só foi descoberto em 1944, por Glenn Seaborg e colaboradores na Universidade da Califórnia, Berkeley, que bombardearam átomos de plutônio com partículas alfa (núcleos de átomos de hélio) para sintetizar um novo elemento muito radioativo.

Para identificar quimicamente este novo elemento, Seaborg e colaboradores estudaram a energia das partículas emitidas durante o seu decaimento no Laboratório de Metalurgia da Universidade de Chicago, que mais tarde se tornou no Laboratório Nacional Argonne. O isótopo que sintetizaram era o muito instável cúrio-242, que se decompõe numa vida média de 162 dias. A vida média é o tempo médio que um isótopo instável leva para decair ou desintegrar. Não confundir com meia-vida, que é o tempo necessário para que caia pela metade, por desintegração, uma determinada massa de um radioisótopo.

Na Terra, hoje, o cúrio só existe quando fabricado em laboratórios ou como subproduto de explosões nucleares. O cúrio pode ter estado presente no início do Sistema Solar como produto de explosões estelares massivas que tiveram lugar antes do nascimento do Sistema Solar.

"A possível presença do cúrio no início do Sistema Solar tem sido emocionante para os cosmoquímicos, porque muitas vezes eles podem usar elementos radioativos como cronômetros para datar as idades relativas dos meteoritos e planetas," afirma Dauphas, professor de Ciências Geofísicas.

O isótopo de cúrio (Cm-247) possui uma vida média de 15 milhões de anos e decai, ao longo do tempo, para um isótopo de urânio (U-235). Portanto, um mineral ou rocha formada no início do Sistema Solar teria incorporado mais Cm-247 do que um mineral ou rocha formada mais tarde, depois de Cm-247 ter decaído. Se os cientistas analisassem estes dois minerais hipotéticos hoje, iriam descobrir que o mineral mais antigo contém mais U-235 (o produto de decaimento de Cm-247 do que o mineral mais jovem).

"A ideia é bastante simples, mas, durante quase 35 anos, os cientistas têm debatido sobre a presença de Cm-247 no início do Sistema Solar," acrescenta Tissot.

Os primeiros estudos, na década de 1980, encontraram grandes excessos de U-235 em todas as inclusões meteoríticas que analisaram, e concluíram que o cúrio era muito abundante durante a formação do Sistema Solar. Experiências mais refinadas realizadas por James Chen e Gerald Wasserburg, no Instituto de Tecnologia da Califórnia, mostraram que estes resultados iniciais eram falsos, e que se o cúrio estava realmente presente no início do Sistema Solar, a sua abundância era tão baixa que nem os instrumentos mais avançados seriam incapazes de o detectar.

Os cientistas tiveram que esperar até 2010, quando foi desenvolvido um novo espectrômetro de massa de alto desempenho, para identificar, com sucesso, que os pequenos excessos de U-235 podiam ser a prova cabal para a presença de Cm-247 no início do Sistema Solar.

"Foi um passo importante, mas o problema é que esses excessos eram tão pequenos que podiam ter sido produzidos por outros processos," explica Tissot.

Os modelos preveem que o cúrio, se presente, estava em baixa abundância no início do Sistema Solar. Portanto, o excesso de U-235 produzido pelo decaimento de Cm-247 não pode ser visto em minerais ou inclusões que contêm quantidades grandes ou até quantidades médias de urânio natural. Um dos desafios foi, assim, encontrar um mineral ou uma inclusão que, provavelmente, tenha incorporado muito cúrio, mas contendo pouco urânio.

Com a ajuda de Grossman, a equipe foi capaz de identificar um tipo específico de inclusão meteorítica rica em cálcio e alumínio. Sabe-se que estas inclusões ricas em cálcio e alumínio têm uma baixa abundância de urânio e provavelmente uma alta abundância de cúrio. Uma destas inclusões, a Marie Curiosa, continha uma quantidade extremamente baixa de urânio.

"É nesta mesma amostra que fomos capazes de resolver um excesso sem precedentes de U-235," afirma Tissot. "Todas as amostras naturais têm uma composição isotópica semelhante de urânio, mas o urânio na amostra Marie Curiosa tem 6% mais U-235, um achado que só pode ser explicado pela presença de Cm-247 no início do Sistema Solar."

Graças a esta amostra, a equipe de pesquisa foi capaz de calcular a quantidade de cúrio presente no início do Sistema Solar e compará-la com outros elementos radioativos pesados, como o iodo-129 e o plutónio-244. Eles descobriram que todos estes isótopos podem ter sido produzidos em conjunto por um único processo nas estrelas.

"Isto é particularmente importante porque indica que, à medida que gerações sucessivas de estrelas morrem e expelem os elementos que produziram para a Galáxia, os elementos mais pesados são produzidos juntos, enquanto os trabalhos anteriores haviam sugerido que este não era o caso," explicou Dauphas.

A descoberta da ocorrência natural de cúrio fecha o ciclo aberto há 70 anos atrás pela descoberta de cúrio sintético, e fornece agora uma nova restrição para ser incorporada nos modelos complexos da nucleossíntese estelar e da evolução química galáctica para melhor compreender como elementos como o ouro foram produzidos nas estrelas.

Os detalhes da descoberta aparecem na revista Science Advances.

Fonte: University of Chicago