Uma equipe internacional de astrônomos descobriu o grupo galáctico mais distante até hoje. Com o nome EGS77, o trio de galáxias data de uma época em que o Universo tinha apenas 680 milhões de anos, ou menos de 5% da sua idade atual (13,8 bilhões de anos).
© NASA/ESA (ilustração do grupo de galáxias EGS77)
A inserção desta ilustração do grupo de galáxias EGS77 mostra os objetos rodeados por bolhas sobrepostas de hidrogênio ionizado. Ao transformar os átomos de hidrogênio, atenuantes de luz, em gás ionizado, pensa-se que a luz ultravioleta tenha formado bolhas destas por todo o Universo inicial, passando gradualmente de opaco a completamente transparente. O fundo da imagem desta composição de imagens no visível e no infravermelho próximo obtidas pelo telescópio espacial Hubble, inclui as três galáxias de EGS77 (círculos verdes).
Mais significativamente, as observações mostram que as galáxias participam numa ampla mudança cósmica chamada reionização. A era começou quando a luz das primeiras estrelas mudou a natureza do hidrogênio por todo o Universo, de maneira semelhante a um lago gelado que derrete na primavera. Isto transformou o cosmos inicial e escuro, que extingue luz, no que vemos hoje.
O Universo jovem estava cheio de átomos de hidrogênio, que atenuam a luz ultravioleta e bloqueiam a nossa visão das galáxias primitivas. O EGS77 é o primeiro grupo de galáxias apanhado no ato de limpar esta neblina cósmica.
Apesar de galáxias individuais mais distantes já terem sido observadas, EGS77 é o grupo galáctico mais distante até ao momento, mostrando os comprimentos de onda específicos da luz ultravioleta distante revelada pela reionização. Esta emissão, chamada Lyman-alfa, é proeminente em todos os membros do EGS77.
Na sua fase inicial, o Universo era um plasma brilhante de partículas, incluindo elétrons, prótons, núcleos atômicos e luz. Os átomos ainda não podiam existir. O Universo estava num estado ionizado, semelhante ao gás dentro de um sinal de neon aceso ou tubo fluorescente.
Depois do Universo crescer e arrefecer durante cerca de 380.000 anos, os elétrons e prótons combinaram-se nos primeiros átomos, sendo mais de 90% deles hidrogênio. Centenas de milhões de anos mais tarde, este gás formou as primeiras estrelas e galáxias. Mas a própria presença deste gás abundante apresenta desafios para a detecção de galáxias no Universo primitivo.
Os átomos de hidrogênio absorvem e reemitem rapidamente a luz ultravioleta distante conhecida como emissão Lyman-alfa, que tem um comprimento de onda de 121,6 nanômetros. Quando as primeiras estrelas se formaram, parte da luz que produziram correspondia a este comprimento de onda. Como a luz Lyman-alfa interagiu facilmente com os átomos de hidrogênio, não podia viajar muito antes que o gás a dispersasse em direções aleatórias.
"A luz intensa das galáxias pode ionizar o hidrogênio circundante, formando bolhas que permitem que a luz das estrelas viaje livremente," disse Vithal Tilvi, pesquisador da Universidade Estatal do Arizona, EUA. "EGS77 formou uma grande bolha que permite que a sua luz viaje para a Terra sem muita atenuação. Eventualmente, bolhas como estas cresceram em todas as galáxias e preencheram o espaço intergaláctico, reionizando o Universo e abrindo caminho para a luz viajar através do cosmos."
O EGS77 foi descoberto como parte do levantamento Cosmic DAWN (Cosmic Deep And Wide Narrowband). A equipe fotografou uma pequena área na direção da constelação de Boieiro usando um filtro personalizado no instrumento NEWFIRM (Extremely Wide-Field InfraRed Imager) do NOAO (National Optical Astronomy Observatory), acoplado ao telescópio Mayall de 4 metros no Observatório Nacional de Kitt Peak, Arizona, EUA.
Dado que o Universo está se expandindo, a luz Lyman-alfa de EGS77 foi esticada durante as suas viagens, de modo que os astrônomos na verdade a detectaram no infravermelho próximo. Não podemos ver estas galáxias no visível porque esta luz começou em comprimentos de onda mais curtos que a Lyman-alfa e foi dispersa pela neblina de átomos de hidrogênio.
Para ajudar a selecionar candidatos distantes, os cientistas compararam as suas imagens com dados disponíveis publicamente da mesma região obtidas com os telescópios espaciais Hubble e Spitzer da NASA. As galáxias que aparecem brilhantes em imagens no infravermelho próximo foram marcadas como possibilidades, enquanto as que apareciam na luz visível foram rejeitadas por estarem demasiado próximas.
A equipe confirmou as distâncias das galáxias do grupo EGS77 usando o instrumento MOSFIRE (Multi-Object Spectrometer for Infra-Red Exploration) no telescópio Keck I do Observatório W. M. Keck em Maunakea, Havaí. Todas as três galáxias mostram linhas de emissão Lyman-alfa em comprimentos de onda ligeiramente diferentes, refletindo distâncias ligeiramente diferentes. A separação entre galáxias adjacentes é de cerca de 2,3 milhões de anos-luz, ou um pouco mais perto do que a distância entre a Galáxia de Andrômeda e a Via Láctea.
O próximo telescópio espacial James Webb é sensível à emissão Lyman-alfa de galáxias ainda mais fracas a estas distâncias e pode encontrar mais galáxias no grupo EGS77.
Os astrônomos esperam que bolhas de reionização semelhantes desta época sejam raras e difíceis de encontrar. O planejado WFIRST (Wide Field Infrared Survey Telescope) da NASA poderá ser capaz de descobrir exemplos adicionais, iluminando ainda mais esta importante transição na história cósmica.
O artigo que descreve estes achados foi submetido à revista The Astrophysical Journal.
Fonte: NASA
O artigo que descreve estes achados foi submetido à revista The Astrophysical Journal.