domingo, 16 de outubro de 2022

Par de estrelas forma "impressão digital" no espaço

Uma nova imagem pelo telescópio espacial James Webb revela uma notável visão cósmica: pelo menos 17 anéis concêntricos de poeira emanando de um par de estrelas.

© STScI (duas estrelas em Wolf-Rayet 140)

Localizadas a pouco mais de 5.000 anos-luz da Terra, as estrelas são coletivamente conhecidas como Wolf-Rayet 140 (WR 140). Cada anel foi criado quando as duas estrelas se aproximaram e os seus ventos estelares (fluxos de gás que sopram para o espaço) se encontraram, comprimindo o gás e formando poeira.

As órbitas das estrelas aproximam-nas cerca de uma vez em cada oito anos; tal como o crescimento dos anéis num tronco de uma árvore, os anéis de poeira assinalam a passagem do tempo. Nota-se a produção de poeira neste sistema durante mais de um século. A imagem também ilustra o quão sensível é o telescópio espacial James Webb. Antes, só era possível ver dois anéis de poeira, utilizando telescópios terrestres. Agora vemos pelo menos 17 anéis.

Para além da sensibilidade geral do Webb, o seu instrumento MIRI (Mid-Infrared Instrument) está unicamente qualificado para estudar os anéis de poeira, ou conchas, porque são mais espessos e largos do que aparecem na imagem. Os instrumentos científicos do Webb detectam luz infravermelha, um comprimento de onda invisível ao olho humano. O MIRI detecta os comprimentos de onda infravermelhos mais longos, o que significa que pode frequentemente ver objetos mais frios, incluindo os anéis de poeira, do que os outros instrumentos do telescópio. O espectrômetro do MIRI também revelou a composição da poeira, formada principalmente a partir de material ejetado por um tipo de estrela conhecida como estrela Wolf-Rayet. 

Uma estrela Wolf-Rayet é uma estrela de classe O, nascida com pelo menos 25 vezes mais massa do que o nosso Sol, que está perto do fim da sua vida, quando provavelmente irá colapsar e formar um buraco negro. Mais quente agora que durante a sua juventude, uma estrela Wolf-Rayet gera ventos poderosos que empurram enormes quantidades de gás para o espaço. 

A estrela Wolf-Rayet neste par particular pode ter vertido mais de metade da sua massa original através deste processo. A transformação de gás em poeira é um pouco como transformar farinha em pão: requer condições e ingredientes específicos. O elemento mais comum encontrado nas estrelas, o hidrogênio, não pode formar poeira por si só. Mas dado que as estrelas Wolf-Rayet liberam tanta massa, também ejetam elementos mais complexos tipicamente encontrados no interior de uma estrela, incluindo carbono. Os elementos pesados, no vento, arrefecem enquanto viajam pelo espaço e são depois comprimidos onde os ventos de ambas as estrelas se encontram.

Alguns outros sistemas Wolf-Rayet formam poeira, mas nenhum é conhecido por fazer anéis como WR 140. O padrão único dos anéis forma-se porque a órbita da estrela Wolf-Rayet em WR 140 é alongada, não circular. Só quando as estrelas se aproximam - mais ou menos à mesma distância entre a Terra e o Sol - e os seus ventos colidem está o gás sob pressão suficiente para formar poeira. Com órbitas circulares, os binários Wolf-Rayet podem produzir poeira continuamente.

Os pesquisadores pensam que os ventos de WR 140 também varreram para longe a área circundante de material residual com o qual podiam colidir, o que pode ser a razão pela qual os anéis permanecem tão imaculados em vez de estarem manchados ou de se dispersarem. É provável que existam ainda mais anéis que se tenham tornado demasiado fracos e dispersos, que nem mesmo o Webb os consegue ver nos dados. 

As estrelas Wolf-Rayet podem parecer exóticas em comparação com o nosso Sol, mas podem ter desempenhado um papel na formação estelar e planetária. Quando uma estrela Wolf-Rayet "limpa" uma área, o material varrido pode acumular-se na periferia e tornar-se denso o suficiente para a formação de novas estrelas. Há algumas evidências de que o Sol se formou num tal cenário.

Utilizando dados do modo de espectroscopia de resolução média do MIRI, o novo estudo fornece as melhores evidências, até agora, de que as estrelas Wolf-Rayet produzem moléculas de poeira ricas em carbono. Além disso, a preservação das conchas de poeira indica que esta poeira pode sobreviver no ambiente hostil entre estrelas, passando a fornecer material para futuras estrelas e planetas. Estimam-se que deveriam haver pelo menos alguns milhares de estrelas Wolf-Rayet na Via Láctea, mas apenas cerca de 600 foram encontradas até à data. Embora as estrelas Wolf-Rayet sejam raras na nossa Galáxia porque têm vida curta no que toca às estrelas, é possível que tenham produzido muita poeira ao longo da história da Via Láctea antes de explodirem e/ou formarem buracos negros.

Um artigo foi publicado na revista Nature Astronomy

Fonte: ESA

Um par de buracos negros em fusão com extrema precessão orbital

Um par de buracos negros foi visto oscilando enquanto se fundiam, num exemplo extremo de uma previsão feita pela teoria geral da relatividade de Albert Einstein que foi vista claramente pela primeira vez.

© Alamy (ilustração de dois buracos negros orbitando um ao outro)

Esta oscilação, conhecida como precessão, ocorre quando a órbita ou rotação de um objeto muda lentamente com o tempo, um exemplo comum é quando um pião começa a girar em um ângulo diferente à medida que desacelera.

A precessão orbital induzida pela gravidade, uma consequência da previsão da relatividade geral de que objetos pesados dobram o espaço-tempo, vê a forma da órbita de tal objeto mudar ao longo do tempo. Este efeito havia sido observado muito fracamente em estrelas de nêutrons orbitando umas às outras, mas era tão sutil que as órbitas apenas oscilavam a uma taxa de algumas vezes por ano.

Agora, Mark Hannam, da Universidade de Cardiff, Reino Unido, e seus colegas viram um efeito muito mais extremo num par de buracos negros movendo-se a um quinto da velocidade da luz, causado por um deles girando em um ângulo de 90 graus em relação ao seu movimento orbital. 

À medida que se fundiam, os buracos negros liberavam uma onda gravitacional, conhecida como GW200129, que carregava a assinatura da precessão a uma taxa de três vezes por segundo. É 10 bilhões de vezes mais rápido do que o encontrado em medições anteriores, então é realmente o regime mais extremo da teoria de Einstein, onde o espaço e o tempo são deformados e distorcidos de maneiras completamente anormais. 

Para identificar a precessão, a equipe reanalisou dados coletados pela primeira vez em 2020 por três detectores de ondas gravitacionais, baseados nos EUA (LIGO) e na Itália (VIRGO). Uma análise anterior foi inconclusiva, mas usando um modelo mais avançado do sinal da onda gravitacional, os pesquisadores descobriram que a melhor maneira de explicar o sinal era com um dos buracos negros, girando quase no limite superior permitido pela relatividade geral. causando a precessão da órbita do sistema.

As implicações astrofísicas da detecção são bastante significativas. A rotação extrema e o desalinhamento com sua órbita não são previstos pelas ideias atuais de formação de buracos negros, que envolvem estrelas em implosão, e precisam de outra explicação. 

Um artigo foi publicado na revista Nature

Fonte: New Scientist

Estrela desintegra-se ao passar perto de buraco negro

Em outubro de 2018, uma pequena estrela foi desfeita em pedaços quando vagueou demasiado perto de um buraco negro numa galáxia situada a 665 milhões de anos-luz da Terra.

© DESY (ilustração de um evento de perturbação de marés)

Embora possa parecer excitante, o evento não foi uma surpresa para os astrônomos que ocasionalmente testemunham estes eventos violentos enquanto observam o céu noturno. Mas quase três anos após o massacre, o mesmo buraco negro voltou a iluminar os céus.

Os pesquisadores concluíram que o buraco negro está agora ejetando material viajando a metade da velocidade da luz, mas não sabem por que razão o fluxo foi atrasado por vários anos. 

A equipe detectou a explosão incomum ao mesmo tempo que revisitava eventos de perturbação de marés que ocorreram ao longo dos últimos anos. Dados de rádio do VLA (Very Large Array), no estado norte-americano do Novo México, mostraram que o buraco negro tinha sido misteriosamente reanimado em junho de 2021.

Foram recolhidas observações do evento de perturbação de marés, chamado AT2018hyz, em vários comprimentos de onda utilizando o VLA, o observatório ALMA no Chile, o MeerKAT na África do Sul, o ATCA (Australian Telescope Compact Array) na Austrália, o Observatório de raios X Chandra e o Observatório Neil Gehrels Swift, estes dois últimos situados no espaço. As observações rádio do evento de perturbação de marés revelaram-se as mais marcantes.

Na última década descobriu-se por vezes que eventos de perturbação de marés  brilham no rádio enquanto ejetam material e enquanto a estrela é consumida pela primeira vez pelo buraco negro. Mas em AT2018hyz houve silêncio radiofônico durante os primeiros três anos e agora está dramaticamente iluminado para se tornar um dos eventos de perturbação de marés mais luminosos no rádio alguma vez observados. 

Os eventos de perturbação de marés são bem conhecidos por emitirem luz quando ocorrem. À medida que uma estrela se aproxima de um buraco negro, as forças gravitacionais começam a esticar a estrela. Eventualmente, o material alongado espalha-se em torno do buraco negro e aquece, criando um clarão que pode ser detectados a milhões de anos-luz de distância. Alguns materiais são ocasionalmente atirados para o espaço. 

A emissão, conhecida como fluxo, normalmente desenvolve-se rapidamente após a ocorrência de um evento de perturbação de maré, não anos mais tarde. Mas neste buraco negro ocorreu um retardo na ejeção de material oriundos da estrela. 

O fluxo de material provocados por este buraco negro viaja tão depressa quanto 50% da velocidade da luz. Para comparação, a maioria dos eventos de perturbação de marés tem um fluxo que viaja a 10% da velocidade da luz.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: Harvard University

quarta-feira, 12 de outubro de 2022

Descoberto buraco negro disparando jatos em galáxia vizinha

Com a ajuda de cientistas cidadãos, uma equipe de astrônomos descobriu um buraco negro único expelindo um jato impetuoso em outra galáxia.

© GMRT / Ananda Hota (RAD12)

O buraco negro é hospedado pela galáxia RAD12 localizada a cerca de um bilhão de anos-luz de distância da Terra. 

As galáxias são normalmente divididas em duas classes principais com base em sua morfologia: espirais e elípticas. As espirais têm braços espirais opticamente azuis com uma abundância de gás frio e poeira. Nas galáxias espirais, novas estrelas se formam a uma taxa média de uma estrela semelhante ao Sol por ano. Em contraste, as galáxias elípticas parecem amareladas e carecem de características distintas, como braços espirais. A formação de estrelas em galáxias elípticas é muito escassa; ainda é um mistério para os astrônomos por que as galáxias elípticas que vemos hoje não formam novas estrelas há bilhões de anos. Evidências sugerem que buracos negros supermassivos são os responsáveis. 

Estes buracos negros supermassivos expelem jatos gigantescos de elétrons se movendo em velocidades muito altas em outras galáxias, esgotando o combustível necessário para a futura formação de estrelas: gás frio e poeira. 

A natureza única da RAD12 foi observada em 2013 usando dados ópticos do Sloan Digitized Sky Survey (SDSS) e dados de rádio do Very Large Array (FIRST survey). No entanto, a observação de acompanhamento com o Giant Meterwave Radio Telescope (GMRT) na Índia foi necessária para confirmar sua natureza verdadeiramente exótica: o buraco negro em RAD12 parece estar ejetando o jato apenas em direção a uma galáxia vizinha, chamada RAD12-B. 

Em todos os casos, os jatos são ejetados aos pares, movendo-se em direções opostas em velocidades relativísticas. Por que apenas um jato é visto vindo do RAD12 continua sendo um enigma para os astrônomos. Uma haste cônica de plasma jovem é vista sendo ejetada do centro e alcança muito além das estrelas visíveis da RAD12. 

As observações do GMRT revelaram que o plasma mais fraco e mais antigo se estende muito além da haste cônica central e se expande como a tampa de um cogumelo (visto em vermelho na imagem tricolor). Toda a estrutura tem 440 mil anos-luz de comprimento, muito maior do que a própria galáxia hospedeira.

A RAD12 é diferente de tudo conhecido até agora; esta é a primeira vez que um jato foi observado colidindo com uma grande galáxia como RAD12-B. Os astrônomos estão agora um passo mais perto de entender o impacto de tais interações nas galáxias elípticas, o que pode deixá-las com pouco gás frio para a futura formação de estrelas. 

O líder de pesquisa Dr. Ananda Hota diz: "Estamos entusiasmados por ter descoberto um sistema raro que nos ajuda a entender o fluxo do jato de rádio de buracos negros supermassivos na formação de estrelas de galáxias durante fusões. Observações com o GMRT e dados de vários outros telescópios, como o radiotelescópio MeerKAT sugere fortemente que o jato de rádio em RAD12 está colidindo com a galáxia companheira.

O trabalho foi publicado hoje no peródico Monthly Notices of the Royal Astronomical Society Letters.

Fonte: Oxford University

A galáxia tripla SIT 45 inspecionada em detalhes

Uma equipe internacional de astrônomos realizou observações fotométricas de múltiplos comprimentos de onda de um trio de galáxias conhecido como SIT 45.

© HSC / Aihara (SIT 45)

Os resultados do estudo fornecem informações importantes sobre as propriedades e dinâmicas deste objeto. Galáxias triplas são geralmente laboratórios interessantes que permitem estudos da formação e evolução de pequenos e grandes sistemas de galáxias. No entanto, dado que elas não são comuns no Universo local, estudá-las em detalhes é de grande importância para os astrônomos. 

O trio de galáxias SIT 45, também conhecido como UGC 12589, está localizado a cerca de 473 milhões de anos-luz de distância, consistindo num tipo tardio em fusão. Tendo em conta que SIT 45 contém três galáxias em interação, espera-se que exiba dinâmicas complexas e história de formação estelar. Portanto, uma equipe de pesquisadores estudou a evolução do SIT 45 através de suas propriedades e configuração dinâmicas, bem como seu ambiente local e estrutura de grande escala. Para isto, eles analisaram dados de várias pesquisas, incluindo o satélite Galaxy Evolution Explorer (GALEX) All Sky Survey e o Two Micron All Sky Survey (2MASS).  

O SIT 45 é um candidato ideal para investigar processos como o desencadeamento da formação de estrelas devido à interação. O estudo descobriu que o SIT 45 é um sistema altamente isolado em relação ao seu ambiente de grande escala e é um dos trigêmeos mais compactos do banco de dados SIT (catálogo de trigêmeos isolados baseado em SDSS). 

O valor de seu parâmetro de força de maré devido aos membros triplos é um dos mais altos do catálogo do SIT. Ao pesquisar a história da formação estelar do SIT 45, a equipe descobriu que o sistema tem uma formação estelar em andamento, com uma das galáxias, designada SIT 45C, apresentando atividade alta de formação estelar. 

Em geral, as três galáxias apresentam um aumento de formação estelar recente (cerca de 200 milhões de anos), o que sugere que pode ter sido desencadeado pelo processo de fusão. De acordo com os astrônomos, os resultados indicam que o SIT 45 é altamente evoluído levando em consideração seu raio harmônico e valores de tempo de cruzamento que são muito menores do que no restante dos trigêmeos SIT conhecidos. Também foi descoberto que o SIT 45 é composto de galáxias espirais azuis com alta taxa de formação de estrelas que podem estar embutidas em um halo comum de matéria escura.

Os pesquisadores propõem as duas hipóteses mais plausíveis que poderiam explicar as propriedades do SIT 45. Foi considerado dois cenários para a configuração atual do tripleto, um em que um dos membros é uma galáxia de maré e outro em que esta galáxia chega ao sistema após a interação. Ambos os cenários precisam ser mais explorados.

Um artigo foi aceito para publicação no periódico Astronomy & Astrophysics.

Fonte: Cornell University

Encontrado um par de estrelas com a órbita mais curta

Quase metade das estrelas na nossa Galáxia são solitárias como o Sol. A outra metade vive aos pares, ou em sistemas múltiplos, com órbitas tão íntimas que alguns destes sistemas podiam caber entre a Terra e a Lua.

© CfA / M. Weiss (ilustração de uma estrela orbitando uma anã branca)

Astrônomos do MIT (Massachusetts Institute of Technology) e de outros centros de pesquisa descobriram agora um binário estelar com uma órbita extremamente curta, parecendo orbitar-se uma à outra cada 51 minutos.

O sistema parece pertencer a uma classe binária rara conhecida como "variável cataclísmica", na qual uma estrela semelhante ao nosso Sol orbita intimamente uma anã branca. Uma variável cataclísmica ocorre quando as duas estrelas se aproximam, ao longo de bilhões de anos, fazendo com que a anã branca comece a acretar material da sua estrela parceira. Este processo pode emitir enormes flashes variáveis de luz que, há séculos atrás, os astrônomos assumiram ser o resultado de algum cataclismo desconhecido.

O sistema recentemente descoberto, identificado como ZTF J1813+4251, é uma variável cataclísmica com a órbita mais curta detectada até o momento. Ao contrário de outros sistemas semelhantes observados no passado, os astrônomos captaram esta variável cataclísmica à medida que as estrelas se eclipsavam uma à outra várias vezes, permitindo à equipe medir com precisão as propriedades de cada estrela. Com estas medições, os pesquisadores correram simulações do que o sistema está provavelmente fazendo hoje e de como deverá evoluir ao longo das próximas centenas de milhões de anos. Concluem que as estrelas estão atualmente em transição e que a estrela semelhante ao Sol está orbitando e  "doando" grande parte da sua atmosfera de hidrogênio à voraz anã branca.

A estrela semelhante ao Sol acabará por ser despojada até um núcleo majoritariamente denso e rico em hélio. Setenta milhões de anos depois, as estrelas migrarão ainda para mais perto uma da outra, com uma órbita ultracurta de apenas 18 minutos, antes de começarem a expandir e a afastar-se. 

Há décadas atrás, os pesquisadores do MIT e de outros locais previram que tais variáveis cataclísmicas deveriam transitar para órbitas ultracurtas. Esta é a primeira vez que um sistema de transição deste tipo é observado diretamente.

Os astrônomos descobriram o novo sistema dentro de um vasto catálogo de estrelas observadas pelo ZTF (Zwicky Transient Facility), um levantamento que usa uma câmara ligada a um telescópio no Observatório Palomar, no estado norte-americano da Califórnia, para tirar fotografias de alta resolução de largas áreas do céu. O levantamento já obteve mais de 1.000 imagens de cada uma das mais de um bilhão de estrelas no céu, registando a luminosidade variável de cada estrela ao longo de dias, meses e anos. O catálogo foi vasculhado em busca de sinais de sistemas com órbitas ultracurtas, cuja dinâmica pode ser tão extrema que devem emitir dramáticas explosões de luz e emitir ondas gravitacionais.

Para este novo estudo, foi procurado nos dados ZTF, estrelas que pareciam piscar repetidamente, com um período de menos de uma hora, caracterizando uma frequência que normalmente sinaliza um sistema de pelo menos dois objetos em órbita íntima, com um atravessando o outro e bloqueando brevemente a sua luz. Foi utilizado um algoritmo para examinar mais de um bilhão de estrelas, cada uma das quais foi registada em mais de 1.000 imagens. O algoritmo filtrou cerca de um milhão de estrelas que pareciam piscar mais ou menos a cada hora. A pesquisa conduziu a ZTF J1813+4251, um sistema que reside a cerca de 3.000 anos-luz da Terra, na direção da constelação de Hércules

O sistema foi analisado com o Observatório W. M. Keck no Havaí e o GTC (Gran Telescopio Canarias) na Espanha. Foi medido com precisão a massa e o raio de cada objeto, bem como o seu período orbital. Foi descoberto que o primeiro objeto era provavelmente uma anã branca, com 1/100 do tamanho do Sol e cerca de metade da sua massa. O segundo objeto era uma estrela semelhante ao Sol perto do fim da sua vida, com um-décimo do tamanho e massa do Sol (cerca do tamanho de Júpiter). As estrelas também pareciam orbitar-se uma à outra a cada 51 minutos. 

No entanto, algo não está correto. Esta estrela parecia o Sol, mas o Sol não pode caber numa órbita inferior a oito horas. Há quase 30 anos atrás, pesquisadores haviam previsto que os sistemas com órbitas ultracurtas deveriam existir como variáveis cataclísmicas. À medida que a anã branca orbita a estrela parecida com o Sol e absorve o seu hidrogênio leve, a estrela parecida com o Sol deverá constituir um núcleo de hélio, que manterá a estrela morta numa órbita íntima e ultracurta. 

Então, ZTF J1813+4251 era provavelmente uma variável cataclísmica no ato de transição de um corpo rico em hidrogênio para um corpo rico em hélio. A descoberta confirma as previsões feitas por astrônomos no passado.

Um artigo foi publicado na revista Nature

Fonte: Massachusetts Institute of Technology

quarta-feira, 5 de outubro de 2022

Uma fotografia de galáxias em interação

As duas galáxias em interação que compõem o par conhecido como Arp-Madore 608-333 (AM 0608-333) parecem flutuar lado a lado nesta imagem do telescópio espacial Hubble.

© Hubble (AM 0608-333)

Embora pareçam serenas e imperturbáveis, as duas estão sutilmente perturbando uma a outra através de uma interação gravitacional mútua que está distorcendo ambas as galáxias.

Esta interação galáctica prolongada foi obtida pela Advanced Camera for Surveys do Hubble. As galáxias em interação em Arp-Madore 608-333 foram captadas como parte de um esforço para construir um arquivo de alvos interessantes para estudos futuros mais detalhados com o Hubble, telescópios terrestres e o telescópio espacial James Webb. 

Para construir este arquivo, os astrônomos vasculharam os catálogos astronômicos existentes em busca de uma lista de alvos espalhados pelo céu noturno. Ao fazer isto, eles esperavam incluir objetos que já haviam sido identificados como interessantes e que seriam fáceis para o Hubble observar, independentemente da direção em que estivesse apontando.

Decidir como conceder o tempo de observação do Hubble é um processo demorado, competitivo e difícil, e as observações são alocadas de modo a usar cada segundo do tempo disponível do Hubble. No entanto, há uma fração de tempo pequena, mas persistente, cerca de 2 a 3%, que não é utilizada quando o Hubble se volta para apontar para novos alvos.

Os programas de instantâneos, como o que captou Arp-Madore 608-333, existem para preencher esta lacuna e aproveitar os momentos entre observações mais longas. Além de criar belas imagens como esta, os programas permitem que os astrônomos coletem o máximo de dados possível com o Hubble.

Fonte: ESA

sábado, 1 de outubro de 2022

Novo sistema planetário com três super-Terras e dois super-Mercúrios

Uma pesquisa internacional, liderada pelo Instituto de Astrofísica e Ciências do Espaço (IA) e com a participação do IAC (Instituto de Astrofísica das Canárias), confirmou a descoberta de cinco exoplanetas no mesmo sistema planetário, dois deles semelhantes a Mercúrio.

© NASA / JPL-Caltech (ilustração de um sistema com cinco planetas)

A descoberta fornece pistas sobre como se formam estes planetas incomuns e de muito alta densidade em torno da estrela fria HD 23472 com três super-Terras e dois super-Mercúrios.

Os pesquisadores queriam estudar a transição entre ter ou não ter uma atmosfera, o que pode estar relacionado com a evaporação provocada pela irradiação da estrela. Os cinco planetas no sistema HD 23472, três dos quais com massas menores do que a da Terra, estão entre os exoplanetas mais leves cujas massas foram medidas utilizando o método de velocidade radial. Esta técnica detecta pequenas variações na velocidade de uma estrela na linha de visão, devido ao movimento induzido por um planeta em órbita. 

A descoberta só foi possível graças à altíssima precisão do espectrógrafo ESPRESSO montado no VLT (Very Large Telescope) do ESO no Chile. As super-Terras e os super-Mercúrios são os análogos de massa mais elevada do que a da Terra e Mercúrio em termos de composição. Diferem no aspecto dos super-Mercúrios terem um maior teor de ferro (e núcleo de ferro). Estes tipos de exoplanetas são muito raros. Na verdade, apenas são conhecidos oito, já contando com os dois descobertos recentemente. 

Mercúrio é um dos planetas mais densos do Sistema Solar e não se sabe por que razão tem um núcleo relativamente maior e mais massivo do que o da Terra e outros planetas no nosso sistema planetário. Algumas explicações possíveis envolvem um impacto gigantesco que removeu parte do manto do planeta ou, dado que Mercúrio é muito quente, a sua alta temperatura pode ter evaporado parte do seu manto. 

A descoberta de outros planetas densos semelhantes a Mercúrio em torno de outras estrelas é a chave para compreender a formação de tais objetos. Realmente, a descoberta de dois super-Mercúrios no mesmo sistema planetário, em vez de um, fornece aos cientistas uma imagem reveladora. A possibilidade de um grande impacto para criar um super-Mercúrio já é muito remota, dois impactos gigantescos no mesmo sistema parece improvável. Compreender como estes dois super-Mercúrios se formaram exigirá uma maior caracterização da composição destes planetas. 

O futuro ELT (Extremely Large Telescope) e a sua primeira geração de espectrógrafos de alta resolução ANDES proporcionará pela primeira vez tanto a sensibilidade como a precisão necessárias para sondar a composição da sua superfície, ou a existência e composição de uma potencial atmosfera. 

Para a equipe, este é apenas um primeiro passo em direção ao seu objetivo final: encontrar outra Terra. A existência de atmosfera fornece pistas acerca da formação e evolução deste sistema e também tem implicações na habitabilidade dos planetas.

Um artigo foi publicado no periódico Astronomy & Astrophysics

Fonte: Instituto de Astrofísica e Ciências do Espaço

Potenciais primeiros vestígios das estrelas mais antigas do Universo

Os astrônomos podem ter descoberto os antigos remanescentes químicos das primeiras estrelas iluminando o Universo.

© NOIRLab (ilustração de um campo de estrelas de População III)

Utilizando uma análise inovadora de um quasar distante observado pelo telescópio Gemini North de 8,1 metros no Havaí, operado pelo NOIRLab, os cientistas encontraram uma proporção incomum de elementos que, argumentam, só podem ser originários dos detritos produzidos pela explosão de uma estrela de primeira geração com 300 massas solares. 

As primeiras estrelas formaram-se provavelmente quando o Universo tinha apenas 100 milhões de anos, menos de 1% da sua idade atual. Estas primeiras estrelas, conhecidas como de População III, eram tão titanicamente massivas que quando terminaram as suas vidas como supernovas rasgaram-se a ela próprias, semeando o espaço interestelar com uma mistura distinta de elementos pesados. No entanto, apesar de décadas de procura diligente, não havia até agora evidências diretas destas estrelas primordiais. 

Ao analisar um dos mais distantes quasares conhecidos, utilizando o telescópio Gemini North, um de dois telescópios idênticos que compõem o Observatório Internacional Gemini, os astrônomos pensam agora ter identificado o material remanescente da explosão de uma estrela de primeira geração. A luz deste quasar viajou durante 13,1 bilhões de anos, significando que o Universo tinha apenas 700 milhões de anos. Isto corresponde a um desvio para o vermelho de 7,54. Usando um método inovador para deduzir os elementos químicos contidos nas nuvens que rodeiam o quasar, notaram uma composição altamente incomum, o material continha mais de 10 vezes mais ferro do que magnésio em comparação com a proporção destes elementos encontrados no Sol.

Os cientistas pensam que a explicação mais provável para esta característica marcante é que o material foi deixado para trás por uma estrela de primeira geração que explodiu como uma supernova por instabilidade de pares. Estas versões notavelmente poderosas de explosões de supernova nunca foram testemunhadas, mas são teorizadas como sendo o fim da vida de estrelas gigantescas, com massas entre 150 e 250 vezes superiores à do Sol. As explosões de supernova por instabilidade de pares ocorrem quando os fótons no centro de uma estrela se transformam espontaneamente em elétrons e pósitrons. 

Esta conversão reduz a pressão da radiação dentro da estrela, permitindo que a gravidade a ultrapasse, levando ao colapso e subsequente explosão. Ao contrário de outras supernovas, estes acontecimentos dramáticos não deixam vestígios, tais como uma estrela de nêutrons ou um buraco negro, ejetando ao invés todo o seu material para o ambiente. 

Existem apenas duas formas de encontrar evidências delas. A primeira é apanhar uma supernova por instabilidade de pares no momento exato, o que é um acontecimento altamente improvável. A outra forma é identificar a assinatura química do material que é ejetado para o espaço interestelar. 

Para a sua pesquisa, os astrônomos estudaram resultados de uma observação prévia feita pelo telescópio Gemini North, usando o GNIRS (Gemini Near-Infrared Spectrograph). Um espectrógrafo divide a luz emitida por objetos celestes nos seus comprimentos de onda constituintes, que transportam informação sobre quais os elementos que os objetos contêm. O Gemini é um dos poucos telescópios do seu tamanho com equipamento adequado para realizar tais observações. A dedução das quantidades de cada elemento presente, no entanto, é um esforço complicado porque o brilho de uma linha num espectro depende de muitos outros fatores para além da abundância do elemento.

Dois coautores da análise, Yuzuru Yoshii e Hiroaki Sameshima, da Universidade de Tóquio, abordaram este problema desenvolvendo um método de utilização da intensidade dos comprimentos de onda num espectro do quasar para estimar a abundância dos elementos ali presentes. Foi através da utilização deste método para analisar o espectro do quasar que descobriram a relação manifestamente baixa entre o magnésio e o ferro. 

Para meticulosamente testar esta interpretação, são necessárias muitas mais observações para ver se outros objetos têm características semelhantes. Embora as estrelas de População III de alta massa tivessem desaparecido há muito, as impressões digitais químicas que deixam no seu material ejetado podem durar muito mais tempo e perdurar ainda hoje. Isto significa que os astrônomos podem ser capazes de encontrar as assinaturas de explosões de supernova por instabilidade de pares de estrelas há muito desaparecidas ainda impressas em objetos no nosso Universo local.

Um artigo foi publicado no periódico The Astrophysical Journal

Fonte: National Optical-Infrared Astronomy Research Laboratory

sexta-feira, 30 de setembro de 2022

Evidências da formação de um planeta ao redor de estrela

Novas evidências mostram um planeta se unindo no disco empoeirado de material orbitando a estrela parecida com o Sol, a LkCa 15.

© CfA / M. Weiss (ilustração de LkCa 15)

Esta não é a primeira vez que os astrônomos relatam evidências de um planeta no disco de LkCa 15. Em 2012, pesquisadores relataram sinais de um planeta se formando no sistema. Com apenas alguns milhões de anos, teria sido o planeta mais jovem já encontrado. 

E um estudo de acompanhamento em 2015 encontrou pontos brilhantes correspondentes a três planetas do tamanho de Júpiter crescendo no sistema, referidos como LkCa 15 b, c e d. Mas estudos de acompanhamento encontraram apenas um disco interno empoeirado onde estes planetas infantis estariam. 

No entanto, lacunas e assimetrias nas estruturas do disco ainda sugerem a presença de protoplanetas. Portanto, mesmo que os candidatos propostos anteriormente tenham sido refutados, a busca por planetas reais no disco continuou. 

Astrônomos detectaram duas estruturas de poeira nunca vistas anteriormente no disco a 42 UA (unidades astronômicas), mais distantes da estrela do que os candidatos a planetas anteriores haviam sido. 

A estrutura recém-descoberta é composta de dois componentes, um “aglomerado” e um “arco”, ambos contendo mais poeira do que seus arredores. Estas duas estruturas estão separadas por cerca de 120 graus ao redor do disco. Quando um planeta orbita uma estrela, as forças gravitacionais do par se equilibram em alguns locais especiais chamados pontos de Lagrange. Dois deles, chamados L4 e L5, estão 60 graus à frente e atrás do planeta em sua órbita, respectivamente. Os grãos de poeira podem ficar presos em uma “órbita de ferradura”, seguindo um caminho estranho de L4 a L5 e vice-versa, criando um acúmulo de material em cada extremidade. 

Um protoplaneta do tamanho de Netuno orbitando entre as duas estruturas no sistema LkCa 15 explicaria a formação do aglomerado e do arco. O planeta seria mais fraco e menor em massa do que os protoplanetas anteriormente reivindicados no sistema. Então, como é possível confirmar a existência deste planeta? Observações mais profundas com o Atacama Large Millimeter/submillimeter Array (ALMA) podem revelar um disco circumplanetário ao seu redor. Para obter imagens diretas de tal planeta, os astrônomos suspeitam que a próxima geração de telescópios de luz visível e infravermelho extremamente grandes será necessária.

Um artigo foi publicado no periódico Astrophysical Journal Letters.

Fonte: Sky & Telescope

Hubble detecta escudo protetor defendendo um par de galáxias anãs

Durante bilhões de anos, as maiores galáxias satélites da Via Láctea, a Grande e a Pequena Nuvens de Magalhães, têm seguido uma viagem perigosa.

© STScI (Coroa de Magalhães)

Orbitando-se uma à outra à medida que são puxadas em direção à nossa Galáxia natal, começaram a desembaraçar-se, deixando para trás rastros de detritos gasosos. E, no entanto, estas galáxias anãs permanecem intactas, com uma vigorosa formação estelar em curso.

Se este gás foi removido destas galáxias, como é que elas ainda estão a formar estrelas? Com a ajuda de dados do telescópio espacial Hubble da NASA e de um satélite aposentado chamado FUSE (Far Ultraviolet Spectroscopic Explorer), uma equipe de astrônomos encontrou finalmente a resposta: o sistema de Magalhães está rodeado por uma coroa, um escudo protetor de gás quente. Este casulo envolve as duas galáxias, impedindo que os seus abastecimentos de gás sejam desviados pela Via Láctea e permitindo-lhes assim continuar  formando novas estrelas. 

Esta descoberta aborda um novo aspeto da evolução galáctica. As galáxias envolvem-se em casulos gasosos, que funcionam como escudos defensivos contra outras galáxias. Os astrônomos previram a existência da coroa há vários anos. Foi descoberto que se fosse incluída uma coroa nas simulações das nuvens de Magalhães, caindo para a Via Láctea, era possível explicar pela primeira vez a massa de gás extraído.

Era conhecido que a Grande Nuvem de Magalhães deveria ser suficientemente massiva para ter uma coroa. Mas embora a coroa se estenda a mais de 100.000 anos-luz das nuvens de Magalhães e cubra uma enorme porção do céu do hemisfério sul, é efetivamente invisível. O seu mapeamento exigiu pesquisar 30 anos de dados de arquivo em busca de medições adequadas. 

Os pesquisadores pensam que a coroa de uma galáxia é um remanescente da nuvem primordial de gás que colapsou para formar a galáxia há bilhões de anos. Embora as coroas já tenham sido vistas em torno de galáxias anãs mais distantes, os astrônomos nunca antes tinham sido capazes de sondar uma com tanto detalhe como aqui. Há muitas previsões, graças a simulações de computador, sobre como deveriam ser e como deveriam interagir ao longo de bilhões de anos, mas, observacionalmente, não foi possível realmente testar a maioria delas porque as galáxias anãs são normalmente demasiado difíceis de detetar. 

Tendo em conta que estão mesmo à nossa porta, as Nuvens de Magalhães proporcionam uma oportunidade ideal para estudar como as galáxias anãs interagem e evoluem. Em busca de evidências diretas da Coroa de Magalhães, a equipe vasculhou dados de arquivo do Hubble e do FUSE em busca de observações ultravioletas de quasares localizados bilhões de anos-luz por trás dela.

Os quasares são os núcleos extremamente brilhantes de galáxias que abrigam buracos negros massivos e ativos. A equipe argumentou que embora a coroa fosse demasiado fraca para ser vista por si só, deveria ser visível como uma espécie de nevoeiro que obscurece e absorve padrões de luz brilhante dos quasares no plano de fundo. 

As observações Hubble de quasares foram já usadas no passado para mapear a coroa em torno da galáxia de Andrômeda. Ao analisar padrões na luz ultravioleta de 28 quasares, a equipe foi capaz de detectar e caracterizar o material ao redor da Grande Nuvem de Magalhães e confirmar que a coroa existe. Como previsto, os espectros dos quasares estão impressos com as distintas assinaturas de carbono, oxigênio e silício que compõem o halo de plasma quente que rodeia a galáxia anã. A capacidade de detectar a coroa exigiu espectros ultravioleta extremamente detalhados.

Ao mapear os resultados, a equipe descobriu também que a quantidade de gás diminui com a distância ao centro da Grande Nuvem de Magalhães. Como pode um manto tão fino de gás proteger uma galáxia da destruição? Qualquer coisa que tente passar para a galáxia tem de passar primeiro por este material, para que possa absorver algum deste impacto. Além disso, a coroa é o primeiro material que pode ser extraído. Ao doar um pouco daquela coroa, protege o gás que está dentro da própria galáxia e é capaz de formar novas estrelas.

Um artigo foi publicado na revista Nature

Fonte: Space Telescope Science Institute

Existem exoplanetas semelhantes ao "Pálido Ponto Azul"?

Ao procurar mundos semelhantes à Terra em torno de outras estrelas, em vez de procurar o "Pálido Ponto Azul" descrito por Carl Sagan, uma nova pesquisa sugere que uma caça aos "pálidos pontos amarelos" secos e frios pode ter mais hipóteses de sucesso.


© EPS (três cenários de distribuição de terra e oceano)

O quase-equilíbrio de terra-água que ajudou a vida a florescer no nosso planeta pode ser altamente incomum, segundo um estudo suíço-alemão apresentado no Congresso de Ciência da EPS (Europlanet Society) em Granada. 

Tilman Spohn e Dennis Höning estudaram como a evolução e os ciclos dos continentes e da água poderiam moldar o desenvolvimento dos exoplanetas terrestres. Os resultados dos seus modelos sugerem que os planetas têm cerca de 80% de probabilidade de serem majoritariamente cobertos por terra, com 19% de probabilidade de serem principalmente mundos oceânicos. Apenas um por cento dos resultados teve uma distribuição de terra e água semelhante à da Terra.

"Nós, terráqueos, desfrutamos do equilíbrio entre áreas terrestres e oceanos no nosso planeta. É tentador assumir que uma segunda Terra seria igual à nossa, mas os nossos resultados de modelagem sugerem que não é provável que seja esse o caso," disse o professor Spohn, diretor executivo para o ISSI (International Space Science Institute) em Berna, Suíça. 

Os modelos numéricos da equipe sugerem que as temperaturas médias da superfície não seriam muito diferentes, com talvez uma variação de 5º Celsius, mas que a distribuição terra-oceano afetaria os climas dos planetas.

Um mundo oceânico, com menos de 10% de terra, seria provavelmente úmido e quente, com um clima semelhante ao da Terra na época tropical e subtropical que se seguiu ao impacto do asteroide que causou a extinção dos dinossauros. Os mundos continentais, com menos de 30% de oceanos, se caracterizariam por climas mais frios, mais secos e mais rigorosos. Os desertos frios poderiam ocupar as partes interiores das massas terrestres e de um modo geral se assemelhariam à nossa Terra durante a última Idade do Gelo, quando se desenvolveram extensos glaciares e camadas de gelo.

Na Terra, o crescimento dos continentes por atividade vulcânica e a sua erosão estão mais ou menos em equilíbrio. A vida baseada na fotossíntese prospera em terra, onde tem acesso direto à energia solar. Os oceanos fornecem um enorme reservatório de água que aumenta a pluviosidade e evita que o clima atual se torne demasiado seco.

"No motor das placas tectônicas da Terra, o aquecimento interno impulsiona a atividade geológica, tal como sismos, vulcões e a construção de montanhas, e resulta no crescimento de continentes. A erosão da terra faz parte de uma série de ciclos que trocam água entre a atmosfera e o interior. Os nossos modelos numéricos de como estes dois ciclos interagem mostram que a Terra atual pode ser um planeta excepcional e que o equilíbrio de massa terrestre pode ser instável ao longo de bilhões de anos. Embora todos os planetas modelados possam ser considerados habitáveis, a sua fauna e flora podem ser bastante diferentes," disse o professor Spohn.

Fonte: Europlanet Society

sexta-feira, 23 de setembro de 2022

Detectada bolha de gás quente em torno do buraco negro da Via Láctea

Com o auxílio do Atacama Large Millimeter/submillimeter Array (ALMA), os astrônomos descobriram sinais de um ”ponto quente” em órbita de Sagitário A*, o buraco negro supermassivo no centro da nossa Galáxia.

© ESO (órbita do ponto quente em torno do buraco negro)

A descoberta nos ajuda a entender melhor o ambiente enigmático e dinâmico deste buraco negro supermassivo. A bolha quente de gás está girando em torno de Sagitário A* em uma órbita semelhante em tamanho à do planeta Mercúrio, mas fazendo um ciclo completo em apenas cerca de 70 minutos. Isto requer uma velocidade de cerca de 30% da velocidade da luz!

As observações foram obtidas com o ALMA nos Andes chilenos durante uma campanha da Colaboração EHT (Event Horizon Telescope) destinada a obter imagens de buracos negros. Em Abril de 2017, o EHT conectou oito radiotelescópios existentes em todo o mundo, incluindo o ALMA, para obter dados que resultaram na primeira imagem de Sagitário A*, recentemente divulgada.

Por acaso, algumas das observações tinham sido realizadas pouco depois de uma explosão de energia de raios X emitida a partir do centro da Via Láctea, que foi detectada pelo telescópio espacial Chandra da NASA. Acredita-se que estes tipos de explosões, observadas anteriormente por telescópios infravermelhos e de raios X, estejam associadas aos chamados “pontos quentes”, bolhas de gás quente que se deslocam a altas velocidades em órbitas muito próximas do buraco negro.

O que é mesmo novo e interessante é o fato destas explosões estarem, até agora, apenas claramente presentes em observações infravermelhas e de raios X de Sagitário A*. Nota-se, pela primeira vez, fortes indicações de que pontos quentes orbitando o buraco negro também estão presentes em observações de rádio. 

Pensou-se durante muito tempo que estas explosões teriam origem nas interações magnéticas do gás muito quente que orbita muito próximo de Sagitário A* e estes novos resultados apoiam esta ideia. 

O ALMA permite aos astrônomos estudar emissão de rádio polarizada de Sagitário A*, a qual pode ser usada para investigar o campo magnético do buraco negro. A equipe utilizou estas observações juntamente com modelos teóricos para aprender mais sobre a formação do ponto quente e o ambiente em que se encontra, incluindo o campo magnético que rodeia Sagitário A*. Esta pesquisa coloca limites mais fortes na forma deste campo magnético do que os conseguidos em observações anteriores, ajudando os astrônomos a descobrir a natureza do buraco negro e seus arredores.

As observações confirmam algumas das descobertas anteriores feitas com o auxílio do instrumento GRAVITY montado no Very Large Telescope (VLT) do ESO, que observa no infravermelho. Tanto os dados do GRAVITY como os do ALMA sugerem que a explosão tem origem em um aglomerado de gás que orbita em torno do buraco negro a cerca de 30% da velocidade da luz no sentido horário no céu, com a órbita do ponto quente quase de frente para nós. 

Esta pesquisa foi publicada na revista Astronomy & Astrophysics.

Fonte: ESO

A visão mais nítida dos anéis de Netuno

O telescópio espacial James Webb está mostrando as suas capacidades mais perto de casa com a sua primeira imagem de Netuno.


© STScI (anéis de Netuno)

O Webb não só captou a visão mais clara dos anéis deste peculiar planeta em mais de 30 anos, como as suas câmaras estão também revelando o gigante gelado sob uma luz totalmente nova.

O aspecto mais impressionante da nova imagem do Webb é a visão nítida dos anéis dinâmicos do planeta, alguns dos quais não têm sido vistos de todo, quanto mais com este detalhe, desde a passagem da Voyager 2 em 1989.

Além dos vários anéis estreitos e brilhantes, as imagens do Webb mostram claramente as bandas de poeira mais fracas de Netuno. A qualidade de imagem extremamente estável e precisa do Webb também permite detectar estes anéis fracos muito próximos de Netuno.

Netuno tem fascinado e deixado os pesquisadores perplexos desde a sua descoberta em 1846. Localizado 30 vezes mais longe do Sol do que a Terra, Netuno orbita numa das áreas mais sombrias do nosso Sistema Solar. A esta distância extrema, o Sol é tão pequeno e tênue que o meio-dia em Netuno é semelhante a um fraco crepúsculo na Terra. 

Este planeta é caracterizado como um gigante de gelo devido à composição química do seu interior. Em comparação com os gigantes gasosos Júpiter e Saturno, Netuno é muito mais rico em elementos mais pesados do que o hidrogênio e o hélio. Isto é aparente no bem conhecido aspecto azul de Netuno nas imagens do telescópio espacial Hubble em comprimentos de onda visíveis, provocado por pequenas quantidades de metano gasoso. 

O instrumento NIRCam (Near-Infrared Camera) do Webb capta objetos no infravermelho próximo, de 0,6 a 5 micrômetros, pelo que Netuno não aparece azul. De fato, o gás metano é tão fortemente absorvido que o planeta é bastante escuro nos comprimentos de onda do Webb, exceto quando existem nuvens de alta altitude. Tais nuvens de metano gelado são proeminentes como estrias brilhantes e manchas, que refletem a luz solar antes de ser absorvida pelo gás metano. 

Imagens de outros observatórios têm registado estas características de nuvens em rápida evolução ao longo dos anos. Mais sutilmente, uma linha fina de luminosidade em torno do equador do planeta pode ser uma assinatura visual da circulação atmosférica global que alimenta os ventos e tempestades de Netuno. A atmosfera desce e aquece no equador, e assim brilha mais em comprimentos de onda infravermelhos do que os gases mais frios e circundantes. 

A órbita de 164 anos de Netuno significa que o seu polo norte, no topo desta imagem, está justamente fora de vista para os astrônomos, mas as imagens do Webb sugerem um brilho intrigante nesta área. 

Um vórtice previamente conhecido no polo sul é evidente na imagem do Webb, mas pela primeira vez o telescópio revelou uma banda contínua de nuvens à sua volta. O Webb também fotografou sete das 14 luas conhecidas de Netuno.

© STScI (Tritão e Netuno)

Dominando este retrato de Netuno pelo Webb está um ponto de luz muito brilhante ostentando os picos de difração vistos em muitas das imagens do Webb; não é uma estrela, mas a lua mais incomum de Netuno, Tritão. Coberta por uma camada gelada de nitrogênio condensado, Tritão reflete uma média de 70% da luz solar que a atinge. É bem mais brilhante do que Netuno porque a atmosfera do planeta é escurecida pela absorção de metano nos comprimentos de onda do Webb. Tritão orbita Netuno numa órbita bizarra (retrógrada), levando a especulação que esta lua era na realidade um objeto do Cinturão de Kuiper que foi gravitacionalmente capturado por Netuno. Estão planejados estudos adicionais de Tritão e Netuno para o próximo ano. 

Fonte: ESA

A inclinação e os anéis de Saturno podem ter surgido de antiga lua

Girando em volta do equador do planeta, os anéis de Saturno são uma prova óbvia de que o planeta tem um eixo de rotação inclinado.

© NASA (anéis de Saturno)

O gigante gira num ângulo de 26,7º em relação ao plano em que orbita o Sol. Os astrônomos há muito que suspeitam que esta inclinação vem de interações gravitacionais com o seu vizinho Netuno, à medida que a inclinação de Saturno efetua precessão, como um pião, quase ao mesmo ritmo que a órbita de Netuno. 

Mas um novo estudo de modelagem realizada por astrônomos do MIT (Massachusetts Institute of Technology) e de outras instituições descobriu que, embora os dois planetas possam ter estado uma vez em sincronia, Saturno escapou desde então à atração de Netuno. 

O que é que foi responsável por este realinhamento planetário? A equipe tem uma hipótese meticulosamente testada: uma lua em falta. A equipe propõe que Saturno, que hoje acolhe 83 luas, já acolheu pelo menos mais uma, um satélite extra a que deram o nome de Crisálida.

Juntamente com as demais luas, os pesquisadores sugerem que Crisálida orbitou Saturno durante vários bilhões de anos, puxando o planeta de uma forma que manteve a sua inclinação, ou "obliquidade", em ressonância com Netuno. Mas há cerca de 160 milhões de anos, Crisálida tornou-se instável e aproximou-se demasiado do seu planeta num encontro rasante que dilacerou o satélite. A perda da lua foi suficiente para retirar Saturno do alcance de Netuno e para deixá-lo com a atual inclinação. 

Além disso, os pesquisadores supõem que, embora a maior parte do corpo estilhaçado de Crisálida possa ter colidido com Saturno, uma fração dos seus detritos pode ter permanecido em órbita, eventualmente quebrando-se em pequenos pedaços gelados para formar os famosos anéis do planeta. 

O satélite desaparecido pode explicar dois mistérios de longa data: a atual inclinação de Saturno e a idade dos seus anéis, anteriormente estimada em cerca de 100 milhões de anos, muito mais jovens do que o próprio planeta. 

No início dos anos 2.000, os cientistas propuseram a ideia de que o eixo inclinado de Saturno é o resultado do planeta estar preso numa ressonância, ou associação gravitacional, com Netuno. Mas as observações feitas pela nave espacial Cassini da NASA, que orbitou Saturno de 2004 a 2017, colocaram uma nova reviravolta no problema. Os cientistas descobriram que Titã, o maior satélite de Saturno, estava se afastando de Saturno a uma velocidade de cerca de 11 centímetros por ano. 

A rápida migração de Titã, e a sua atração gravitacional, levaram os cientistas a concluir que a lua era provavelmente responsável pela inclinação e manutenção de Saturno em ressonância com Netuno. Mas esta explicação depende de um grande desconhecido: o momento de inércia de Saturno, que é a forma como a massa é distribuída no interior do planeta. A inclinação de Saturno poderia comportar-se de forma diferente, dependendo de a matéria estar mais concentrada no seu núcleo ou mais para a superfície.

Para progredir no problema, foi determinado o momento de inércia de Saturno. O campo gravitacional pode ser utilizado para determinar a distribuição de massa no planeta. Foi modelado o interior de Saturno e identificaram uma distribuição de massa que correspondia ao campo gravitacional que a sonda Cassini observou. Surpreendentemente, descobriram que este momento de inércia recentemente identificado colocou Saturno perto, mas mesmo para lá da ressonância com Netuno. Os planetas podem ter estado uma vez em sincronia, mas já não estão. 

A equipe realizou primeiro simulações para fazer evoluir a dinâmica orbital de Saturno e das suas luas para trás no tempo, para ver se alguma instabilidade natural entre os satélites existentes poderia ter influenciado a inclinação do planeta. Esta investigação não deu em nada. Assim, os pesquisadores reexaminaram as equações matemáticas que descrevem a precessão de um planeta, que é como o eixo de rotação de um planeta muda ao longo do tempo. Um termo nesta equação tem contribuições de todos os satélites. Se um satélite fosse retirado desta soma, poderia afetar a precessão do planeta. 

A questão era, quão massivo teria de ser aquele satélite, e que dinâmica teria de ter para tirar Saturno da ressonância com Netuno? Foram efetuadas simulações para determinar as propriedades de um satélite, tais como a sua massa e raio orbital, e a dinâmica orbital que seria necessária para tirar Saturno da ressonância.

Conclui-se que a atual inclinação de Saturno é o resultado da ressonância com Netuno e que a perda do satélite, Crisálida, que tinha aproximadamente o tamanho de Jápeto, a terceira maior lua de Saturno, permitiu-lhe escapar à ressonância.

A cerca de 200 a 100 milhões de anos, Crisálida entrou numa zona orbital caótica, passou por uma série de encontros próximos com Jápeto e Titã e acabou por se aproximar demasiado de Saturno, num encontro rasante que rasgou o satélite em pedaços, deixando uma pequena fração orbitando o planeta como um anel de escombros. A perda de Crisálida, explica a precessão de Saturno e a sua atual inclinação, bem como a formação tardia dos seus anéis.

Um artigo foi publicado na revista Science.

Fonte: Massachusetts Institute of Technology