quarta-feira, 1 de fevereiro de 2023

Detectados eclipses de raios gama em sistemas estelares

Utilizando dados do telescópio espacial Fermi da NASA, os cientistas descobriram os primeiros eclipses de raios gama de um tipo especial de sistema estelar binário.

© NASA (estrela em órbita eclipsando um pulsar)

Estes chamados sistemas estelares "aranha" contêm cada um deles um pulsar, os remanescentes superdensos e de rotação rápida de uma estrela que explodiu como supernova, que lentamente corrói a sua companheira. 

Astrônomos examinaram mais de uma década de observações do Fermi para encontrar sete sistemas estelares "aranha" que sofrem estes eclipses, que ocorrem quando a estrela companheira de baixa massa passa em frente do pulsar a partir do nosso ponto de vista. 

Os dados permitiram-lhes calcular como os sistemas estão inclinados em relação à nossa linha de visão e outras informações. Um dos objetivos mais importantes do estudo destes sistemas é tentar medir as massas dos pulsares. Os pulsares são basicamente estrutura da matéria mais densa que pode ser medida. A massa máxima que podem atingir limita a física dentro destes ambientes extremos, que não podem ser replicados na Terra. 

Estes sistemas desenvolvem-se porque uma estrela num binário evolui mais rapidamente do que a sua parceira. Quando a estrela massiva se transforma em supernova, deixa para trás um pulsar. Este remanescente estelar emite feixes em vários comprimentos de onda, incluindo raios gama, que entram e saem do nosso ponto de vista, criando pulsos tão regulares que rivalizam a precisão dos relógios atômicos. 

Desde cedo que um pulsar absorve um fluxo de gás. À medida que o sistema evolui, a alimentação cessa quando o pulsar começa a girar mais rapidamente, gerando fluxos de partículas e radiação que sobreaquecem o lado virado para a companheira e a corroem.

Os cientistas dividem os sistemas estelares "aranha" em dois tipos com o nome de espécies de aranhas cujas fêmeas por vezes comem os seus companheiros menores. As viúvas negras contêm companheiras com menos de 5% da massa do Sol. Os sistemas correspondentes às aranhas de "lista vermelha" (o equivalente australiano da viúva negra, as chamadas "redbacks") abrigam companheiras maiores, tanto em tamanho como em massa, tendo entre 10% e 50% da massa do Sol.

Os pesquisadores podem calcular as massas destes sistemas medindo os seus movimentos orbitais. As observações, no visível, podem medir a rapidez com que a companheira está viajando, enquanto as medições no rádio revelam a velocidade do pulsar. Para um sistema visto quase de face, tais alterações são ligeiras e potencialmente confusas. Os mesmos sinais também podem ser produzidos por um sistema diminuto, mais lento, que é visto de lado. 

Para medir as massas, é vital conhecer a inclinação do sistema em relação à nossa linha de visão. O ângulo de inclinação é normalmente medido utilizando luz visível, mas estas medições vêm com algumas potenciais complicações. À medida que a companheira orbita o pulsar, o seu lado superaquecido entra e sai de vista, criando uma flutuação no visível que depende da inclinação. No entanto, os astrônomos ainda estão aprendendo mais sobre o processo de superaquecimento e modelos com padrões diferentes de aquecimento preveem por vezes massas diferentes para os pulsares. 

Os raios gama, porém, são apenas gerados pelo pulsar e têm tanta energia que viajam em linha reta, sem serem afetados pelos detritos, a menos que sejam bloqueados pela companheira. Caso os raios gama desapareçam do conjunto de dados deste sistema, os cientistas podem inferir que a companheira eclipsou o pulsar. A partir daí, podem calcular a inclinação do sistema em relação ao nosso ponto de vista, as velocidades das estrelas e a massa do pulsar. 

O PSR B1957+20 (B1957) foi a primeira viúva negra conhecida, descoberta em 1988. Modelos anteriores para este sistema, construídos a partir de observações ópticas, determinaram que a sua inclinação em relação ao nosso ponto de vista era de cerca de 65 graus e a massa do pulsar era 2,4 vezes superior à do Sol. Isto tornaria B1957 o pulsar mais massivo conhecido, encontrando-se no limite teórico de massa entre os pulsares e os buracos negros. A análise dos dados do Fermi, possibilitou encontrar 15 fótons de raios gama em falta. O "timing" dos pulsos de raios gama destes objetos é tão confiável que 15 fótons em falta, ao longo de uma década, são suficientemente significativos para que seja estabelecido que o sistema está sendo eclipsado. Então, foi calculado que o binário está inclinado 84 graus e que o pulsar tem apenas 1,8 vezes a massa do Sol.

Um artigo foi publicado na revista Nature Astronomy

Fonte: Max Planck Institute for Gravitational Physics

Observando o sistema de anéis de Chariklo

Num feito observacional de alta precisão, os cientistas utilizaram uma nova técnica com o telescópio espacial James Webb da NASA para captar as sombras da luz estelar provocadas pelos finos anéis de Chariklo.

© STScI (centauro Chariklo e os seus anéis)

Chariklo é um corpo gelado e pequeno, mas o maior da população conhecida de Centauros, localizado a mais de 3,2 bilhões de quilômetros para além da órbita de Saturno. Chariklo tem apenas 250 quilômetros em diâmetro ou cerca de 51 vezes menor que a Terra, e os seus anéis orbitam a uma distância de cerca de 400 quilômetros do centro do corpo.

Em 2013, Felipe Braga-Ribas e colaboradores, usando telescópios terrestres, descobriram que Chariklo hospeda um sistema de dois anéis finos. Tais anéis eram esperados apenas em torno de grandes planetas como Saturno, Júpiter e Netuno. 

Os astrônomos estavam observando uma estrela quando Chariklo passou à sua frente, bloqueando a luz estelar como tinham previsto, ou seja, um fenômeno de ocultação. Surpreendentemente, a estrela "piscou" duas vezes antes de desaparecer por trás de Chariklo, e "piscou" novamente duas vezes depois da ocultação pelo Centauro. Os piscares foram provocados por dois anéis finos, os primeiros anéis alguma vez detetados em torno de um pequeno objeto do Sistema Solar. 

Esta foi a primeira tentativa de ocultação estelar com o Webb. Muito trabalho árduo foi feito para identificar e refinar as previsões para este acontecimento incomum. No dia 18 de outubro, foi utilizado o instrumento NIRCam (Near-Infrared Camera) do Webb para monitorar atentamente a estrela Gaia DR3 6873519665992128512, e vigiar as quedas de brilho indicando a ocorrência de uma ocultação. 

As sombras produzidas pelos anéis de Chariklo foram claramente detectadas, demonstrando uma nova forma de utilização do Webb para explorar objetos do Sistema Solar. A sombra estelar devido a Chariklo, propriamente dito, foi rastreada fora do alcance do Webb. Este apulso, ou seja, uma passagem próxima sem ocultação, foi exatamente como tinha sido previsto após a última manobra de trajetória do Webb. 

A curva de luz da ocultação do Webb, um gráfico do brilho de um objeto ao longo do tempo, revelou que as observações foram bem-sucedidas! Os anéis foram captados exatamente como previsto. As curvas de luz da ocultação vão fornecer nova ciência para os anéis de Chariklo. 

Os anéis são provavelmente compostos por pequenas partículas de água gelada misturadas com material escuro, detritos de um corpo gelado que colidiu com Chariklo no passado. Chariklo é demasiado pequeno e está muito distante para até o Webb fotografar diretamente os anéis separados do corpo principal, pelo que as ocultações são a única ferramenta que conseguem caracterizar os anéis por si só. 

Pouco depois da ocultação, o Webb visou novamente Chariklo, desta vez para recolher observações da luz solar refletida por Chariklo e pelos seus anéis (programa GTO 1272). O espectro do sistema mostra três bandas de absorção de água gelada no sistema de Chariklo. Os espectros por telescópios terrestres tinham sugerido este gelo, mas a qualidade requintada do espectro obtido pelo Webb revelou pela primeira vez a assinatura clara de gelo cristalino. Dado que as partículas altamente energéticas transformam o gelo de um estado cristalino para um estado amorfo, a detecção de gelo cristalino indica que o sistema de Chariklo sofre microcolisões que ou expõem o material intacto ou desencadeiam processos de cristalização. 

A maior parte da luz refletida no espectro é do próprio Chariklo: os modelos sugerem que a área dos anéis, tal como observada pelo Webb durante estas observações, corresponde provavelmente a um-quinto da área do próprio corpo. 

A observação da curva de luz da ocultação e as observações espectroscópicas abrem a porta para um novo meio de caracterizar objetos pequenos no Sistema Solar distante nos próximos anos. Com a alta sensibilidade e capacidade infravermelha do Webb, os cientistas podem utilizar o retorno científico único fornecido pelas ocultações e melhorar estas medições com espectros quase contemporâneos. Tais ferramentas vão constituir um trunfo tremendo para os cientistas que estudam corpos pequenos e distantes no nosso Sistema Solar. 

Veja mais detalhes em Primeiro sistema de anéis descoberto em torno de um asteroide.

Fonte: Space Telescope Science Institute

segunda-feira, 30 de janeiro de 2023

A primeira imagem direta de anã marrom em órbita de estrela das Híades

Uma equipe de astrônomos, usando dois Observatórios Maunakea no Havaí - o Observatório W. M. Keck e o telescópio Subaru - fotografou uma anã marrom em órbita de HIP 21152, uma jovem estrela parecida com o Sol no aglomerado das Híades.


© W. M. Keck Observatory / Subaru (anã marrom HIP 21152 B)

Quatro imagens diretas da anã marrom HIP 21152 B, captadas utilizando o telescópio Subaru e o Observatório W. M. Keck. A estrela hospedeira está escondida nas imagens (como notado pelo ícone da estrela amarela) e a anã marrom companheira está dentro do círculo.

Localizado a apenas 150 anos-luz de distância, o aglomerado estelar das Híades é o mais próximo da Terra e pode ser visto na direção da constelação de Touro, o seu padrão em forma de V é visível a olho nu. Dado que este grupo de estrelas jovens nasceu quase ao mesmo tempo, o aglomerado das Híades atraiu a atenção dos astrônomos como um importante alvo para o estudo da evolução das estrelas e planetas. 

A anã marrom recentemente encontrada neste aglomerado, chamada HIP 21152 B, é a primeira companheira subestelar confirmada de uma estrela da sequência principal nas Híades descoberta através de imagens diretas.

A sua massa é semelhante à de um planeta gigante, entre 22 a 36 massas de Júpiter. Este resultado pode fornecer uma importante pista para compreender as atmosferas de planetas gigantes e de anãs marrons com base em como e em quando apresentam características atmosféricas semelhantes às observadas nos planetas dos sistemas HR 8799 e HIP 21152 B.

As anãs marrons têm massas que se situam entre as de um planeta e de uma estrela; são mais massivas do que os planetas, mas não tão massivas como as estrelas. Estes objetos subestelares são úteis para estudar a evolução e as atmosferas dos planetas gigantes porque se espera que os planetas semelhantes a Júpiter e as anãs marrons mais leves tenham características semelhantes. As anãs marrons flutuam sozinhas no espaço ou orbitam outras estrelas. 

Embora já tenham sido encontradas milhares de anãs marrons desde a primeira descoberta em 1995, mas elas como companheiras são raras, com uma frequência de apenas algumas por cada 100 estrelas. Por esta razão, os astrônomos têm tentado estabelecer uma forma eficiente de encontrar anãs marrons companheiras. 

A equipe obteve a massa de HIP 21152 B calculando a sua órbita usando um total de quatro imagens diretas captadas usando os sistemas SCExAO (Subaru Coronagraphic Extreme Adaptive Optics) e CHARIS (Coronagraphic High Angular Resolution Imaging Spectrograph) do telescópio Subaru, bem como as ópticas adaptativas do Observatório W. M. Keck emparelhadas com a sua câmara NIRC2 (Near-Infrared Camera), de segunda geração.

Os pesquisadores também obtiveram espectros da anã marrom mostrando que a atmosfera de HIP 21152 B está transitanto entre uma anã marrom do "Tipo L" para uma anã marrom do "Tipo T", o que significa que está ficando mais fria, com uma temperatura de 1.200 a 1.300 K.

Curiosamente, a anã marrom tem um espectro semelhante ao famoso sistema HR 8799, que é o primeiro sistema exoplanetário a ser fotografado utilizando dois Observatórios de Maunakea: o Observatório W. M. Keck e o Observatório Gemini. 

O estudo, liderado pelo Centro de Astrobiologia do NINS (National Institutes of Natural Sciences) e pelo NAOJ (National Astronomical Observatory of Japan), foi publicado no periódico The Astrophysical Journal Letters

Fonte: W. M. Keck Observatory

A idade da galáxia mais distante com oxigênio

Um novo estudo, liderado por uma equipe conjunta da Universidade de Nagoya e do NAOJ (National Astronomical Observatory of Japan), mediu a idade cósmica de uma galáxia muito distante.

© ALMA / JWST (galáxia GHZ2/GLASS-z12)

A equipe utilizou o radiotelescópio ALMA (Atacama Large Millimeter Array) para detectar um sinal de rádio que viajou durante aproximadamente 97% da idade do Universo. Esta descoberta confirma a existência de galáxias no Universo primitivo encontradas pelo telescópio espacial James Webb (JWST). 

A galáxia, denominada GHZ2/GLASS-z12, foi inicialmente identificada no levantamento GLASS do JWST, um levantamento que observa o Universo distante e por trás de aglomerados massivos de galáxias. Estas observações consistem de várias imagens utilizando filtros de cor e de banda larga, semelhantes às cores RGB numa câmara. 

Para galáxias distantes, a luz demora tanto tempo para chegar até nós que a expansão do Universo desviou a cor desta luz para a extremidade vermelha do espectro visível, um fenômeno denominado desvio para o vermelho. A cor vermelha de GHZ2/GLASS-z12 ajudou os pesquisadores, consequentemente, a identificá-la como um dos candidatos mais convincentes a galáxia distante que já observaram. 

Foram identificadas tantas galáxias brilhantes e distantes nas primeiras semanas de observações do JWST que desafiou a nossa compreensão básica da formação das primeiras galáxias. No entanto, estas cores vermelhas são apenas indicativas de uma galáxia distante e, poderia, ao invés, ser uma galáxia muito rica em poeira que se mascara como objeto mais distante. Apenas observações diretas de linhas espectrais, ou seja, linhas presentes no espectro de luz de uma galáxia utilizado para identificar elementos, que podem confirmar com robustez as verdadeiras distâncias destas galáxias.

Imediatamente após a descoberta destes primeiros candidatos a galáxia, os pesquisadores da Universidade de Nagoya e do NAOJ utilizaram os quarenta radiotelescópios do ALMA, no Chile, para buscar uma linha espectral e assim confirmar as verdadeiras idades das galáxias. O ALMA também foi apontado para GHZ2/GLASS-z12 em busca de uma linha de emissão associada ao oxigênio, na frequência esperada sugerida pelas observações do JWST. O oxigênio é um elemento tipicamente abundante em galáxias distantes devido ao seu tempo relativamente curto de formação, pelo que a equipe optou por procurar uma linha de emissão de oxigênio aumentando as hipóteses de detecção. 

Ao combinar o sinal de cada um dos seus telescópios de 12 metros, o ALMA foi capaz de detectar a linha de emissão perto da posição da galáxia. O desvio para o vermelho observado da linha indica que vemos a galáxia como era apenas 367 milhões de anos após o Big Bang.

A brilhante linha de emissão indica que esta galáxia enriqueceu rapidamente os seus reservatórios de gás com elementos mais pesados do que o hidrogênio e o hélio. Isto fornece algumas pistas sobre a formação e evolução da primeira geração de estrelas e da sua vida útil. A pequena separação observada entre o gás oxigênio e a emissão das estrelas pode também sugerir que estas primeiras galáxias sofreram explosões violentas que expeliram o gás do centro da galáxia para a região que rodeava a galáxia e mesmo para além dela.

Estas profundas observações da rede de radiotelescópios ALMA fornecem evidências robustas da existência de galáxias nas primeiras centenas de milhões de anos após o Big Bang e confirmam os resultados surpreendentes das observações do JWST.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society

Fonte: Royal Astronomical Society

quinta-feira, 26 de janeiro de 2023

LDN 1622: A Nebulosa do Bicho-papão

Para alguns, a forma escura parece um bicho-papão mítico.

© J. Carter (LDN 1622)

Cientificamente, a Nebulosa Escura de Lynds (LDN) 1622 aparece contra um fundo fraco de gás hidrogênio brilhante, visível apenas em longas exposições telescópicas da região. 

Em contraste, a nebulosa de reflexão mais brilhante vdB 62 é mais facilmente vista logo acima e à direita do centro na imagem em destaque. A LDN 1622 fica perto do plano da nossa Via Láctea, perto no céu do Laço de Barnard, uma grande nuvem que envolve o rico complexo de nebulosas de emissão encontradas no Cinturão e Espada de Órion. 

Com contornos varridos, acredita-se que a poeira obscura de LDN 1622 esteja a uma distância semelhante, talvez a 1.500 anos-luz de distância. A essa distância, esse campo de visão de 2 graus abrangeria cerca de 60 anos-luz. 

As estrelas jovens estão escondidas dentro da extensão escura e foram reveladas nas imagens infravermelhas do telescópio espacial Spitzer. 

Fonte: NASA

O vigor dos núcleos galácticos ativos

Alimentados por buracos negros supermassivos que engolem matéria nos centros das galáxias, os Núcleos Galácticos Ativos (NGAs) são as mais poderosas fontes de energia estáveis e compactas do Universo.

© P. Harrington (ilustração de um núcleo galáctico ativo)

Há muito que se sabe que a luz dos NGAs mais brilhantes é superior à luz combinada dos bilhões de estrelas nas suas galáxias hospedeiras. 

Um novo estudo indica que os cientistas subestimaram substancialmente a produção energética destes objetos ao não reconhecerem até que ponto a sua luz é diminuída pela poeira. 

Quando há pequenas partículas intervenientes ao longo da nossa linha de visão, isto faz com que as coisas por detrás delas pareçam mais escuras. Vemos isto ao pôr-do-Sol em qualquer dia claro, quando o Sol parece mais fraco. Embora a possibilidade de a poeira diminuir o brilho da luz dos NGAs já tenha sido reconhecida há muito tempo, os valores específicos eram controversos e pensava-se que eram insignificantes. Nota-se também que a luz ultravioleta de um típico núcleo galáctico ativo é muito atenuada.

A equipe chegou a esta conclusão estudando o efeito que a poeira tem sobre a luz de um dos NGAs mais bem estudados, conhecido como NGC 5548. Tal como a atmosfera da Terra faz com que o Sol pareça mais avermelhado bem como mais escuro ao pôr-do-Sol, também a poeira nos núcleos galácticos ativos faz com que pareçam mais avermelhados do que realmente são. A quantidade de "avermelhamento" está relacionada com a diminuição do brilho. Os cientistas quantificam as cores de algo medindo as proporções da intensidade da sua luz em diferentes comprimentos de onda.

No novo estudo do NGC 5548, os pesquisadores da Universidade da Califórnia, utilizaram sete indicadores diferentes da quantidade de poeira e descobriram que todos eles estão em concordância. Além disso, verificou-se que o escurecimento de NGC 5548 devido à poeira era grande, mais de dez vezes o escurecimento provocado pela poeira quando olhamos para fora da nossa própria Galáxia, a Via Láctea.

As cores do NGC 5548 são típicas de outros núcleos galácticos ativos, o que tem implicações muito abrangentes. Devido aos efeitos de escurecimento da poeira, os NGAs são ainda mais poderosos do que se tinha percebido. Os resultados implicam que, no ultravioleta, onde a maior parte da energia é irradiada, um típico núcleo galáctico ativo está emitindo uma ordem de magnitude mais energia do que se pensava anteriormente. Outra implicação é que os núcleos galácticos ativos são muito semelhantes e o que até agora se pensava serem grandes diferenças fundamentais entre eles são realmente apenas as consequências de diferentes quantidades de "avermelhamento" pela poeira. 

Um artigo sobre as novas descobertas foi publicado no periódico Monthly Notices of the Royal Astronomical Society

Fonte: Royal Astronomical Society

sábado, 21 de janeiro de 2023

Descoberta estrela gigante pulsante

Uma estrela gigante vermelha a milhares de anos-luz de distância “piscou”, escurecendo significativamente por sete longos anos, antes de voltar ao normal.

© A. Tzanidakis (ilustração da estrela Gaia17bpp)

Entre 2012 e 2019, uma estrela gigante vermelha inchada a cerca de 26.000 anos-luz de distância na constelação de Sagitário, a Flecha, foi mais de 60 vezes (4,5 magnitudes) mais fraca do que o normal. 

“As estrelas normalmente não fazem isso”, diz Anastasios Tzanidakis, da Universidade de Washington. Ele e seus colegas acham que o escurecimento extremamente longo e profundo aconteceu quando uma companheira em órbita lenta, cercada por um enorme disco de poeira absorvente, bloqueou a luz da gigante vermelha. 

O comportamento estranho da estrela foi detectado pela primeira vez pela missão Gaia da Agência Espacial Europeia (ESA). Em 2017, quatro anos após seu lançamento, Gaia viu como a estrela, agora conhecida como Gaia17bpp, começou a brilhar de magnitude 20,5 atingindo magnitude 16 em 2019. No ano passado, Tzanidakis e seus colegas verificou os dados existentes de outros telescópios para confirmar que o eclipse longo e profundo havia começado em 2012. Observações arquivadas ainda mais antigas revelaram que Gaia17bpp não mostrou nenhum outro comportamento inesperado desde 1950. 

Então, o que pode fazer com que uma estrela gigante vermelha se torne mais de 60 vezes mais escura por sete anos a fio? De acordo com a equipe, a única explicação viável é um enorme disco de material absorvente, com algumas centenas de milhões de quilômetros de diâmetro, em torno de uma fraca estrela companheira que está em uma órbita de séculos ao redor da gigante vermelha. O disco pode consistir em poeira soprada para o espaço pela estrela gigante e posteriormente capturada por sua companheira, ou pode ser um disco de detritos pertencente a uma estrela anã branca.

No ano passado, Guillermo Torres, do Centro de Astrofísica Harvard-Smithsonian (CfA) e seu colega Kristy Sakano relataram a descoberta de uma “companheira empoeirada” semelhante orbitando a estrela brilhante Eta (η) Geminorum a cada 8,2 anos. 

Um exemplo muito mais conhecido é o Epsilon (ε) Aurigae, que experimenta eclipses de dois anos a cada 27 anos. No caso de Gaia17bpp, no entanto, o período orbital deve estar na escala de séculos, dada a longa duração do evento. 

Captar os eclipses à medida que ocorrem ajudará a identificar a composição do material absorvente, pois deixará uma impressão digital espectroscópica reveladora na luz da estrela. Eventualmente, os astrônomos também esperam aprender como estes estranhos sistemas binários surgem em primeiro lugar.

Fonte: Astronomy

O resquício de 850 anos de idade de colisão estelar

Uma explosão de supernova que observadores do céu no Extremo Oriente observaram há quase 850 anos produziu o remanescente mais incomum que os astrônomos já encontraram.

© R. Fensen (Pa 30)

O astrônomo Robert Fesen, do Dartmouth College, que fotografou o estranho objeto no final de outubro de 2022 com o telescópio Hiltner de 2,4 metros em Kitt Peak, apresentou seus resultados no 241º encontro da American Astronomical Society (AAS) em Seattle; um artigo foi submetido ao periódico Astrophysical Journal Letters. Em outro trabalho apresentado na reunião da AAS e submetido ao periódico Monthly Notices of the Royal Astronomical Society e seu co-autor Bradley Schaefer, da Louisiana State University argumenta que a supernova resultou quando duas estrelas anãs brancas colidiram, deixando um “zumbi” estelar extremamente energético atrás. 

A astrônoma amadora Dana Patchick descobriu a nebulosa Pa 30 em agosto de 2013 em imagens arquivadas do Widefield Infrared Survey Explorer (WISE) da NASA. Porém, as imagens infravermelhas não mostraram muitos detalhes. Originalmente, Patchick acreditava ter encontrado uma nebulosa planetária – sua 30ª descoberta, daí o nome Pa 30 – mas observações espectroscópicas posteriores revelaram que é mais provável que seja um remanescente de supernova. 

No entanto, a nebulosa não produz muitas ondas de rádio ou raios X e não há estrela de nêutrons ou buraco negro em seu centro. Em vez disso, a estrela central (às vezes conhecida como Estrela de Parker, em homenagem ao astrônomo da Universidade de Hong Kong, Quentin Parker, que primeiro estudou seu espectro) acaba sendo uma anã branca peculiar. 

Ainda assim, os astrônomos agora estão confiantes sobre sua relação com SN1181, uma supernova de magnitude zero que apareceu no norte de Cassiopeia em 6 de agosto de 1181 DC. Observadores chineses e japoneses registraram esta “estrela convidada” desaparecendo lentamente ao longo de um período de seis meses. Na década de 1970, os astrônomos especularam que o remanescente de supernova 3C58 e o pulsar associado PSR J0205+6449 eram os restos mais prováveis da explosão do século XII. Mas, pesquisas posteriores mostraram que 3C58 é muito antigo. Além disso, a posição do céu não corresponde às observações chinesas. 

O Pa 30 se encaixa em todas as contas, de acordo com um estudo de 2021 de Andreas Ritter, da Universidade de Hong Kong, Parker e seus colegas. Em particular, a velocidade de expansão medida da nebulosa, cerca de 1.100 quilômetros por segundo, coloca sua idade em 850 anos. A temperatura de sua superfície é de cerca de 200.000 kelvin; ela brilha com 130 vezes a luminosidade do Sol e está desaparecendo rapidamente, em 1,7 magnitudes no século passado. O mais notável é que produz um vento estelar veloz e sem precedentes que se propaga a 16.000 quilômetros por segundo, ou 5% da velocidade da luz!

Mesmo estrelas gigantes e luminosas de Wolf-Rayet têm ventos de abaixo disto. Então, que tipo peculiar de supernova pode explicar tudo isso? As novas observações de Fesen de Pa 30, obtidas à luz de enxofre ionizado e revelando muito mais detalhes do que imagens infravermelhas ou de banda larga de luz visível, contêm a última peça do quebra-cabeça do SN1181. 

Apesar da distância da nebulosa de quase 8.000 anos-luz, a imagem mostra intrigantes filamentos radiais, presumivelmente produzidos quando o forte vento estelar erode pequenos aglomerados de gás de baixa velocidade ejetados pela explosão. O SN1181 era uma supernova de baixa luminosidade do raro tipo Iax. Enquanto as supernovas “normais” do Tipo Ia resultam da detonação catastrófica de uma estrela anã branca, nas supernovas menos luminosas do Tipo Iax, a explosão da estrela sobrevive de alguma forma. 

Os teóricos criaram vários cenários para explicar as explosões de Iax. Alguns deles preveem a existência de uma estrela companheira doadora de matéria; no entanto, no caso da Estrela de Parker, observações detalhadas do observatório TESS da NASA indicam que ela é única. Um modelo apenas corresponde às observações de Pa 30 e sua estrela central “esquisita”: a colisão de duas anãs brancas, uma das quais consiste principalmente de carbono e oxigênio e a outra de oxigênio e neônio. 

Fonte: Sky & Telescope

Estrelas de nêutrons hipermassivas de vida curta

Se você pudesse congelar um filme de duas estrelas de nêutrons colidindo uma com a outra, logo após a colisão, você testemunharia a formação de um objeto tão massivo e denso que não deveria existir: as estrelas se fundiriam momentaneamente em uma única estrela de nêutrons que está girando tão rápido que pode se manter brevemente contra o colapso, desafiando a gravidade.

© M. Garlick (estrelas de nêutrons se colidindo)

Apenas alguns quadros depois, no entanto, a estrela desapareceria, sugada para dentro de si mesma e substituída por um buraco negro. Infelizmente, os astrônomos têm maneiras limitadas de estudar estes objetos, chamados de estrelas de nêutrons hipermassivas (HMNSs). Isto porque, embora as estrelas de nêutrons emitam ondas gravitacionais – ondulações no tecido do espaço-tempo – à medida que se aproximam uma da outra, os detectores de corrente não são sensíveis às frequências emitidas pelo próprio HMNS. 

Mas agora, os astrônomos podem ter encontrado outro caminho para entender as estrelas de nêutrons hipermassivas. De acordo com um novo estudo, algumas HMNSs emitem rajadas curtas de raios gama durante seus estertores de morte. 

E quando os pesquisadores liderados por Cecilia Chirenti, da Universidade de Maryland em College Park, analisaram 700 rajadas curtas de raios gama (GRBs), encontraram alguns casos em que os sinais não eram puramente ruído. Em vez disso, estes GRBs tinham frequências características mais fortes do que outras, uma assinatura consistente com uma estrela de nêutrons hipermassiva, que possui a rotação mais rápida conhecida entre as estrelas. 

As estrelas de nêutrons são os objetos mais densos que podem existir, exceto os buracos negrosElas são os restos de estrelas tão massivas que explodem no final de suas vidas como supernovas, que imediatamente colapsam em buracos negros. Dado que a maioria das estrelas do Universo está em sistemas estelares binários ou múltiplos, não raramente, um par de estrelas binárias pode terminar suas vidas como estrelas de nêutrons. E com o tempo, elas podem espiralar uma em direção a outra e colidir. Quando estas colisões catastróficas ocorrem, elas emitem raios gama que podem ser detectados por telescópios depois de viajar por bilhões de anos. 

As fusões estelares também produzem ondas gravitacionais, algumas das quais podem ser detectadas por instalações como o Laser Interferometer Gravitational-wave Observatory (LIGO) nos EUA e Virgo na Europa. Com base nestas observações, os cientistas atualmente acreditam que, se a estrela de nêutrons resultante for mais massiva do que aproximadamente 2,2 vezes a massa do Sol, ela entrará em colapso gerando um buraco negro. Se não for muito massiva, uma estrela de nêutrons pode sobreviver, mas apenas por uma fração de segundo.

Para tentar obter mais informações sobre estas estrelas de vida curta, Chirenti e sua equipe observaram que os modelos de computador preveem que o brilho dos raios gama de uma HMNS pode piscar alguns milhares de vezes por segundo. Portanto, ao determinar a taxa precisa desta oscilação, os astrônomos poderiam obter informações sobre o tamanho e a taxa de rotação da HMNS. Mas até o momento, nenhuma destas oscilações de raios gama foi identificada.

Assim, os astrônomos vasculharam dados de arquivo de três observatórios de raios gama baseados no espaço da NASA: o Fermi Gamma-Ray Space Telescope e o Neil Gehrels Swift Observatory (ambos em operação hoje), bem como o Compton Gamma Ray Observatory. 

Uma estrela de nêutrons hipermassiva produz oscilações quase periódicas (QPOs), significando que, em vez de piscar uniformemente em uma única frequência, há uma varredura de frequências centradas em torno das frequências de pico. Isto pode ser comparado à audição de um diapasão emitindo uma única frequência limpa em relação à uma orquestra afinando seus instrumentos antes de um concerto. Nem tudo está totalmente afinado, mas você ainda pode distinguir alguns tons mais fortes do que outros.

Dos mais de 700 eventos analisados, a equipe encontrou QPOs em dois deles, designados GRB 910711 e GRB 931101B. Ambos foram detectados pelo Compton, que a NASA operou durante a década de 1990 e saiu de órbita em 2000. Apesar da idade de Compton, para este estudo, era um instrumento incrível por causa de sua grande área de detecção e grande capacidade de temporização. Sua análise descobriu que as oscilações mais fortes estavam em uma frequência de aproximadamente 2.600 Hz. De acordo com as simulações, isto sugere que o HMNS responsável está girando pelo menos 1.300 vezes por segundo.

No entanto, esta taxa de rotação é apenas um limite inferior: assim como a luz é desviada para o vermelho pela expansão do Universo, a frequência da oscilação quase periódica pode ter sido maior originalmente. Mas mesmo que estivesse muito próximo, o HMNS ainda estaria girando quase duas vezes mais rápido que o pulsar mais rápido conhecido, uma classe de estrelas de nêutrons girando rapidamente.

Espera-se que, até a década de 2030, detectores de ondas gravitacionais mais avançados sejam capazes de estudar as ondulações do espaço-tempo produzidas por estrelas de nêutrons hipermassivas, enquanto no momento os pesquisadores continuaram procurando por elas em raios gama. 

O novo estudo foi publicado na revista Nature.

Fonte: Astronomy

Um sistema binário composto por duas anãs ultrafrias

Astrofísicos da Universidade Northwestern e da Universidade da Califórnia em San Diego descobriram o sistema binário, composto por duas anãs ultrafrias, mais íntimo alguma vez observado.

© NASA (ilustração de uma estrela anã ultrafria)

As duas estrelas estão tão próximas uma da outra que completam uma órbita em menos de um dia. Por outras palavras, cada "ano" de cada estela dura apenas 20,5 horas.

O sistema recentemente descoberto, denominado LP 413-53AB, é composto por um par de anãs ultrafrias, uma classe de estrelas de massa muito baixa que são tão frias que emitem a sua luz principalmente no infravermelho, tornando-as completamente invisíveis ao olho humano. No entanto, são um dos tipos de estrelas mais comuns no Universo. 

Anteriormente, os astrônomos apenas tinham detectado três sistemas binários de curta duração compostos por anãs ultrafrias, todos eles relativamente jovens, com até 40 milhões de anos. O LP 413-53AB tem uma idade estimada em poucos bilhões de anos, idade semelhante à do nosso Sol, mas um período orbital que é pelo menos três vezes mais curto do que todas as estrelas duplas anãs ultrafrias descobertas até agora.

A equipe descobriu pela primeira vez o estranho sistema binário enquanto explorava dados de arquivo. Foi desenvolvido um algoritmo que consegue modelar uma estrela com base nos seus dados espectrais. Ao analisar o espectro da luz emitida por uma estrela, os astrofísicos podem determinar a composição química, temperatura, gravidade e rotação da estrela. Esta análise também mostra o movimento da estrela à medida que esta se desloca em direção ao observador e à medida que se afasta, método conhecido como velocidade radial.

Ao examinar os dados espectrais de LP 413-53AB, foi notado algo de estranho. As primeiras observações captaram o sistema quando as estrelas estavam aproximadamente alinhadas e as suas linhas espectrais sobrepostas, sugerindo que se tratava apenas de uma estrela. Mas à medida que as estrelas se moviam na sua órbita, as linhas espectrais deslocaram-se em direções opostas, dividindo-se em dados espectrais posteriores. Na realidade eram duas estrelas presas num binário incrivelmente íntimo. 

Em 13 de março de 2022, a equipe virou os telescópios poderosos do Observatório W. M. Keck em direção à constelação de Touro, onde o sistema binário está localizado, e observou-o durante duas horas. Fizeram novas observações em julho, outubro e dezembro. Com este sistema, notou-se as linhas espectrais se afastarem em tempo real. As observações confirmaram o que o modelo havia previsto. 

A distância entre as duas estrelas é de cerca de 1% da distância entre a Terra e o Sol. A equipe especula que as estrelas ou migraram uma em direção à outra com o passar do tempo, ou podem ter-se juntado após a ejeção de um terceiro, membro estelar, agora perdido. São necessárias mais observações para testar estas ideias. 

As anãs ultrafrias são muito mais fracas e tênues do que o Sol, pelo que qualquer mundo com água líquida à superfície teria que estar muito próximo da estrela. Contudo, para LP 413-53AB, a zona habitável é a mesma que a órbita estelar, tornando impossível a formação de planetas habitáveis neste sistema.

Novos dados observacionais poderiam ajudar a reforçar modelos teóricos para a formação e evolução de estrelas duplas. No entanto, até agora, a descoberta de estrelas binárias ultrafrias tem permanecido um feito raro. Mas não sabemos se são raros porque raramente existem ou porque simplesmente não os encontramos. É uma questão em aberto.

Fonte: Northwestern University

quinta-feira, 19 de janeiro de 2023

Nuvens inesperadas em direção à galáxia de Andrômeda

Por que existem arcos emissores de oxigênio em direção perto da galáxia de Andrômeda?

© Y. Sainty & M. Drechsler (nuvens próximas a galáxia de Andrômeda)

Ninguém tem certeza. Os arcos de gás, mostrados em azul, foram descobertos e confirmados pela primeira vez por astrônomos amadores no ano passado. 

As duas principais hipóteses de origem para os arcos são que eles realmente estão próximos da galáxia de Andrômeda (M31), ou que são apenas filamentos de gás colocados coincidentemente em nossa galáxia, a Via Láctea. 

Para aumentar o mistério, os arcos não foram vistos em imagens profundas anteriores da M31, obtidas principalmente na luz emitida pelo hidrogênio, e outras galáxias mais distantes não foram geralmente observadas mostrando estruturas emissoras de oxigênio semelhantes.

Os astrônomos amadores dedicados usando telescópios comerciais fizeram esta descoberta porque, em parte, os telescópios profissionais geralmente investigam pequenas manchas angulares do céu noturno, enquanto estes arcos abrangem várias vezes o tamanho angular da Lua cheia. É necessário efetuar observações futuras, tanto na luz emitida pelo oxigênio quanto por outros elementos, para dirimir esta dúvida.

As nuvens azuladas foram descobertas por Marcel Drechsler e Xavier Strottner, astrônomos amadores que queriam escanear partes do céu em busca de nebulosas de brilho fraco. Para isso, eles se juntaram ao astrônomo amador Yann Sainty, que decidiu observar Andrômeda.

Ele enviou suas observações à dupla para processamento e análise. Quando foram trabalhar com as imagens, eles encontraram as estruturas azuladas que pareciam cercar Andrômeda. A equipe até se questionou sobre a possibilidade de a estrutura ser resultado de algum artefato causado pelo telescópio, e pediram para outro astrônomo amador observá-la novamente. A imagem foi confirmada por observações de cinco diferentes telescópios.

Fonte: NASA

sábado, 14 de janeiro de 2023

O segundo exoplaneta do tamanho da Terra no sistema planetário TOI 700

Utilizando dados do TESS (Transiting Exoplanet Survey Satellite) da NASA, os cientistas identificaram um mundo de tamanho semelhante à Terra, chamado TOI 700 e, em órbita dentro da zona habitável da sua estrela, ou seja, a gama de distâncias onde poderá existir água líquida à superfície de um planeta.

© NASA / Robert Hurt (ilustração do exoplaneta TOI 700 e)

O exoplaneta tem 95% do tamanho da Terra e é provavelmente rochoso. Os astrônomos já tinham descoberto anteriormente três planetas neste sistema, chamados TOI 700 b, c e d. O planeta d também orbita na zona habitável. Mas os cientistas precisaram de um ano adicional de observações para descobrir TOI 700 e.

Este é um dos poucos sistemas conhecidos com múltiplos planetas na zona habitável. O exoplaneta TOI 700 e é cerca de 10% menor do que o exoplaneta d. A TOI 700 é uma pequena e fria estrela anã M localizada a cerca de 100 anos-luz de distância na direção da constelação do hemisfério sul de Dourado. 

Em 2020, os astrônomos anunciaram a descoberta do planeta d, de tamanho semelhante à Terra, na zona habitável, que se encontra numa órbita de 37 dias, juntamente com outros dois mundos. O exoplaneta mais interior, o TOI 700 b, tem cerca de 90% do tamanho da Terra e orbita a estrela a cada 10 dias. O TOI 700 c é mais de 2,5 vezes maior do que a Terra e completa uma órbita a cada 16 dias.

Os exoplanetas têm provavelmente bloqueio de marés, o que significa que giram apenas uma vez por órbita, de modo que um lado está sempre virado para a estrela, tal como a Lua tem sempre a mesma face virada para a Terra.

O TESS monitora grandes faixas do céu durante aproximadamente 27 dias de cada vez. Estes longos olhares permitem com que o satélite acompanhe as mudanças de luminosidade estelar provocadas pela travessia do planeta em frente da sua estrela, um acontecimento chamado trânsito. A missão utilizou esta estratégia para observar o céu do hemisfério sul a partir de 2018, antes de se virar para o céu do hemisfério norte. Em 2020, regressou ao céu do sul para observações adicionais. O ano suplementar de dados permitiu à equipe refinar as dimensões originais dos planetas, que são cerca de 10% menores do que os cálculos iniciais.

A descoberta de outros sistemas com mundos semelhantes à Terra, nesta região, ajuda os cientistas planetários a aprender mais sobre a história do nosso próprio Sistema Solar. O estudo de acompanhamento do sistema TOI 700, com observatórios terrestres e espaciais, está em curso, e pode fornecer mais informações sobre este raro sistema. 

Um artigo sobre o exoplaneta recentemente descoberto foi aceito para publicação no periódico The Astrophysical Journal Letters.

Fonte: Michigan State University

O telescópio James Webb confirma o seu primeiro exoplaneta

Pesquisadores confirmaram a presença de um exoplaneta, um planeta que orbita outra estrela, pela primeira vez usando o telescópio espacial James Webb.

© STScI / L. Hustak (ilustração do LHS 475 b)

Formalmente classificado como LHS 475 b, o exoplaneta tem quase exatamente o mesmo tamanho que o nosso, atingindo 99% do diâmetro da Terra. 

Os astrônomos optaram por observar este alvo com o Webb depois de rever cuidadosamente dados do TESS (Transiting Exoplanet Survey Satellite) da NASA que sugeriam a existência do exoplaneta. 

O espectrógrafo NIRSpec (Near-Infrared Spectrograph) do Webb captou o exoplaneta pequeno e rochoso com facilidade e clareza com apenas duas observações de trânsito. 

Entre todos os telescópios em operação, apenas o Webb é capaz de caracterizar as atmosferas de exoplanetas de tamanho terrestre. A equipe tentou avaliar a composição da atmosfera do planeta, analisando o seu espectro de transmissão. Embora os dados mostrem que se trata de um planeta terrestre do tamanho da Terra, ainda não sabem se tem uma atmosfera. Embora não seja possível concluir o que está presente, a atmosfera não pode ter ser espessa dominada pelo metano, semelhante à lua de Saturno, Titã. 

Além da possibilidade do exoplaneta não possuir atmosfera, existem algumas composições atmosféricas que não foram descartadas, tais como uma atmosfera pura de dióxido de carbono. São necessárias medições ainda mais precisas para que haja possibilidade de distinguir uma atmosfera de dióxido de carbono puro de nenhuma atmosfera.

O Webb também revelou que o planeta é algumas centenas de graus mais quente do que a Terra, pelo que se forem detectadas nuvens, será possível concluir que o exoplaneta é mais parecido com Vênus, que tem uma atmosfera de dióxido de carbono e está perpetuamente envolto em nuvens espessas.

Os pesquiadores também confirmaram que o planeta completa uma órbita em apenas dois dias, informação que foi revelada quase instantaneamente pela curva de luz precisa do Webb. Embora o LHS 475 b esteja mais próximo da sua estrela do que qualquer outro planeta do Sistema Solar, a sua estrela anã vermelha tem menos de metade da temperatura do Sol, mas ainda poderá suportar uma atmosfera. 

O LHS 475 b está relativamente perto, a apenas 41 anos-luz de distância, na direção da constelação de Octante. 

Os resultados da descoberta foram apresentados nesta semana numa conferência da Sociedade Astronômica Americana.

Fonte: Space Telescope Science Institute