domingo, 31 de outubro de 2021

Quando uma estrela estável explode

As anãs brancas estão entre as estrelas mais estáveis. Estas estrelas que esgotaram a maior parte de seu combustível nuclear, embora ainda sejam tão massivas quanto o Sol, e encolheram a um tamanho relativamente pequeno podem durar bilhões ou até trilhões de anos.

© Chandra/Spitzer/VLA (remanescente de supernova G344.7-0.1)

No entanto, uma anã branca com uma estrela companheira próxima pode se tornar um barril de pólvora cósmica. Se a órbita da companheira se aproximar demais, a anã branca pode puxar material dela até que cresça tanto que se torne instável e exploda.

Este tipo de explosão estelar é chamada de supernova Tipo Ia. Embora seja geralmente aceito pelos astrônomos que tais encontros entre anãs brancas e estrelas companheiras "normais" são uma fonte provável de explosões de supernovas Tipo Ia, muitos detalhes do processo não são bem compreendidos.

Uma maneira de estudar o mecanismo de explosão é observar os elementos deixados para trás pela supernova em seus escombros ou material ejetado. Esta nova imagem composta mostra G344.7-0.1, um remanescente de supernova criado por uma supernova Tipo Ia, através dos olhos de diferentes telescópios. Os raios X do observatório de raios X Chandra da NASA (azul) foram combinados com dados infravermelhos do telescópio espacial Spitzer da NASA (amarelo e verde), bem como dados de rádio do Very Large Array e do telescópio do Australia Telescope Compact Array (vermelho). 

O Chandra é uma das melhores ferramentas disponíveis para os cientistas estudarem remanescentes de supernovas e medirem a composição e distribuição de elementos "pesados" que eles contêm. 

Os astrônomos estimam que G344.7-0.1 tenha cerca de 3.000 a 6.000 anos. Por outro lado, os remanescentes do Tipo Ia mais conhecidos e amplamente observados, incluindo Kepler, Tycho e SN 1006, explodiram no último milênio ou assim vistos da Terra. Portanto, este olhar profundo em G344.7-0.1 com o Chandra dá aos astrônomos uma janela para uma importante fase posterior na evolução de um remanescente de supernova Tipo Ia.

Tanto a onda de explosão em expansão quanto os detritos estelares produzem raios X em remanescentes de supernovas. Conforme os destroços se movem para fora da explosão inicial, eles encontram resistência do gás circundante e diminuem a velocidade, criando uma onda de choque reversa que viaja de volta para o centro da explosão. O choque reverso aquece os detritos a milhões de graus, fazendo com que brilhem em raios X. 

Remanescentes do tipo Ia como Kepler, Tycho e SN 1006 são muito jovens para o choque reverso para ter tempo de viajar para trás de forma plausível para aquecer todos os destroços no centro do remanescente. No entanto, a idade relativamente avançada de G344.7-0.1 significa que o choque reverso voltou por todo o campo de destroços. 

Os dados do Chandra sugerem que a região com a maior densidade de ferro foi aquecida pelo choque reverso mais recentemente do que os elementos nas estruturas em forma de arco, o que implica que está localizada perto do verdadeiro centro da explosão estelar.

Estes resultados apoiam as previsões de modelos para explosões de supernovas Tipo Ia, que mostram que elementos mais pesados ​​são produzidos no interior de uma anã branca em explosão. Nota-se que o ferro mais denso está localizado à direita do centro geométrico remanescente da supernova. Esta assimetria é provavelmente causada pelo fato de o gás ao redor do remanescente ser mais denso à direita do que à esquerda.

Um artigo descrevendo estes resultados foi publicado no periódico The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

Nenhum comentário:

Postar um comentário