terça-feira, 25 de outubro de 2011

O mistério de uma supernova antiga

A NASA recriou a imagem da primeira supernova documentada, que foi observada por astrônomos chineses há quase dois mil anos.

supernova RCW 86 no infravermelho e raios X

© NASA/ESA (supernova RCW 86 no infravermelho e raios X)

A imagem mostra a combinação de dados obtidos de quatro telescópios espaciais diferentes para criar a imagem da supernova, conhecida como RCW 86, a mais antiga que consta dos registros de astronomia.

Os astrônomos chineses foram testemunhas do evento que aconteceu no ano 185 d.C., quando descobriram uma estrela muito luminosa que permaneceu no céu durante oito meses. As imagens de raios X do observatório XMM-Newton da ESA e do observatório Chandra da NASA, foram combinadas para formar as cores azul e verde na imagem, que mostram que o gás interestelar se aqueceu a milhões de graus devido à onda expansiva da supernova.

supernova RCW 86 no infravermelho

© NASA/JPL (supernova RCW 86 no infravermelho)

Os dados infravermelhos da sonda WISE (Wide-field Infrared Survey Explorer) e do Telescópio Espacial Spitzer da NASA, que são vistos em amarelo e vermelho, revelam o pó que chega a várias centenas de graus abaixo de zero, cálido em comparação com o pó cósmico habitual na Via Láctea.

Mediante o estudo dos raios X e dos dados infravermelhos, os astrônomos foram capazes de determinar que a causa daquela misteriosa explosão no céu foi uma supernova de tipo Ia, que se produz depois da violenta explosão de uma estrela anã branca.

A supernova RCW 86 está a aproximadamente 8.000 anos-luz de distância. Tem 85 anos-luz de diâmetro e ocupa uma região do céu na constelação austral de Circinus que é ligeiramente maior que a lua cheia.

Fonte: NASA

Estrela Proxima: a vizinha do lado

O astrônomo escocês  Thomas Henderson, em missão na África do Sul, realizou várias observações da estrela Alfa do Centauro, entre abril de 1832 e maio de 1833.

ilustração de uma anã vermelha

© Cosmo Novas (ilustração de uma anã vermelha)

A estrela Alfa do Centauro era a terceira mais brilhante, e também uma das estrelas com maior movimento aparente no céu. Estes fatos levaram Henderson a suspeitar de que se tratava de uma estrela próxima do Sol, para a qual o cálculo da distância através do método do paralaxe seria possível. Por várias razões, entre as quais algum ceticismo quanto à qualidade das observações que possuia, Henderson adiou a publicação dos resultados até 1839. Entretanto, um ano antes, Friedrich Wilhelm Bessel tinha publicado as suas observações e o cálculo da distância à estrela 61 do Cisne. Os resultados então apresentados por Henderson eram no entanto mais interessantes pois mostravam que a Alfa do Centauro estava muito próxima do Sol, a apenas 3,25 anos-luz (o valor atualmente aceito é de 4,36 anos-luz). Convém referir que a estrela é na realidade um sistema binário cuja descoberta é atribuída ao padre Jean Richaud, um missionário na Índia, em 1689. Durante quase 80 anos as componentes deste sistema binário, Alfa do Centauro A e B, foram as estrelas mais próximas do Sol conhecidas.

A situação mudou quando, em 1915, Robert Innes, o diretor do Union Observatory em Joanesburgo, na África do Sul, descobriu uma pequena estrela de magnitude 11 que parecia ter o mesmo movimento espacial da Alfa do Centauro. Observações subsequentes permitiram determinar a sua distância com precisão, verificando-se que estava ligeiramente mais próxima do Sol do que as componentes do sistema binário (o valor atualmente aceito para a distância é de 4,24 anos-luz). Por esse motivo, Innes sugeriu o nome de “Proxima” para a estrela.

Proxima é uma estrela imensamente interessante, e não apenas pela sua proximidade. Embora a ligação gravitacional com as componentes da Alfa do Centauro não seja totalmente certa, os estudos mais recentes, inclusive os dados obtidos com o satélite astrométrico Hipparcos, apontam fortemente nesse sentido. Tal como Alfa do Centauro A e B, Proxima é enriquecida em “metais” na mesma proporção relativamente ao Sol, o que reforça a a ideia de uma origem comum para as três estrelas. A confirmar-se este cenário a Alfa do Centauro será na realidade um sistema triplo. De fato, Proxima é frequentemente designada de Alfa do Centauro C.

Proxima está suficientemente próxima do Sol para ser possível medir diretamente o seu diâmetro aparente. Tal foi conseguido com o Very Large Telescope Interferometer, obtendo-se o valor modesto de 1/7 do diâmetro do Sol, ou 1,5 vezes o diâmetro de Júpiter. A análise do seu espectro permitiu determinar que se trata de uma anã vermelha de tipo espectral M5, com uma temperatura fotosférica de apenas 3.000 Kelvin. A sua luminosidade total (em todos os comprimentos de onda) corresponde a apenas 0,17% da do Sol!

A massa de uma anã vermelha com estas características é muito pequena, cerca de 1/8 da massa do Sol. A densidade resultante é no entanto muito superior à do Sol, cerca de 40 vezes maior, o que tem implicações importantes na estrutura interna da estrela.

A Proxima, tal como todas as anãs vermelhas, tem uma estrutura interna diferente da do Sol. Nas anãs vermelhas a energia gerada pelas reações de fusão nuclear é transferida até à superfície exclusivamente através da convecção de gás ionizado (plasma) no interior da estrela. No Sol a energia produzida no núcleo é transferida através da radiação até 70% do raio solar e só nos últimos 30% do seu raio a transferência é feita por convecção. A convecção global nas anãs vermelhas permite uma circulação eficiente de todo o combustível nuclear disponível (hidrogênio) até ao núcleo da estrela onde é transformado quase na totalidade em hélio. Em contraste, no Sol a falta de convecção na zona nuclear provoca a acumulação de uma “cinza” de hélio inerte e apenas 10% de todo o hidrogênio disponível é transformado em hélio enquanto o Sol permanece na sequência principal.

A circulação eficiente do combustível nuclear, conjugada com as temperaturas nucleares mais baixas das anãs vermelhas, que impõem ritmos de reacção mais lentos, fazem a estrela produzir menos potência mas usufruir de uma vida mais longa. A Proxima tem uma vida estimada em mais de um trilhão de anos, aproximadamente 100 vezes a duração da vida do Sol e muito maior do que a atual idade do Universo. No final da sua vida, as anãs vermelhas não se transformam em gigantes vermelhas, como as estrelas do tipo solar. Antes, transformam-se diretamente em anãs brancas formadas quase exclusivamente por hélio.

A convecção global de plasma, repleto de partículas carregadas eletricamente, gera uma fortíssima atividade magnética por um efeito de dínamo, que resulta por sua vez numa superfície muito ativa, com grande número de “manchas solares” e com erupções intensas de dimensões comparáveis à estrela que aumentam temporariamente o seu brilho e produzem raios ultravioleta e X em abundância. A estrela foi alvo de observações por vários telescópios de raios X, desde o Observatório Einstein, nos anos 80, que observou com detalhe uma erupção da estrela, até aos mais recentes XMM-Newton e Chandra.

Fonte: AstroPT

segunda-feira, 24 de outubro de 2011

A transformação de uma gigante vermelha

Após 4,5 milhões de anos de vida, um milésimo da idade do Sol, a estrea HD 192163 começou a sua corrida para se tornar uma supernova catastrófica.

estrela massiva HD 192163

© NASA/Chandra (estrela massiva HD 192163)

Primeiro ela se expandiu enormemente para se tornar uma gigante vermelha e ejetou suas camadas externas a uma velocidade aproximada de 32.000 quilômetros por hora. Duzentos mil anos depois, a intensa radiação da camada mais interna quente e exposta da estrela começa a empurrar o gás para longe a uma velocidade que excede os 4,8 milhões de quilômetros por hora.

Quando esse vento estelar de alta velocidade se choca com o vento mas lento da gigante vermelha, uma densa concha é formada. Na imagem acima, uma porção da concha é mostrada em vermelho. A força da colisão cria duas ondas de choque, uma que se move para fora desde a densa concha para criar a estrutura em forma de filamentos de cor verde e outra que se move em direção interna para produzir uma bolha com temperatura de milhões de graus Celsius emissora de raios-X, mostrada em azul na imagem. A brilhante emissão de raios-X está próxima da parte mais densa da concha de gás comprimida, indicando que o gás quente está evaporando matéria da concha. A estrela massiva HD 192163 que produziu a nebulosa aparece como um ponto brilhante no centro da imagem.

A estrela HD 192163 provavelmente explodirá como uma supernova em aproximadamente cem mil anos. Essa imagem permite que os astrônomos possam determinar a massa, a energia, e a composição da concha gasosa ao redor da estrela antes de virar uma supernova. Um entendimento sobre esses ambientes fornece dados importantes para que se possam interpretar observações de supernovas e de suas partes remanescentes.

A imagem acima é uma composição de dados de raios-X (azul) e óptico (vermelho e verde) e revela dramáticos detalhes de uma porção da conhecida Nebulosa Crescente uma gigantesca concha gasosa criada por poderosos ventos que tem suas origens na massiva estrela HD 192163.

Fonte: Daily Galaxy

domingo, 23 de outubro de 2011

Um X na Via Láctea?

A concentração de estrelas luminosas no centro das galáxias espirais costuma originar uma estrutura de forma ovalada que lembra uma bola de futebol americano, o bojo galáctico.

imagem da Via Láctea com um X desenhado em seu centro

© ESO (imagem da Via Láctea com um X desenhado em seu centro)

Mas o acúmulo de matéria no coração da Via Láctea pode ter gerado um bojo de contornos pouco usuais, marcado por duas barras estelares (e não apenas uma) que se cruzam e delineiam um X. Essa conclusão, controversa, é defendida pelo astrofísico brasileiro Roberto Saito, da Pontifícia Universidade Católica do Chile, e colegas chilenos, europeus e americanos num artigo publicado na revista científica The Astronomical Journal. “Dependendo de como observamos a galáxia, vemos uma barra tridimensional que se divide em duas, formando um X ou até um K”, diz Saito. “São duas barras na diagonal, uma principal e outra secundária.” De acordo com a técnica usada pelos pesquisadores para estudar a composição do bojo, o X atravessa a região mais central da Via Láctea e suas pontas são visíveis entre três e oito graus tanto acima como abaixo do plano do disco galáctico.
Para mapear o interior do bojo da Via Láctea, o trabalho de Saito analisou dados coletados em três comprimentos de ondas do infravermelho por um levantamento de todo o céu visível nos hemisférios Norte e Sul realizado entre o final dos anos 1990 e a primeira metade da década passada, o projeto 2Mass. Em meio a essa avalanche de informações, os astrofísicos procuraram especificamente a localização de um tipo de estrela luminosa rica em metais, as red clumps giants, que são usadas para inferir distâncias astronômicas e também como traçadoras de certas estruturas de galáxias. A distribuição dessas estrelas num mapa que divide o bojo da Via Láctea em 170 setores quadrados deu forma à dupla barra cruzada no centro da galáxia. Desde o início do ano 2010 um novo levantamento no infravermelho próximo tem monitorado a região central de nossa galáxia com o telescópio Vista, instalado no Chile e operado pelo Observatório Europeu do Sul (ESO). Os resultados preliminares dessa iniciativa corroboram aparentemente a hipótese da existência de uma estrutura em X no coração da Via Láctea, segundo Saito.
Desde meados dos anos 1990, os astrofísicos desconfiam de que a Via Láctea, como dois terços das galáxias espirais, apresenta uma barra em seu bojo, cuja extensão total deve equivaler a algo entre 15% e 20% do diâmetro da galáxia. Na década passada, a suspeita se tornou uma certeza e hoje as discussões giram em torno das características dessas barras. Se as conclusões do estudo estiverem corretas, o bojo da Via Láctea não é o primeiro a esconder duas barras de estrelas brilhantes na forma de um X. As NGC 128, 3625, 4469 e 4710 são exemplos de galáxias cuja região central também pode ser assim.

O problema é que, por estarmos dentro do objeto a ser observado, algumas características da Via Láctea são mais difíceis de serem flagradas do que as propriedades de galáxias vizinhas. Para tornar as coisas ainda mais difíceis, nosso ângulo de visão da Via Láctea não é dos melhores. Outro empecilho é a existência de grãos de poeira em meio aos gases que formam o espaço entre as estrelas. Essas finas partículas absorvem e espalham as radiações emitidas pelos astros em diversos comprimentos de onda, principalmente no da luz visível e ultravioleta, e criam um fenômeno conhecido como extinção. Certas regiões da galáxia, como o bojo, acabam então se tornando virtualmente inacessíveis aos telescópios ópticos. As observações feitas no infravermelho sofrem menos interferências da poeira interestelar. Por isso são muito usadas em trabalhos sobre a Via Láctea.

Não há consenso sobre a natureza do bojo da Via Láctea entre os especialistas que estudam a estrutura da galáxia. Jacques Lépine, do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo (IAG-USP), é cético com relação à possibilidade de haver um X no centro de Via Láctea. Prefere acreditar que dificuldades em corrigir a interferência do fenômeno da extinção no trabalho de Saito poderiam explicar o X da questão. “A dinâmica caótica das estrelas velhas (amareladas) que constituem o bojo não permitiria que tal estrutura sobrevivesse”, afirma Lépine. “Em outras galáxias, em que é mais fácil visualizar o bojo, vemos no máximo uma estrutura num formato de caixa.”

Para Lépine, a Via Láctea tem apenas uma barra, que se encontra quase alinhada com o centro da galáxia e o Sol.
Seu colega no IAG-USP, Augusto Damineli, tem uma opinião diferente. “O X no bojo da Via Láctea parece ser um resultado bem robusto, embora o mapeamento da galáxia precise ser refinado”, diz ele. “Outras galaxias têm uma estrutura desse tipo, que aparece nos trabalhos científicos como resultado de simulações numéricas.” Não há uma explicação simples para a existência de bojos com formato em X, segundo Damineli. Se o centro da Via Láctea abrigar mesmo uma estrutura formada por duas barras que se cruzam e criam uma concentração de estrelas com contornos semelhantes à letra do alfabeto, o uso do próprio termo bojo, que remete automaticamente a formas arredondadas, pode se tornar inadequado para descrever a região central de algumas galáxias.

Fonte: FAPESP e The Astronomical Journal

sábado, 22 de outubro de 2011

Corpo celeste mais frio já fotografado

Astrônomos fotografaram diretamente uma estrela anã-marrom e sua companheira - algo entre um exoplaneta e uma estrela morta - que tem uma temperatura similar à de um deserto na Terra.

ilustração de anã-marrom e sua companheira

© Janella Williams (ilustração de anã-marrom e sua companheira)

"Este companheiro tipo planetário é o objeto mais frio já fotografado diretamente fora do nosso Sistema Solar," garante Kevin Luhman, da Universidade da Pensilvânia, nos Estados Unidos.

Os cientistas ainda discutem se podem catalogar o objeto celeste como um exoplaneta.

"Sua massa é semelhante à de muitos planetas extrassolares – cerca de sete vezes a massa de Júpiter - mas, em outros aspectos, ele é mais parecido com uma estrela," diz Luhman.

Em tese, o corpo celeste seria uma pequena estrela extremamente fria.

Há poucos meses, astrônomos identificaram as estrelas mais frias do Universo, mas elas não foram fotografadas diretamente, como agora.

A estrela é chamada WD 0806-661 B tem uma temperatura de aproximadamente 300 a 343 kelvin, e está orbitando sua companheira também muito fria para uma estrela, uma anã-marrom, o núcleo colapsado de uma estrela que está morrendo.

Fonte: The Astrophysical Journal

sexta-feira, 21 de outubro de 2011

Reservatório de água em torno de estrela

O telescópio Herschel da ESA encontrou evidências de vapor de água proveniente de gelo em grãos de poeira ao redor de uma estrela jovem, revelando um reservatório de gelo escondido do tamanho de milhares de oceanos.
disco de gelo ao redor da jovem estrela
© ESA (disco de gelo ao redor da jovem estrela)
A estrela TW Hydrae, que possui entre 5 e 10 milhões de anos de idade e apenas 176 anos-luz de distância, está na fase final da formação.
Acredita-se que uma grande proporção da água da Terra pode ter vindo de gelo carregado de cometas que bombardearam nosso mundo durante e após sua formação. Estudos recentes do cometa 103P/Hartley 2 com o Herschel desvendaram como a água pode ter vindo para a Terra. Até agora, porém, quase nada se sabia sobre reservatórios em discos de formação planetária em torno de outras estrelas.
A água detectada no disco em torno da TW Hydrae poderia ser uma rica fonte de água para quaisquer planetas que se formam perto desta estrela jovem. Os cientistas fizeram simulações detalhadas, combinando os novos dados com observações terrestres anteriores, e calcularam o tamanho dos reservatórios de gelo nas regiões de formação planetária. Os resultados mostram que a quantidade total de água no disco em torno desta estrela encheria vários milhares de oceanos da Terra.
Esta pesquisa abre novos caminhos na compreensão da origem da água no planeta. "Com o Herschel, podemos seguir o rastro de água por todas as etapas de formação estelar e planetária", explica Göran Pilbratt, cientista de Projeto Herschel.
Fonte: ESA e Science

O mistério das estrelas ‘vampiras’

Um tipo de estrela que não deveria existir pode ter sido finalmente entendido por astrônomos em um estudo recente.

aglomerado NGC 188 com as estrelas vampiras circuladas

© NOAA (aglomerado NGC 188 com as estrelas vampiras circuladas)

Entre os cientistas elas são conhecidas oficialmente como “retardatárias azuis”, mas têm o apelido de “estrelas vampiras”, por parecem mais jovens do que são.

Esses astros se destacam por parecem mais quentes e jovens do que seus vizinhos, embora tenham sido formados mais ou menos na mesma época que eles.

Estava claro para os cientistas que essas estrelas tinham mais energia do que as outras. O mistério era como isso acontecia: se através de colisões com a vizinhança ou por meio da captura de energia.

Agora, a equipe de Aaron Geller e Robert Mathieu descartou a possibilidade de colisões, ou seja, as estrelas vampiras roubariam a energia de outras para ficarem mais jovens.

A maioria delas, segundo o grupo, é parte de um sistema binário. O difícil é ver a companheira, pois uma vez que a vampira suga sua energia, o brilho fica muito fraco para ser detectado por telescópios.

A dupla pretende agora usar o telescópio espacial Hubble para confirmar seus achados.

Fonte: Nature

quinta-feira, 20 de outubro de 2011

Encontrado planeta em processo de formação

Um astrônomo da Universidade do Havaí (EUA) registrou a primeira imagem de um planeta em processo de formação em torno de uma estrela.

ilustração da formação de um novo planeta

© U. Havaí (ilustração da formação de um novo planeta)

Trata-se do planeta mais jovem já encontrado, com aproximadamente o mesmo tamanho de Júpiter. O corpo celeste recém descoberto ganhou o nome de LkCa 15 b e está cercado de poeira cósmica e gases.

Adam Kraus e seus colegas utilizaram os telescópios Keck para registrar as imagens. É a primeira vez que cientistas conseguem medir um planeta tão no início de sua formação. Kraus apresentou a descoberta em um encontro da NASA no Goddard Space Flight Center.

A pesquisa do grupo começou com o estudo de 150 jovens estrelas. Após primeiras análises, eles reduziram o campo de estudo a 12 estrelas. O LkCa 15 b era o segundo da lista e os cientistas imediatamente souberam que estavam diante de algo novo. A coleta de dados começou há um ano.

Um artigo a respeito foi submetido para o periódico The Astrophysical Journal.

Fonte: NASA

Chuva de cometas em Sistema Solar próximo

O telescópio espacial Spitzer detectou uma chuva de cometas em um sistema similar ao que teria sido o Sistema Solar há milhões de anos, no período conhecido como o Intenso Bombardeio Tardio, que possivelmente deu à Terra água e outros ingredientes vitais para a vida.

ilustração da chuva de cometas próxima de estrela

© NASA (ilustração da chuva de cometas próxima de estrela)

Esta descoberta poderia ajudar a entender melhor como foi a chuva de cometas e objetos gelados que caíram do Sistema Solar exterior batendo nos planetas interiores, deixando grandes quantidades de pó e outros elementos que causaram, por exemplo, as crateras da Lua.

O que o telescópio Spitzer detectou consiste em uma nuvem de poeira ao redor de uma estrela brilhante próxima chamada Eta Corvi, que coincide com o conteúdo de um cometa gigante destruído. Esta poeira se encontra perto suficiente da estrela para se acreditar que houve uma colisão entre um planeta e um ou vários cometas. Pesquisadores indicam que o sistema Eta Corvi, que tem aproximadamente 1 bilhão de anos, tem a idade adequada para produzir uma tempestade como esta.

Os astrônomos usaram os detectores de infravermelho do Spitzer para analisar a luz que procede do pó ao redor do Eta Corvi, nos quais encontraram sinais químicos de gelo de água, matéria orgânica, e rocha, o que significa que provém de um cometa gigante. As características da poeira também se assemelham ao meteorito Almahata Sitta, que deixou cair fragmentos na Terra em 2008, no Sudão.

Os especialistas indicam que as semelhanças entre o meteorito e o objeto destruído que rodeia o Eta Corvi implica um lugar comum de origem. O Sistema Solar tem uma região similar de asteroides, conhecido como cinturão de Kuiper, onde flutuam os restos de matéria gelada e rochosa que ficaram após a formação dos planetas há 4,5 bilhões de anos.

Fonte: NASA

quarta-feira, 19 de outubro de 2011

Descobertos novos aglomerados globulares

O aglomerado globular brilhante chamado UKS 1 domina o lado direito da primeira das novas imagens infravermelhas do telescópio de rastreio VISTA do ESO, situado no Observatório do Paranal, no Chile.

© ESO (aglomerados globulares  VVV CL001 e UKS 1)

No entanto, se desviarmos por um momento os olhos  deste objeto brilhante, uma surpresa aflora neste campo rico em estrelas - um aglomerado globular mais tênue descoberto nos dados do VISTA. Para distinguir este aglomerado estelar é necessária uma observação atenta. Este objeto, chamado VVV CL001, consiste numa pequena coleção de estrelas visível na metade esquerda da imagem.
O VVV CL001  é apenas o primeiro das descobertas globulares do VISTA. A mesma equipe descobriu um segundo objeto, VVV CL002, que aparece na imagem abaixo.

© ESO (aglomerado globular VVV CL002)

Este pequeno e tênue grupo de estrelas pode ser também um aglomerado globular, o mais próximo do centro da Via Láctea conhecido até agora. A descoberta de um novo aglomerado globular é muito rara, sendo que o último foi descoberto em 2010 e que apenas eram conhecidos 158 na nossa galáxia antes destas novas descobertas.
Estes novos aglomerados são as primeiras descobertas do rastreio do VISTA intitulado Variáveis na Via Láctea (VVV), que estuda de modo sistemático as regiões centrais da Via Láctea no infravermelho. A equipe VVV é liderada por Dante Minniti (Pontificia Universidad Católica de Chile) e por Philip Lucas (Centre for Astrophysics Research, University of Hertfordshire, RU).
Além de aglomerados globulares, o VISTA também está encontrando muitos aglomerados abertos ou galácticos, os quais contêm geralmente estrelas mais jovens e em menos quantidade do que os aglomerados globulares e são muito mais comuns. Outro aglomerado recentemente anunciado, VVV CL003, parece ser um aglomerado aberto que se encontra na direção do centro da Via Láctea, mas muito mais longe, ou seja cerca de 15.000 anos-luz além do centro.

© ESO (aglomerado globular VVV CL003)

Este é o primeiro aglomerado deste tipo a ser descoberto do lado de lá da Via Láctea.
Devido ao brilho fraco dos novos aglomerados encontrados, não é de admirar que estes tenham permanecido escondidos durante tanto tempo. Até há cerca de alguns anos atrás o UKS 1, que eclipsa totalmente em brilho estes objetos, era o aglomerado globular mais tênue conhecido na Via Láctea. Devido à absorção e avermelhamento da radiação estelar por efeito da poeira, estes objetos apenas podem ser observados no infravermelho e consequentemente o VISTA, o maior telescópio de rastreio do mundo inteiro, está idealmente preparado para procurar novos aglomerados que se encontrem escondidos por trás de poeira nas regiões centrais da Via Láctea.
Uma possibilidade interessante é que o VVV CL001 esteja gravitacionalmente ligado ao UKS 1 - tornando estes dois grupos estelares no primeiro par binário de aglomerados globulares na Via Láctea.
Fonte: ESO

terça-feira, 18 de outubro de 2011

Hubble revisita uma velha amiga

A supernova SN 1987A, é uma das mais brilhantes explosões estelares testemunhadas pelo ser humano desde a invenção do telescópio a mais de 400 anos atrás e essa supernova não é um objeto estranho para o Telescópio Espacial Hubble.
© Hubble (supernova SN 1987A)
O Hubble tem estado na linha de frente dos estudos relacionados com essa estrela moribunda brilhante desde o seu lançamento em 1990, três anos depois da supernova explodir em 23 de Fevereiro de 1987. Essa imagem do velho conhecido do Hubble, resgatada dos arquivos de dados do telescópio, pode ser a melhor imagem já feita desse objeto e nos lembra dos muitos mistérios que ainda cercam essa supernova.
Na imagem acima estão  em destaque dois laços brilhantes de material estelar e um anel muito brilhante ao redor da supernova no centro da imagem. Embora o Hubble tenha fornecido pistas importantes sobre a natureza dessas estruturas, sua origem ainda é desconhecida.
Outro mistério sobre a supernova SN 1987A é a falta de uma estrela de nêutrons. A morte violenta de uma estrela de grande massa, como o que aconteceu com a SN 1987A, deixa para trás um remanescente estelar, uma estrela de nêutrons ou um buraco negro. Os astrônomos esperam encontrar uma estrela de nêutrons na parte remanescente dessa supernova, mas eles ainda não foram capazes de observar através da densa poeira para confirmar a sua existência.
A supernova pertence à Grande Nuvem de Magalhães, uma galáxia próxima a aproximadamente 168.000 anos-luz de distância da Terra. Mesmo apesar da explosão estelar ter ocorrido por volta do ano 166.000 AC, a sua luz chegou aqui na Terra a menos de 25 anos atrás.
Fonte: ESA

segunda-feira, 17 de outubro de 2011

As supernovas mais antigas e distantes

Uma equipe de astrônomos japoneses, israelenses e americanos usaram o Telescópio Subaru para montar a maior amostra já encontrada das supernovas mais distantes, que emitiram luz a cerca de dez bilhões de anos atrás, muito antes da Terra ser formada.

Supernova Tipo Ia

© Subaru (Supernova Tipo Ia)

Os pesquisadores usaram esta amostra de supernovas antigas para determinar com que freqüência tais explosões de estrelas ocorriam no Universo jovem.
Supernovas têm uma grande importância em astrofísica. Elas são fábricas de elementos da natureza: essencialmente todos os elementos da tabela periódica que são mais pesados ​​que o oxigênio foram formados através de reações nucleares imediatamente anterior e durante essas explosões colossais. As explosões arremessam esses elementos no espaço interestelar, onde servem como matéria-prima para as novas gerações de estrelas e planetas.
Assim, os átomos em nossos corpos, como os átomos de cálcio em nossos ossos ou os átomos de ferro em nosso sangue, foram criados em supernovas. Ao rastrear a frequência e tipos de explosões de supernovas de volta no tempo cósmico, os astrônomos podem reconstruir a história do Universo, a partir da mistura simples de hidrogênio e hélio que existiu durante os primeiros bilhões de anos após o Big Bang, até a atual riqueza de elementos.
No entanto, olhar de volta no tempo requer explorar grandes distâncias, significando que essas explosões luminosas são extremamente tênues e difíceis de serem detectadas. Para superar esse obstáculo, a equipe se aproveitou de uma combinação de propriedades do Telescópio Subaru: o poder da luz captação de seu grande espelho primário de 8,2 metros; a nitidez de suas imagens, e o amplo campo de visão de sua câmera com foco principal (Suprime-Cam).
Em quatro ocasiões distintas, eles apontaram o telescópio para um único campo chamado de campo Subaru Deep, que se estende por uma área do céu semelhante à Lua cheia, permitindo que a luz tênue das supernovas nas galáxias mais distantes se acumulam ao longo de várias noites de cada vez, formando assim uma exposição muito longa e profunda do campo.
Cada um das quatro observações captou cerca de 40 supernovas no ato de explodir entre as 150.000 galáxias no campo. Ao todo, a equipe descobriu 150 explosões, incluindo uma dúzia que estão entre as mais distantes e antigas.
Análise dos dados mostrou que as supernovas do tipo chamado "termonuclear" explodiam cerca de cinco vezes mais frequentemente no Universo jovem, cerca de dez bilhões de anos atrás, do que hoje. Supernovas termonucleares, muitas vezes chamadas de Tipo Ia, são uma das principais fontes de geração do elemento ferro no Universo. E os elementos anteriores, como oxigênio e carbono de que necessitamos para existirmos também foram espalhados por estas supernovas.
Igualmente importante, essas explosões serviram como marcadores de distância cósmica para os astrônomos. Durante a última década, eles revelaram que a expansão do Universo, em que todas as galáxias estão se afastando umas das outras, está acelerando sob a influência da energia escura misteriosa.
No entanto, a natureza das supernovas termonucleares é mal compreendida, e tem havido intenso debate sobre a identidade das estrelas antes de explodirem. Ao revelar o intervalo da idade das estrelas que explodem, novas descobertas fornecem algumas pistas importantes para resolver este mistério.
Os resultados correspondem a um cenário no qual as supernovas termonucleares são o produto da fusão de um par de anãs brancas. Observações futuras com a próxima geração de imagens da câmera Subaru, a Hyper Suprime-Cam, permitirá a descoberta de amostras maiores de supernovas mais distantes.

Fonte: Monthly Notices da Royal Astronomical Society

sábado, 15 de outubro de 2011

A cauda da Estrela Maravilhosa

Em 1596, pouco antes da invenção do telescópio, o monge e astrônomo alemão David Faber, também conhecido como Fabricius, observou na constelação de Cetus, uma estrela alaranjada onde anteriormente nada havia notado e registrou sua posição. Em 1642 Johannes Hevelius denominou-a de Mira Ceti (Maravilha da Baleia), foi a primeira estrela variável a ser descoberta e, na época, esta descoberta contribuiu para a rejeição da idéia de que a abóbada celeste era eterna e imutável.

cauda de Mira

© Caltech/GALEX (cauda de Mira)

Em 2007, observações do telescópio espacial GALEX revelou uma cauda extraordinária de cometa atrás de Mira - a primeira vista atrás de uma estrela. Esta cauda tem uma extensão de 13 anos-luz. Como Mira viaja através da galáxia, o gás emana de sua superfície para o espaço, causando um brilho em comprimentos de onda ultravioleta, que vemos como uma cauda.

Mira é um sistema binário que encontra-se a 420 anos-luz do Sol e as duas estrelas estão afastadas uma da outra por cerca de 9 bilhões de quilômetros. Mira A é uma gigante vermelha que tem cerca de 600 vezes o diâmetro do Sol, enquanto que Mira B é uma anã branca com aproximadamente o tamanho da Terra. Estrelas variáveis ​​tornaram-se imensamente importante na astronomia. Uma classe, chamada de variáveis ​​Cefeidas, é útil para medir distâncias e foi crucial para revelar a grandeza do Universo.

A Mira A, no século XVII recebeu o nome de “Estrela Maravilhosa”, devido as variações no seu brilho, teria aumentado e diminuído durante um período de cerca de 333 dias, naquela época. Mira A varia seu brilho cerca de 1.500 vezes, indo da magnitude 2 em seu brilho extremo à magnitude 10, quando então torna-se visível apenas através de telescópios.

A agitação interna de Mira A pode criar distúrbios magnéticos na sua atmosfera superior, responsáveis pelas fulgurações de raios-X observadas e por fortes ventos estelares que fazem a estrela perder material de uma forma rápida. Parte do gás e poeira que escapam de Mira A é capturada pela sua companheira, Mira B. Esse material é recolhido num disco de acreção em volta desta pequena estrela, onde as colisões entre as partículas, que se movem muito rapidamente, produzem raios-X. Na imagem abaixo Mira A está à direita e Mira B à esquerda.

imagem em ultravioleta do sistema Mira

© Chandra (imagem em ultravioleta do sistema Mira)

Um dos aspectos mais intrigantes das observações deste sistema, tanto em raios-X como em ultravioleta, é o fato de se encontrarem indícios de haver uma ponte tênue de material ligando as duas estrelas. A existência de tal ponte pode ser um indício de que, além de capturar material do vento estelar, Mira B pode estar extraindo material diretamente de Mira A para o seu disco de acreção.

simulação hidrodinâmica em Mira

© Mohamed & Podsiadlowski (simulação hidrodinâmica em Mira)

Observações mais recentes pelo telescópio espacial Herschel revelaram outro detalhe curioso, que parece ser uma estrutura espiral na cabeça da nuvem de Mira. A espiral pode resultar da forma como a companheira perturba o gás derramado por Mira como ela se movesse em torno de sua órbita.

Fonte: Astronomy & Astrophysics

sexta-feira, 14 de outubro de 2011

Uma supernova remanescente intrigante

A G299.2-2.9 é uma supernova remanescente intrigante que localiza-se a cerca de 16 mil anos-luz de distância da galáxia Via Láctea.

supernova remanescente G299.2-2.9

© NASA (supernova remanescente G299.2-2.9)

Evidências apontam que a G299.2-2.9 são os restos de uma supernova Ia, onde uma anã branca tem crescido demasiadamente para causar uma explosão termonuclear. Porque é mais velho do que a maioria dos remanescentes de supernova causado por estas explosões, em uma idade de cerca de 4.500 anos, a G299.2-2.9 fornece aos astrônomos uma excelente oportunidade para estudar como esses objetos evoluem ao longo do tempo. Ele também fornece informação da explosão de uma supernova Ia, que produziu esta estrutura.
Esta imagem composta mostra a supernova G299.2-2.9 no raios-X a partir do observatório espacial Chandra e o satélite ROSAT, em laranja, que foi sobreposta em uma imagem infravermelha do Two Micron All-Sky Pesquisa, ou 2MASS. A emissão fraca de raios-X da região interior revela quantidades relativamente grandes de ferro e silício, como esperado para um remanescente de uma supernova Ia. A camada externa da parte remanescente é complexa. Tipicamente, é associada a uma estrela que explodiu no espaço onde o gás e poeira não são uniformemente distribuídas.
É muito importante compreender os detalhes das explosões das supernovas para adquirir conhecimento sobre a energia escura e a expansão do Universo. A descoberta da expansão acelerada do Universo na década de 1990 levou à recente concessão do Prêmio Nobel de Física.

Fonte: NASA

Censo da matéria escura através do Hubble

Astrônomos estão estudando 25 aglomerados de galáxias para medir a quantidade de matéria escura existente no Universo.

aglomerado de estrelas MACS 1206

© Hubble (aglomerado de estrelas MACS 1206)

Reunidos em um projeto chamado Clash, eles utilizam o Telescópio Espacial Hubble para realizar o censo.

A matéria escura não pode ser detectada diretamente. Ela existe pela influência que exerce na matéria visível e pela maneira que altera o espaço, fazendo a luz de objetos distantes ser distorcida.

Até o momento, o grupo conseguiu analisar seis aglomerados de galáxias. Essas são as maiores estruturas unidas pela gravidade que existem no Universo. Cada uma pode conter até milhares de galáxias.

Por serem gigantescos, os aglomerados de galáxias funcionam como "lentes cósmicas" imensas, que amplificam e distorcem qualquer raio de luz que passe por eles. Esse efeito é conhecido como lente gravitacional e é usado pelos astrônomos para provar a existência da matéria escura.

Quando a luz de galáxias muito distantes atravessa o aglomerado, múltiplas imagens do mesmo objeto se formam. O estudo dessa distorção permite saber quanta matéria existe dentro do aglomerado. Caso só existisse matéria visível, a distorção observada seria bem menor.

Um exemplo é do aglomerado MACS 1206, que está a 4 bilhões de anos-luz de distância da Terra. Cada ano-luz equivale a quase 10 trilhões de quilômetros. Nele, os astrônomos do Clash conseguiram ver 47 imagens múltiplas de 12 galáxias recém-descobertas. Esse tipo de observação seria impossível sem a ajuda de um telescópio de longe alcance como o Hubble.

Atualmente, os cientistas acreditam que a matéria visível represente apenas 4% do Universo. O restante seria composto por energia escura (73%) e por matéria escura (23%).

Fonte: NASA