segunda-feira, 1 de outubro de 2018

Um Universo resplandescente

Observações profundas realizadas pelo espectrógrafo MUSE montado no Very Large Telescope  (VLT) do ESO revelaram enormes reservatórios cósmicos de hidrogênio atômico em torno de galáxias distantes.

reservatórios de hidrogênio atômico em torno de galáxias distantes

© Hubble/ESO/Lutz Wisotzki (reservatórios de hidrogênio atômico em torno de galáxias distantes)

A extrema sensibilidade do MUSE permitiu a observação direta de nuvens tênues de hidrogênio brilhantes que emitem radiação de Lyman-alfa no Universo primordial, que foi  observada em quase toda a região do Hubble Ultra Deep Field (HUDF), mostrando assim que quase todo o céu noturno brilha de forma invisível.

Os astrônomos há muito estão acostumados com o fato de que o céu é completamente diferente conforme os diferentes comprimentos de onda em que é observado, no entanto a extensão da emissão Lyman-alfa observada é mesmo assim surpreendente. “Descobrir que todo o céu brilha quando observamos a emissão de Lyman-alfa emitida por nuvens de hidrogênio distantes foi realmente uma surpresa extraordinária,” diz Kasper Borello Schmidt, um membro da equipe de astrônomos responsável pela descoberta.

A região do HUDF que a equipe observou é uma área do céu bastante normal situada na constelação da Fornalha, que se tornou famosa quando foi mapeada pelo telescópio espacial Hubble em 2004. O telescópio utilizou mais de 270 horas de precioso tempo de observação para explorar esta região do espaço, de modo mais profundo do que o que tinha sido feito até então.

As observações do HUDF revelaram milhares de galáxias espalhadas por toda uma região escura do céu, dando-nos assim uma visão da escala do Universo. Agora, as capacidades extraordinárias do MUSE permitiram observações ainda mais profundas. A detecção de emissão de Lyman-alfa no HUDF constitui-se na primeira vez que os astrônomos conseguiram ver esta tênue radiação emitida por envelopes gasosos das galáxias mais primordiais. Esta imagem composta mostra a radiação de Lyman-alfa em azul, sobreposta à icônica imagem do HUDF.

O instrumento MUSE, usado para fazer estas observações, é um espectrógrafo de campo integral de vanguarda instalado no telescópio principal nº 4 do VLT, no Observatório do Paranal do ESO. Quando observa o céu, o MUSE vê a distribuição de comprimentos de onda da radiação em cada pixel do seu detector. Observar o espectro total da radiação emitida por objetos astronômicos fornece-nos pistas importantes sobre os processos astrofísicos que ocorrem no Universo.

A radiação de Lyman-alfa que o MUSE observou tem origem nas transições atômicas eletrônicas em átomos de hidrogênio que emitem radiação com um comprimento de onda de cerca de 122 nanômetros. Como tal, esta radiação é completamente absorvida pela atmosfera terrestre. Apenas a emissão de Lyman-alfa desviada para o vermelho emitida por galáxias extremamente distantes possui um comprimento de onda suficientemente longo para passar pela atmosfera da Terra e ser detectada pelos telescópios do ESO colocados no solo.

A equipe internacional de astrônomos que fez estas observações tentou identificar os processos que fazem com que estas nuvens de hidrogênio distantes emitam em Lyman-alfa, no entanto a causa precisa permanece um mistério. Apesar disso, como se pensa que este tênue brilho seja onipresente no céu noturno, espera-se que investigação futura possa descobrir a sua origem.

Oa astrônomos querem descobrir no futuro como é que estes vastos reservatórios cósmicos de hidrogênio atômico se encontram distribuídos no espaço.

“Da próxima vez que olhar para o céu noturno sem Lua e ver as estrelas, imagine o brilho invisível do hidrogênio, os primeiros blocos constituintes do Universo, iluminando todo o céu noturno,” disse Themiya Nanayakkara, também membro da equipe.

Este trabalho foi descrito num artigo científico intitulado “Nearly 100% of the sky is covered by Lyman-α emission around high redshift galaxies”, o qual foi publicado hoje na revista Nature.

Fonte: ESO

Quatro vizinhas recém-descobertas da Via Láctea

As galáxias anãs ultra fracas são as menores,  constituindo os sistemas estelares menos enriquecidos quimicamente no Universo e são alvos importantes para a compreensão da matéria escura e da formação de galáxias.

galáxia anã Phoenix II

© Mutlu-Pakdil (galáxia anã Phoenix II)

Elas compreendem em número a maioria das galáxias no Universo. E não menos importante, as galáxias anãs ao redor da Via Láctea fornecem informações empíricas cruciais para a verificação de cenários de formação de nossa própria galáxia. Atualmente, existem cerca de sessenta galáxias anãs associadas à Via Láctea e a menos de um milhão de anos-luz; a galáxia de Andrômeda, nossa grande galáxia espiral vizinha, está a dois milhões e meio de anos-luz de distância.

Muitas novas galáxias satélites da Via Láctea foram descobertas nos últimos anos, mas algumas foram postas em dúvida por campanhas de imagem mais sensíveis e a maioria tem apenas propriedades deficientemente compreendidas. O astrônomo Nelson Caldwell, do Harvard-Smithsonian Center for Astrophysics (CfA), era membro de uma equipe que usava o telescópio Magellan Clay e o instrumento Megacam para obter imagens de quatro galáxias anãs próximas sondando quase dezesseis vezes mais tênues do que as medições anteriores. As imagens revelam novas estrelas e outros objetos, incluindo estruturas estendidas, e permitiram que os astrônomos revisassem os principais parâmetros destas galáxias.

Uma das galáxias anãs, Sagitário II, com uma massa de gás de apenas 1.300 massas solares, é incomum, pois é pequena em tamanho, mesmo para uma galáxia anã e pode ser considerada como o aglomerado globular mais extenso de estrelas para seu brilho. Outra, Retículo II, é a galáxia anã mais alongada conhecida (quase oito vezes mais longa do que larga). Uma terceira, Tucana III, parece estar associada a um fluxo de material que flui para a Via Láctea. A quarta galáxia anã é a Phoenix II.

Os novos resultados sensíveis foram incapazes de medir qualquer gás em qualquer um dos objetos, mas estabeleceram novos limites e ajudarão os astrônomos a fazer um recenseamento mais completo da família de galáxias da Via Láctea.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

domingo, 30 de setembro de 2018

Matéria é deslocada por buraco negro a 30% da velocidade da luz

Depois de cair no horizonte de eventos, nada pode escapar de um buraco negro.

ilustração do fluxo de material em direção a um buraco negro

© NASA/JPL-Caltech (ilustração do fluxo de material em direção a um buraco negro)

Enquanto as profundezas dos buracos negros podem permanecer para sempre um mistério, os astrônomos podem observar as regiões ao redor deles. Uma equipe de pesquisadores relatou, pela primeira vez, avistar um aglomerado de matéria caindo diretamente em um buraco negro distante em quase um terço da velocidade da luz.

As observações, oriundas do observatório de raios X XMM-Newton da ESA, são do buraco negro supermassivo de 40 milhões de massas solares no centro da galáxia PG211+143, a cerca de um bilhão de anos-luz de distância da Terra. A PG211+143 é uma galáxia Seyfert, o que significa que ela abriga um buraco negro brilhante que alimenta ativamente seu centro, puxando gás e poeira de seus arredores. Ao dispersar pelo comprimento de onda a luz de raios X recebida deste material, os pesquisadores liderados por Ken Pounds, da Universidade de Leicester, registraram um volume de matéria caindo no buraco negro a 30% da velocidade da luz, cerca de 90.000 quilômetros por segundo.

Curiosamente, o gás inflado não mostrava rotação, não se movia da mesma forma que o disco de acreção maior que brilhava ao redor do buraco negro, quando sua distância inicial era apenas 20 vezes o tamanho do buraco negro.

A tradicional "imagem" de um buraco negro tem um objeto compacto e massivo no centro, cercado por um disco de gás quente. Isso decorre do fato de que, como os buracos negros são tão pequenos em comparação com a massa que eles mantêm, a matéria não pode simplesmente penetrar no buraco negro de uma só vez; em vez disso, forma um disco rodopiante, como água fluindo pelo ralo, e eventualmente aproxima-se do buraco negro para cair em seu interior. Como matéria se move do disco externo em direção ao horizonte de eventos, ele perde energia potencial gravitacional, que é convertida em radiação que pode ser observada.

Nesta imagem tradicional, as órbitas de material dentro do disco de acreção são consideradas alinhadas com o spin do próprio buraco negro, formando um único disco. Esta observação, na qual a matéria mostrou pouca rotação, é intrigante, pelo menos até a introdução de modelos de computador recentes também desenvolvidos na Universidade de Leicester e operados usando a instalação de supercomputadores DiRAC do Reino Unido.

A teoria e os modelos consideram o fato de que a matéria pode cair em direção a um buraco negro de qualquer direção. Talvez, em vez de apenas um disco, vários discos de acreção desalinhados possam se formar como matéria em fluxos. A matéria pode "rasgar" estes discos, formando anéis de material que, se colidirem, cancelam sua rotação, permitindo que o material flua diretamente no buraco negro, exatamente como os astrônomos observaram.

Tal processo, denominada "acreção caótica", pode ocorrer provavelmente em objetos como os buracos negros supermassivos nos centros de galáxias, que podem acumular enormes quantidades de matéria, particularmente no início de suas vidas ou após interações próximas com outras galáxias. A acreção caótica poderia, ao longo do tempo, retardar o giro de um buraco negro supermassivo, o que permitiria que o buraco negro engolisse a matéria com mais facilidade, crescesse rapidamente e brilhasse intensamente; tais características são observadas nestes objetos no início do Universo.

Um artigo foi publicado no periódico Monthly Notices da Royal Astronomical Society.

Fonte: Astronomy

sábado, 29 de setembro de 2018

Seguindo 'Oumuamua até ao seu local de origem

Uma equipe de astrônomos rastreou o objeto interestelar 'Oumuamua até várias possíveis estrelas hospedeiras.

ilustração do objeto interestelar 'Oumuamua

© NASA/ESA/ESO/M. Kornmesser (ilustração do objeto interestelar 'Oumuamua)

O objeto foi descoberto no final de 2017, a primeira vez que os astrônomos foram capazes de observar um objeto astronômico de outro sistema estelar que visitou o nosso próprio Sistema Solar.

Bailer-Jones e colegas usaram dados do satélite de astrometria da ESA, Gaia, para encontrar quatro estrelas plausíveis onde 'Oumuamua pode ter começado a sua longa jornada, há mais de um milhão de anos atrás.

A descoberta do objeto interestelar agora conhecido como 'Oumuamua, em outubro de 2017, foi uma novidade: pela primeira vez, foi possível observar um objeto interestelar visitando o nosso Sistema Solar. Infelizmente, o visitante só foi avistado quando já estava de saída, mas os astrônomos ainda assim foram capazes de usar telescópios espaciais e terrestres para medir o movimento do objeto.

Agora, um grupo de astrônomos liderado por Coryn Bailer-Jones do Instituto Max Planck para Astronomia conseguiu retroceder o movimento de 'Oumuamua e identificar quatro estrelas candidatadas onde o objeto interestelar pode ter tido origem. Estudos anteriores já tinham tentado reconstruções parecidas da origem de 'Oumuamua, mas não haviam proposto candidatos plausíveis.

Estes estudos anteriores não continham um ingrediente crucial: em junho de 2018, um grupo liderado pelo astrônomo Marco Micheli, da ESA, mostrou que a órbita de 'Oumuamua dentro do Sistema Solar não era a de um objeto em queda livre, isto é, um objeto que se movia exclusivamente sob a influência da gravidade. Em vez disso, havia alguma aceleração adicional quando o objeto estava perto do Sol. A explicação provável que é 'Oumuamua tinha alguma aparência com um cometa costituído de gelo que, quando suficientemente aquecido pela luz solar, produz gás que, por sua vez, acelera o objeto de origem como um motor extremamente fraco de um foguete. Apesar de fraca, a liberação de gás não era visível em imagens como as dos cometas quando perto do Sol, é grande demais para ser ignorada quando traçando a órbita.

O novo estudo por Bailer-Jones e colegas tem em conta o modo como a órbita de 'Oumuamua mudou quando o objeto passou perto do Sol, fornecendo uma estimativa precisa da direção original do objeto, bem como da velocidade com que entrou no nosso Sistema Solar.

Isto pode resolver o problema de como 'Oumuamua entrou no Sistema Solar, mas e as estrelas que encontrou pelo caminho, e a sua gravidade combinada que teria influenciado a trajetória do objeto?

Para esta parte da reconstrução, Bailer-Jones usou um tesouro de dados que a missão Gaia da ESA divulgou no passado mês de abril, o DR2 (Data Release 2). Como líder de um dos grupos encarregados de preparar os dados do Gaia para uso pela comunidade científica, Bailer-Jones está muito familiarizado com este conjunto específico de dados. Em particular, DR2 inclui informações precisas sobre as posições, movimento no céu e paralaxe (como medida de distância) para 1,3 bilhões de estrelas. Para sete milhões delas, também temos informações sobre a velocidade radial, isto é, o seu movimento na nossa direção ou na direção oposta. Usando a base de dados astronômica Simbad, os astrônomos incluíram mais 220.000 estrelas no seu estudo, para o qual a velocidade radial está apenas disponível na base de dados Simbad.

Em seguida, ao observar um percurso aproximado: um cenário simplificado no qual tanto 'Oumuamua como todas as estrelas se movem em linhas retas, a velocidades constantes. A partir deste cenário, selecionaram cerca de 4.500 estrelas que eram candidatos promissores para um encontro mais próximo com 'Oumuamua. Então surgiu o próximo passo: traçar os movimentos anteriores destes candidatos e, para 'Oumuamua, usar uma versão suavizada da influência gravitacional de toda a matéria na nossa Galáxia.

Vários estudos já haviam sugerido que 'Oumuamua tinha sido expulso do sistema planetário da sua estrela progenitora durante a fase de formação planetária, onde existem muitos objetos de tamanho pequeno (planetesimais), os quais interagem com planetas gigantes no sistema. O lar do objeto tem provavelmente duas características fundamentais: o rastreamento da órbita de 'Oumuamua leva-nos diretamente ou, pelo menos, muito próximo da estrela de origem. Em adição, a velocidade relativa de 'Oumuamua e da sua estrela hospedeira devem ser, provavelmente e comparativamente, lentas; os objetos normalmente não são ejetados dos seus sistemas natais a grandes velocidades.

Bailer-Jones e colegas descobriram quatro estrelas que são possíveis candidatas a estrela hospedeira de 'Oumuamua. Todas as quatro são estrelas anãs. A que passou mais perto de 'Oumuamua, pelo menos há um milhão de anos, é a estrela anã avermelhada HIP 3757. Passou a cerca de 1,96 anos-luz. Dadas as incertezas não explicadas nesta reconstrução, este valor é suficientemente próximo para que 'Oumuamua tenha tido origem neste sistema planetário (caso a estrela tenha um). No entanto, a velocidade relativa comparativamente grande (cerca de 25 km/s) torna-a menos provável como lar de 'Oumuamua.

A próxima candidata, HD 292249, é parecida com o nosso Sol, estava um pouco mais afastada da trajetória do objeto há 3,8 milhões de anos, mas com uma velocidade relativa menor de 10 km/s. As duas candidatas adicionais encontraram 'Oumuamua há 1,1 e 6,3 milhões de anos, respetivamente, com velocidades e distâncias intermediárias. Estas estrelas já foram catalogadas anteriormente por outros levantamentos, mas pouco se sabe sobre elas.

A fim de expelir 'Oumuamua às velocidades observadas, o sistema natal precisaria de apresentar um planeta gigante adequado que pudesse atirar 'Oumuamua para as profundezas do espaço. Até agora, não foram detectados planetas em torno destas estrelas, mas considerando que nenhuma delas foi examinada intimamente em busca de planetas, isso poderá mudar no futuro.

O estudo também está limitado pelo número de velocidades radiais incluídas no segundo lançamento de dados do Gaia. O terceiro lançamento de dados, previsto para 2021, deverá fornecer este tipo de dados para uma amostra estelar dez vezes maior, o que poderá levar à identificação de candidatas adicionais. A procura pelo sistema original de 'Oumuamua continua. O estudo aqui divulgado apresenta candidatos interessantes, mas ainda não rastreamos o visitante interestelar até à sua casa.

Um artigo foi aceito para publicação no periódico Astronomical Journal.

Fonte: Max Planck Institute for Astronomy

Descoberta surpreendente de uma supernova de 14 anos

As supernovas são vastas explosões que marcam a destruição de estrelas nos estágios finais de sua evolução, sendo um dos fenômenos mais brilhantes do nosso Universo.

NGC 1892

© Hubble (NGC 1892)

A história das observações de supernovas é longa: a primeira supernova registrada foi vista na China em 185 dC! Como as supernovas são escassas (talvez 1–3 por século na Via Láctea) e seus estágios mais brilhantes são de curta duração (com duração de apenas alguns meses), apenas um punhado de supernovas foram vistas a olho nu através das eras. A invenção do telescópio, no entanto, mudou isso: à medida que a tecnologia melhorava, os astrônomos puderam observar supernovas brilhantes em galáxias além da Via Láctea.

Hoje, cerca de 50.000 supernovas foram observadas. O campo foi vastamente expandido por recentes pesquisas sobre o céu que metodicamente buscavam transientes. Não obstante, intrépidos astrônomos individuais ainda contribuem para essa cena, como evidenciado pela recente descoberta do astrônomo amador brasileiro Jorge Stockler de Moraes. Em janeiro de 2017, ele fotografou a distante galáxia NGC 1892 usando um telescópio de 12 polegadas de diâmetro. Quando mais tarde comparou sua imagem a uma imagem de arquivo de 2004 da mesma galáxia, tirada como parte do Carnegie-Irvine Galaxy Survey (CGS), ele descobriu uma diferença distinta entre as duas fotos: uma fonte brilhante estava presente na imagem de 2004, que não era visível em sua foto recente.

Stockler de Moraes contatou em seguida o astrônomo James Guillochon (Harvard Center for Astrophysics), que primeiro eliminou possíveis explicações alternativas para a fonte, como planetas menores em nosso Sistema Solar que poderiam ter coincidido com a NGC 1892 na época. Guillochon então trabalhou com uma equipe de colaboradores para explorar outras imagens da galáxia e conduzir imagens de acompanhamento, bem como analisar o transiente na imagem da CGS.

Verificou-se que a CGS2004A com marcação transitória estava ausente em todas as imagens adicionais que os autores exploraram, tanto nos anos anteriores como posteriores à observação da CGS. A análise fotométrica de Guillochon e colaboradores do transiente e nosso conhecimento da natureza da NGC 1892, uma galáxia massiva de formação estelar, sugerem ainda que este transiente provavelmente foi uma supernova do Tipo IIP, causada quando o núcleo de uma estrela massiva (talvez 8 a 50 massas solares) de repente entra em colapso.

Com base na análise dos autores, parece que Stockler de Moraes descobriu por acaso uma explosão estelar que passou despercebida 14 anos atrás. Descobertas como estas nos ajudam a continuar expandindo nossa compreensão de como as estrelas evoluem em todo o Universo.

Fonte: Sky & Telescope

quarta-feira, 26 de setembro de 2018

Estrela anã branca é orbitada por fragmentos planetários

O estudo, liderado por Paula Izquierdo, aluna de doutoramento do Instituto de Astrofísica das Canárias (IAC) e da Universidade de La Laguna (ULL), aprofundou a análise de uma excepcional anã branca, que mostra trânsitos periódicos produzidos por fragmentos de um planetesimal dizimado.

disco de poeira e fragmentos planetários em torno de estrela

© NASA/JPL-Caltech (disco de poeira e fragmentos planetários em torno de estrela)

As observações usadas para esta pesquisa foram obtidas com o Gran Telescopio Canarias (GTC) e com o telescópio Liverpool.

O estudo confirma a evolução contínua dos trânsitos produzidos pelos remanescentes de um planetesimal em órbita da anã branca WD 1145+017. Estes "detritos" passam em frente da estrela a cada 4,5 horas, bloqueando uma fração da luz da estrela. A interação contínua e a fragmentação destes detritos provocam grandes mudanças na profundidade e na forma dos trânsitos observados.

A WD 1145+017 é uma anã branca, o núcleo remanescente de uma estrela que esgotou o seu combustível nuclear. A maioria das anãs brancas têm massas menores que a do Sol e tamanhos semelhantes à Terra. Muitos estudos indicam que 95% de todas as estrelas no Universo terminarão as suas vidas como anãs brancas, entre elas o nosso próprio Sol.

O estudo deste sistema fornecerá informações sobre o futuro do nosso Sistema Solar. Por esse motivo, a WD 1145+017 é especial. É a primeira anã branca para a qual as mudanças no brilho devido a ocultações (parte da luz da estrela é bloqueada pelos fragmentos de um corpo rochoso numa órbita de 4,5 horas) foram detectadas, sofrendo colisões contínuas que vão resultar na sua desintegração.

Embora este sistema tenha sido apenas descoberto em 2015, já atraiu a atenção de um grande número de grupos de pesquisadores. Este estudo mais recente apresenta os primeiros dados espectroscópicos simultâneos, obtidos com o GTC (10,4 metros) e dados fotométricos do telescópio Liverpool (2 metros), ambos no Observatório Roque de los Muchachos (Garafía, La Palma).

"Quando o sistema está fora de trânsito, assumimos que detectamos 100% do fluxo, porque nada atrapalha a luz emitida pela anã branca," explica Izquierdo. "Mas quando os detritos planetários em órbita da estrela cruzam a nossa linha de visão, o que acontece durante um trânsito, a quantidade de luz que recebemos é reduzida. Essa redução é tão grande quanto 50% no trânsito mais profundo que observamos: grandes nuvens de poeira que sopram os fragmentos planetesimais são capazes de ocultar metade da luz da anã branca."

O estudo também confirma que os trânsitos na faixa visível da luz são "cinza". Ou seja, não há relação entre a profundidade dos trânsitos e as suas cores, o que faz com que os trânsitos sejam igualmente profundos nas cinco bandas de onda estudadas. Os autores discutem uma nova hipótese na qual a queda observada na quantidade de luz é devida a uma estrutura opticamente espessa, não a uma estrutura opticamente fina como proposto anteriormente.

"O trânsito mais profundo mostra uma estrutura complexa que pudemos modelar usando a superposição de diferentes nuvens de poeira, como se fosse produzido por seis fragmentos igualmente espaçados vindos dos planetesimais," explica Pablo Rodríguez-Gil, pesquisador do IAC e professor associado da ULL.

Entre os diferentes achados, a equipe observou uma redução na quantidade de absorção produzida pelo ferro durante o trânsito mais profundo detectado: "Parte dessa absorção, não tem origem na atmosfera da anã branca, mas num disco de gás que também orbita ao seu redor, de modo que demonstramos que o disco de fragmentos e de gás devem estar espacialmente relacionados," afirma Boris Gänsicke, astrônomo da Universidade de Warwick (Reino Unido).

Finalmente, usaram a distância da WD 1145+017, obtida pela missão Gaia da ESA, para determinar a massa, raio, temperatura e idade do sistema.

Um artigo foi publicado recentemente na revista Monthly Notices of the Royal Astronomical Society.

Fonte: Instituto de Astrofísica de Canarias

domingo, 23 de setembro de 2018

Equinócio: Analema sobre as pedras Callanish

O Sol retorna ao mesmo lugar no céu todos os dias ao mesmo tempo? Não.

analema sobre as pedras Callanish

© Giuseppe Petricca (analema sobre as pedras Callanish)

Uma resposta mais visual a esta questão é um analema, uma imagem composta tirada do mesmo local ao mesmo tempo ao longo de um ano.

O analema apresentado é composto de imagens tiradas a cada poucos dias às 16h, perto da aldeia de Callanish, nas Hébridas Exteriores, na Escócia, Reino Unido.

No primeiro plano estão as Callanish Stones, um círculo de pedra construído por volta de 2.700 aC durante a Idade do Bronze da humanidade. Não se sabe se a colocação das pedras Callanish tem ou teve um significado astronômico.

As causas derradeiras para a figura com formato de 8 de todos os analemamas são a inclinação do eixo da Terra e a elipticidade da órbita da Terra em torno do Sol. Nos solstícios, o Sol aparecerá na parte superior ou inferior de um analema. Os equinócios, no entanto, correspondem aos pontos médios do analema, não o ponto de interseção.

Hoje às 1:54 (UT) ocorreu o equinócio da primavera no hemisfério sul e equinócio de outono no hemisfério norte, quando dia e noite são iguais em todo o planeta Terra. Muitas culturas celebram uma mudança de estação num equinócio.

Fonte: NASA

Como as estrelas giram

Estrelas parecidas com o Sol têm um movimento de rotação que é duas vezes e meia mais rápido no equador do que nas suas altas latitudes, uma descoberta feita por pesquisadores da New York University Abu Dhabi (NYU Abu Dhabi) desafia a ciência sobre como as estrelas giram.

movimento de rotação de estrelas parecidas com o Sol

© MPI for Solar System Research (movimento de rotação de estrelas parecidas com o Sol)

Na imagem acima as setas azuis representam a velocidade de rotação. Acredita-se que a rotação diferencial seja um ingrediente essencial para gerar atividade magnética.

Até agora, pouco era conhecido sobre os padrões de rotação de forma precisa de estrelas parecidas com o Sol, a única coisa que se sabia era que no equador as estrelas giram mais rapidamente do que nas altas latitudes, da mesma forma que o Sol.

Os cientistas na NYU Abu Dhabi Center for Space Science usaram observações feitas pela missão Kepler, e também a asterosismologia, ou seja, o estudo das ondas sonoras que atravessam as estrelas, para determinar com precisão como é o movimento de rotação de estrelas parecidas com o Sol, de um modo que nenhum outro método científico foi capaz de determinar até agora.

O estudo descobriu que estrelas parecidas com o Sol, caracterizadas assim por terem a mesma massa e idade do Sol, de fato giram de maneira similar ao Sol, nas regiões equatoriais, de forma mais rápida do que nas altas e médias latitudes. Mas existe uma diferença fundamental.

O equador do Sol gira, cerca de 10% mais rápido que suas latitudes intermediárias, enquanto que em estrelas parecidas com o Sol a rotação no equador é cerca de 2 vezes e meia mais rápida.

“Isso é inesperado, e desafia as atuais simulações numéricas, que sugerem que as estrelas como essas não seriam capazes de sustentar uma diferença rotacional dessa magnitude,” disse Othman Benomar, pesquisador associado na NYU Abu Dhabi Center for Space Science.

“Entender essa diferença na rotação, ou seja, como partes da estrelas giram mais rápida que outras, não é só importante para se entender de forma completa como as estrelas funcionam, isso irá ajudar a ter um conhecimento profundo sobre os campo magnéticos das estrelas,” explicou Katepalli Sreenivasan, principal pesquisador da NYU Abu Dhabi Center for Space Science.

Os campos magnéticos no Sol têm sido conhecidos por causar as enormes tempestades solares que frequentemente perturbam os satélites no espaço e que podem até mesmo causar problemas nas redes energéticas na Terra.

Os cientistas concordam que a rotação do Sol tem uma função crucial na geração do campo magnético solar, mas os detalhes exatos ainda permanecem um mistério, apesar do Sol ter sido observado e estudado em grande detalhe.

“Aprender mais sobre como as estrelas giram e geram seus campos magnéticos poderia nos ajudar a entender mais sobre o dínamo solar, o processo físico que gera o campo magnético do Sol,” complementou Sreenivasan.

O estudo foi publicado na revista Science.

Fonte: New York University Abu Dhabi

sábado, 22 de setembro de 2018

A galáxia irregular NGC 55

Acredita-se que a galáxia irregular NGC 55 seja semelhante à Grande Nuvem de Magalhães.

NGC 55

© Martin Pugh (NGC 55)

Mas enquanto a Grande Nuvem de Magalhães está a cerca de 180.000 anos-luz de distância da Terra e é um satélite bem conhecido da Via Láctea, a NGC 55 está a mais de 6 milhões de anos-luz de distância e é membro do Grupo de Galáxias do Escultor.

Classificada como uma galáxia irregular, em exposições profundas, a Grande Nuvem de Magalhães se assemelha a uma galáxia de discos barrados. Abrangendo cerca de 50.000 anos-luz, a NGC 55 apresenta um perfil estreito e achatado em contraste com a nossa visão frontal da Grande Nuvem de Magalhães.

Assim como as grandes regiões formadoras de estrelas criam nebulosas de emissão na Grande Nuvem de Magalhães, a NGC 55 também parece estar produzindo novas estrelas. Este retrato altamente detalhado da galáxia destaca um núcleo brilhante misturado com nuvens de poeira, reveladoras regiões de formação de estrelas rosadas e jovens aglomerados de estrelas azuis na NGC 55.

Fonte: NASA

sexta-feira, 21 de setembro de 2018

Nuvens de Magalhães podem ter sido um trio

As duas das galáxias mais próximas da Via Láctea, a Grande e a Pequena Nuvens de Magalhães, podem ter tido uma terceira companheira.

Grande Nuvem de Magalhães

© Andrew Lockwood (Grande Nuvem de Magalhães)

Uma pesquisa descreve como uma outra galáxia "luminosa" foi provavelmente engolida pela Grande Nuvem de Magalhães há 3 a 5 bilhões de anos.

A maioria das estrelas na Grande Nuvem de Magalhães gira no sentido dos ponteiros do relógio em torno do centro da galáxia. Mas, excepcionalmente, algumas estrelas orbitam no sentido contrário ao dos ponteiros do relógio.

"Pensou-se, durante algum tempo, que estas estrelas podiam ter vindo da sua galáxia companheira, a Pequena Nuvem de Magalhães. A nossa ideia era que essas estrelas podiam ter vindo de uma fusão com outra galáxia no passado," comenta Benjamin Armstrong, autor principal do estudo e estudante de mestrado do International Centre for Radio Astronomy Research (ICRAR), Austrália, que usou modelos de computador para simular fusões de galáxias.

"O que descobrimos é que neste tipo de evento de fusão, podemos obter uma rotação contrária bastante forte depois da ocorrência de uma fusão. Isto é consistente com o que vemos quando observamos as galáxias," salienta Armstrong.

As Nuvens de Magalhães podem ser observadas no céu noturno a olho nu e são conhecidas há milhares de anos pelas culturas antigas. A Grande Nuvem de Magalhães é relativamente pequena, a 160.000 anos-luz de distância, enquanto a Pequena Nuvem de Magalhães fica a aproximadamente 200.000 anos-luz.

A descoberta poderá ajudar a explicar um problema que tem intrigado os astrônomos durante anos - o porquê de as estrelas na Grande Nuvem de Magalhães serem geralmente ou muito antigas ou muito jovens.

luminosidade invertida das Nuvens de Magalhães

© Andrew Lockwood (luminosidade invertida das Nuvens de Magalhães)

A imagem acima é uma exposição de duas horas usando uma câmara DSLR com seguimento do céu e uma lente de 50mm, que mostra conchas de marés em torno da Grande Nuvem de Magalhães, uma ponte de estrelas que liga as duas galáxias e cirros galácticos no plano da frente.

"Nas galáxias, existem estes grandes objetos chamados aglomerados globulares. Os aglomerados estelares contêm muitas estrelas que são todas de idades bastante semelhantes e formadas em ambientes idênticos. Na Via Láctea, os aglomerados globulares são todos muito antigos," explica Armstrong.

"Mas na Grande Nuvem de Magalhães, temos aglomerados muito antigos e muito jovens, e nada intermediário. Este problema é conhecido como "diferença de idades. Dado que na Grande Nuvem de Magalhães podemos constatar novamente formação estelar, tal poderá ser indicativo de uma fusão galáctica," explica Armstrong.

O achado também pode ajudar a explicar porque é que a Grande Nuvem de Magalhães parece ter um disco espesso. "O nosso trabalho é ainda muito preliminar, mas sugere que este tipo de processo pode ter sido, no passado, responsável pelo disco mais espesso," disse Armstrong.

A pesquisa debruça-se sobre perguntas pertinentes que os astrônomos podem começar a examinar.

O estudo foi divulgado na revista Monthly Notices of the Royal Astronomical Society.

Fonte: International Centre for Radio Astronomy Research

Explorando novos mundos estranhos

O Levantamento Planetário Dharma, um projeto liderado pelo astrônomo Jian Ge, da Universidade da Flórida, descobriu uma super-Terra mais próxima em órbita de outra estrela semelhante ao Sol.

ilustração de uma super-Terra em órbita da estrela 40 Eridani A

© University of Florida (ilustração de uma super-Terra em órbita da estrela 40 Eridani A)

O novo exoplaneta em órbita da estrela HD 26965 (40 Eridani A), que fica a apenas 16 anos-luz da Terra. Esta estrela pode ser vista a olho nu, ao contrário das estrelas progenitoras da maioria dos exoplanetas conhecidos até à data.

O exoplaneta tem aproximadamente o dobro do tamanho da Terra e orbita a sua estrela a cada 42 dias, dentro da zona habitável. A descoberta foi feita utilizando o telescópio DEFT (Dharma Endowment Foundation Telescope), um telescópio de 50 polegadas localizado no topo do Mt. Lemmon, no sul do estado norte-americano do Arizona.

A alaranjada HD 26965 é apenas ligeiramente mais fria e ligeiramente menos massiva que o nosso Sol, tem aproximadamente a mesma idade e tem um ciclo magnético de 10,1 anos quase idêntico ao ciclo de manchas solares de 11,6 anos do Sol.

Na ficção científica o planeta Vulcan estava ligado a 40 Eridani A nas publicações Star Trek 2 por James Blish (Bantam, 1968) e nos Mapas de Star Trek por Jeff Maynard (Bantam, 1980). Numa carta publicada na revista Sky & Telescope em julho de 1991, Gene Roddenberry, o criador de "Star Trek", juntamente com Sallie Baliunas, Robert Donahue e George Nassiopoulos do Harvard-Smithsonian Center for Astrophysics confirmaram a identificação de 40 Eridani A como a estrela hospedeira de Vulcan. O sistema estelar de 40 Eridani é composto por três estrelas. Vulcan orbita a estrela primária, e as duas estrelas companheiras "têm bastante brilho no céu de Vulcan," escreviam na sua carta de 1991. Vulcan é o lar do oficial de ciências Spock, na série original. Spock serviu a bordo da nave Enterprise, cuja missão era procurar novos mundos estranhos, uma missão partilhada pelo Levantamento Planetário Dharma.

Esta descoberta demonstra que telescópios totalmente dedicados a realizar observações abundantes e de velocidade radial de alta precisão continuarão, no futuro próximo, a desempenhar um papel fundamental na descoberta de mais super-Terras e até mesmo planetas semelhantes à Terra nas zonas habitáveis ao redor de estrelas próximas.

Um artigo científico foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: University of Florida

quarta-feira, 19 de setembro de 2018

Descobrindo os locais de nascimento estelar na Via Láctea

Uma equipe internacional de cientistas liderada por Ivan Minchev do Instituto Leibniz para Astrofísica em Potsdam, Alemanha, encontrou uma maneira de recuperar os locais de nascimento estelar na nossa Galáxia.

simulação da Via Láctea vista de cima

© I. Minchev (simulação da Via Láctea vista de cima)

Este é um dos principais objetivos no campo da Arqueologia Galáctica, cuja intenção é reconstruir a história da formação da Via Láctea.

Há muito que sabemos que as estrelas nos discos galácticos vagueiam para longe dos locais onde nasceram devido a um fenômeno conhecido como "migração radial". Este movimento através da Galáxia dificulta seriamente as inferências da história da formação da Via Láctea. A migração radial é influenciada por um número de parâmetros que ainda são pouco conhecidos: por exemplo, o tamanho e a velocidade da barra Galáctica, o número e a forma dos braços espirais no disco Galáctico e a frequência de galáxias menores que colidiram com a Via Láctea nos últimos 10 bilhões de anos e as suas respetivas massas.

Para contornar estes obstáculos, os cientistas criaram uma maneira de recuperar a história da migração Galáctica usando as idades e a composição química de estrelas como "artefatos arqueológicos". Usaram o fato bem estabelecido de que a formação estelar no disco Galáctico progride gradualmente para fora, seguindo que as estrelas nascidas numa determinada posição e num determinado momento têm um padrão distinto de abundância química. Portanto, se a idade e a composição química (o seu conteúdo de ferro, por exemplo) de uma estrela puder ser medida com muita precisão, torna-se possível inferir diretamente o seu local de nascimento no disco Galáctico sem suposições adicionais de modelagem.

A equipe usou uma amostra de aproximadamente 600 estrelas na vizinhança solar observadas com o espectrógrafo de alta resolução HARPS acoplado ao telescópio de 3,6 metros do Observatório de La Silla do ESO no Chile. Graças às medições precisas da idade e da abundância de ferro, descobriu-se que estas estrelas nasceram por todo o disco Galáctico, as mais antigas oriundas das partes mais centrais.

As pesquisas agora podem usar este método para calcular os locais de nascimento, mesmo para estrelas que não estão na amostra original. Por exemplo, dada a idade de 4,6 bilhões de anos do nosso Sol e o seu teor de ferro, podemos estimar que o Sol nasceu aproximadamente 2.000 anos-luz mais perto do Centro Galáctico do que a sua posição atual.

"Uma vez em posse dos raios de nascimento, podemos obter uma riqueza de informações inestimáveis sobre o passado da Via Láctea, mesmo a partir deste pequeno número de estrelas com medições precisas suficientes disponíveis para nós neste momento. No futuro próximo, a aplicação deste método aos dados de alta qualidade da missão Gaia e aos levantamentos espectroscópicos terrestres vai permitir medições muito mais exatas do histórico de migração e, assim, do passado da Via Láctea," comenta Minchev.

Fonte: Leibniz-Institut für Astrophysik Potsdam

Teoria da gravidade salva da morte

Uma equipe internacional de astrônomos, incluindo físicos da Universidade de St. Andrews, ressuscitou uma teoria da gravidade anteriormente descartada, argumentando que os movimentos dentro de galáxias anãs seriam mais lentos se perto de uma galáxia massiva.

galáxia anã NGC 1052-DF2

© Hubble (galáxia anã NGC 1052-DF2)

A equipe examinou uma teoria previamente publicada na revista Nature que afirmava que a teoria MOND (MOdified Newtonian Dynamics) não podia ser verdadeira porque os movimentos internos eram muito lentos no interior da galáxia anã NGC 1052-DF2, uma galáxia pequena com cerca de 200 milhões de estrelas.

A teoria MOND é uma controversa alternativa à relatividade geral, a compreensão predominante e inspirada de Einstein do fenômeno da gravidade, que requer a existência da matéria escura, mas que até agora nunca foi provada. A teoria MOND não requer matéria escura.

Tais teorias são essenciais na compreensão do nosso Universo, dado que segundo a física conhecida, as galáxias giram tão rapidamente que deveriam fragmentar-se.

Foram apresentadas várias teorias para explicar o que as mantém unidas, e o debate continua sobre qual a correta. O estudo agora derrotado afirmava que MOND estava morta. No entanto, esta pesquisa mais recente, também publicada na Nature, mostra que o trabalho anterior negligenciou um efeito ambiental sutil.

A nova pesquisa argumenta que o trabalho anterior não considerou que a influência do ambiente gravitacional em torno da anã podia afetar os seus movimentos interiores. Por outras palavras, se a anã estivesse perto de uma galáxia massiva, então os movimentos dentro da anã seriam mais lentos.

O autor principal Pavel Kroupa, professor da Universidade de Bona e da Universidade Charles em Praga, afirma: "Houveram muitas afirmações prematuras sobre a morte da teoria MOND em publicações muito influentes. Até agora, nenhuma resistiu ao escrutínio detalhado."

As galáxias giram tão rapidamente que deviam fragmentar-se, de acordo com a física conhecida. Duas teorias atuais explicam isto, a primeira coloca um halo de matéria escura ao redor de cada galáxia. No entanto, as partículas de matéria escura nunca foram descobertas, apesar de muitas décadas de pesquisas muito sensíveis, frequentemente usando grandes detectores.

A segunda é a MOND, que explica uma vasta riqueza de dados sobre as velocidades de rotação galáctica usando apenas as estrelas e o gás. A MOND executa com uma receita matemática que fortalece a gravidade do material visível, mas somente quando fica muito fraca. Caso contrário, a gravidade seguiria a lei convencional de Newton, por exemplo no Sistema Solar, ou perto de uma galáxia massiva.

Fonte: University of St Andrews

Detectado jato infravermelho em torno de estrela de nêutrons

Uma incomum emissão de luz infravermelha de uma estrela de nêutrons próxima, foi detectada pelo telescópio espacial Hubble, e pode indicar novas características nunca antes vistas.

ilustração de uma estrela de nêutrons

© NASA/ESA/N. Tr’Ehn (ilustração de uma estrela de nêutrons)

Uma possibilidade é que haja um disco empoeirado ao redor da estrela de nêutrons; outra é que há um vento energético saindo do objeto e se chocando com gás no espaço interestelar pela qual a estrela de nêutrons atravessa.

Embora estrelas de nêutrons sejam geralmente estudadas em emissões de rádio e de alta energia, como raios X, este estudo demonstra que informações novas e interessantes sobre estrelas de nêutrons também podem ser obtidas estudando-as em luz infravermelha.

A observação, feitas por uma equipe de pesquisadores da Pennsylvania State University, University Park, Pensilvânia; Universidade Sabanci, Istambul, Turquia; e a Universidade do Arizona, em Tucson, Arizona, poderia ajudar os astrônomos a entender melhor a evolução das estrelas de nêutrons, os remanescentes incrivelmente densos depois que uma enorme estrela explode como uma supernova. As estrelas de nêutrons também são chamadas de pulsares porque sua rotação muito rápida (neste caso, cerca de 11 segundos) causa emissão variável no tempo a partir de regiões emissoras de luz.

“Esta estrela de nêutrons em particular pertence a um grupo de sete pulsares de raios X próximos – apelidados de ‘os Sete Magníficos’, que são mais quentes do que deveriam considerar suas idades e reservatórios de energia disponíveis, fornecidos pela perda de energia de rotação,” disse Bettina Posselt, professora associada de astronomia e astrofísica no estado da Pensilvânia. “Observamos uma extensa área de emissões de infravermelho em torno desta estrela de nêutrons, chamada RX J0806.4-4123, cujo tamanho total é de cerca de 200 UA (aproximadamente 30 bilhões de quilômetros) na distância presumida do pulsar”.

Esta é a primeira estrela de nêutrons em que um sinal estendido foi visto apenas na luz infravermelha. Os pesquisadores sugerem duas possibilidades que poderiam explicar o sinal infravermelho prolongado visto pelo Hubble. A primeira é que possivelmente existe um disco de material, principalmente poeira, envolvendo o pulsar.

“Uma teoria é que poderia haver um ‘disco de retorno’ de material que se aglutinou ao redor da estrela de nêutrons após a supernova,” disse Posselt. “Tal disco seria composto de matéria da estrela massiva progenitora. Sua interação subsequente com a estrela de nêutrons poderia ter aquecido o pulsar e retardado sua rotação. Se confirmado como um disco de retorno de supernova, este resultado pode mudar nossa compreensão geral da evolução da estrela de nêutrons.”

A segunda explicação possível para a emissão infravermelha estendida desta estrela de nêutrons é uma “nebulosa do vento pulsar”.

Uma nebulosa de vento pulsar exigiria que a estrela de nêutrons exibisse um vento pulsar. Um vento pulsar pode ser produzido quando as partículas são aceleradas no campo elétrico que é produzido pela rotação rápida de uma estrela de nêutrons com um forte campo magnético. Como a estrela de nêutrons percorre o meio interestelar a uma velocidade maior que a velocidade do som, um choque pode se formar onde o meio interestelar e o vento pulsar interagem. As partículas que se colidiram emitiriam radiação síncrotron, causando o sinal infravermelho estendido que vemos. Normalmente, as nebulosas de vento pulsar são vistas em raios X e uma observação no infravermelho seria muito incomum e excitante.

Usando o próximo telescópio espacial James Webb da NASA, os astrônomos serão capazes de explorar ainda mais esta descoberta no infravermelho para melhor entender a evolução das estrelas de nêutrons.

Um artigo descrevendo a pesquisa foi publicado no periódico Astrophysical Journal.

Fonte: Space Telescope Science Institute

terça-feira, 18 de setembro de 2018

Galáxias elípticas e espirais no aglomerado de Coma

Na constelação de Coma Berenices, localiza-se o impressionante aglomerado de Coma, uma estrutura com mais de mil galáxias unidas pela gravidade.

Knots and bursts

© Hubble (NGC 4858 e NGC 4860)

Muitas destas galáxias são to tipo elíptica, como é o caso da galáxia mais brilhante que domina esta imagem, conhecida como NGC 4860. Contudo, na periferia do aglomerado também é possível encontrar galáxias espirais mais jovens, que mostram seus belos braços espirais. Novamente, esta imagem mostra um belo exemplo deste tipo de galáxia, a NGC 4858, que também pode ser vista à esquerda de sua vizinha mais brilhante e que possui uma aparência interessante.

A NGC 4858 é especial. Além dela ser uma simples galáxia espiral ela é uma galáxia que é chamada de “galáxia agregadora”, que, como o nome sugere, apresenta a galáxia central cercada por nós de material luminoso que parecem estar sendo ejetados por ela, estendendo para longe e complementando ou alterando a sua estrutura. Ela também está experimentando uma alta taxa de formação de estrelas, possivelmente disparada por uma interação anterior com outra galáxia.

Como nós vemos aqui, a NGC 4858 está formando estrelas freneticamente de modo que ela irá consumir todo o seu gás antes de chegar ao final de sua vida. A cor dos nós brilhantes indica que eles são formados de hidrogênio, que brilha em várias tonalidades de vermelho, à medida que ele é energizado por muitas estrelas jovens e quentes.

Fonte: ESA