domingo, 28 de outubro de 2018

Ondas gravitacionais poderão fornecer medição da expansão do Universo

Há vinte anos, os cientistas ficaram chocados ao perceber que o nosso Universo não está apenas se expandindo, mas que está se expandindo mais depressa com o passar do tempo.

colisão de duas estrelas de nêutrons

© A. Simon (colisão de duas estrelas de nêutrons)

A determinação da taxa exata de expansão, chamada constante de Hubble, em honra ao famoso astrônomo Edwin Hubble, tem sido surpreendentemente difícil. Desde então, os cientistas usaram dois métodos para calcular o valor, com resultados angustiantemente diferentes. Mas a surpreendente captura de ondas gravitacionais do ano passado, oriundas de uma colisão de estrelas de nêutrons, forneceu uma terceira forma de calcular a constante de Hubble.

Este foi apenas um único ponto de dados de uma colisão, mas num novo estudo, três cientistas da Universidade de Chicago estimam que, dada a rapidez com que os pesquisadores viram a primeira colisão entre estrelas de nêutrons, podem ter uma medida muita precisa da constante de Hubble dentro de cinco a dez anos.

"A constante de Hubble diz-nos o tamanho e idade do Universo; é o 'santo Graal' desde o nascimento da cosmologia. O seu cálculo, recorrendo às ondas gravitacionais, poderá dar-nos uma perspetiva inteiramente nova do Universo," comenta o autor Daniel Holz, professor de física na Universidade de Chicago. "A questão é: quando é que muda o jogo para a cosmologia?"

Em 1929, Edwin Hubble anunciou que, com base nas suas observações de galáxias localizadas além da Via Láctea, estas pareciam estar se afastando de nós, e que quanto mais distante a galáxia, mais rápido estava retrocedendo. Esta é uma pedra fundamental da teoria do Big Bang e iniciou uma busca de quase um século pela taxa exata a que isto ocorre.

Para calcular a taxa de expansão do Universo, os cientistas precisam de dois números. Um é a distância até um objeto distante; o outro é quão rápido o objeto se afasta de nós devido à expansão do Universo. Se pudermos vê-lo com um telescópio, o segundo valor é relativamente fácil de determinar, porque a luz que vemos quando olhamos para uma estrela distante desvia-se para o vermelho à medida que se afasta. Os astrônomos há mais de um século que usam este truque para ver a velocidade com que um objeto se move; é como o efeito Doppler, no qual uma sirene muda de tom quando a ambulância passa por nós.

Mas obter uma medida exata da distância é muito mais difícil. Tradicionalmente, os astrofísicos usam uma técnica chamada escada de distâncias cósmicas, na qual o brilho de certas estrelas variáveis e supernovas pode ser usado para construir uma série de comparações que chegam até ao objeto em questão.

Talvez as supernovas usadas como marcadores não sejam tão consistentes quanto se pensa. Talvez estejamos confundindo alguns tipos de supernovas com outros, ou exista algum erro desconhecido nas nossas medições das distâncias até estrelas próximas.

A outra maneira importante de calcular a constante de Hubble é olhar para a radiação cósmica de fundo em micro-ondas, o pulso de luz criada no início do Universo, que ainda é vagamente detectável. Embora também seja útil, este método baseia-se igualmente em suposições sobre como o Universo funciona.

O surpreendente é que, embora os cientistas que fazem cada cálculo estejam confiantes nos seus resultados, estes não são iguais. Um diz que o Universo está se expandindo quase 10% mais depressa do que o outro.

Então os detectores do LIGO (Laser Interferometer Gravitational-Wave Observatory) captaram a sua primeira ondulação no tecido do espaço-tempo a partir da colisão de duas estrelas no ano passado. Isto não somente abalou o observatório, mas o próprio campo da astronomia: ser capaz de sentir a onda gravitacional e ver a luz do rescaldo da colisão com um telescópio deu aos cientistas uma nova e poderosa ferramenta.

As ondas gravitacionais fornecem uma maneira completamente diferente de calcular a constante de Hubble. Quando duas estrelas massivas colidem uma com a outra, emitem ondulações no tecido do espaço-tempo que podem ser detectadas na Terra. Medindo este sinal, os cientistas podem obter uma assinatura da massa e da energia das estrelas em colisão. Quando comparam esta leitura com a força das ondas gravitacionais, podem inferir a que distância elas estão.

Esta medição é mais limpa e contém menos suposições sobre o Universo, o que deve torná-la mais precisa. Juntamente com Scott Hughes do Massachusetts Institute of Technology (MIT), Holz sugeriu a ideia de fazer esta medição com ondas gravitacionais emparelhadas com observações telescópicas em 2005. A única questão é a frequência com que os cientistas podiam captar estes eventos, e quão bons seriam os dados.

A pesquisa prevê que, assim que os cientistas tenham detectado 25 leituras de colisões de estrelas de nêutrons, possam medir a expansão do Universo com uma precisão de 3%. Com 200 leituras, este número diminui para 1%.

Os cientistas dizem que um novo número preciso para a constante de Hubble seria fascinante, não importa a resposta. Por exemplo, uma razão possível para a incompatibilidade nos outros dois métodos é que a natureza da própria gravidade pode ter mudado com o tempo. A leitura também pode trazer dados sobre a energia escura, uma força misteriosa responsável pela expansão do Universo.

Está planejado que os detetores do LIGO comecem uma nova campanha de observações em fevereiro de 2019, juntamente com os seus homólogos italianos no VIRGO. Graças a uma atualização, a sensibilidade dos detectores será muito maior, expandindo o número e distância de eventos astronômicos que podem captar.

O estudo foi publicado na revista Nature.

Fonte: University of Chicago

A Terra vista da Lua em ultravioleta

Que planeta é esse?

Terra em ultravioleta

© NASA/Apollo 16 (Terra em ultravioleta)

É a Terra.

A imagem em cores falsas apresentada mostra como a Terra brilha na luz ultravioleta (UV). A imagem é histórica porque foi tirada da superfície da Lua pelo primeiro observatório lunar da humanidade. O equipamento (câmera e espectrógrafo em UV) que tirou a foto acima foi instalado e deixado na Lua pela tripulação da Apollo em 1972.

Embora muito pouca luz UV seja transmitida através da atmosfera da Terra, ela pode causar queimaduras solares. A parte da Terra voltada para o Sol reflete muita luz UV, mas talvez mais interessante seja o lado oposto ao Sol. Aqui bandas de emissão UV são o resultado de auroras causadas por partículas carregadas expelidas pelo Sol. Outros planetas que geram auroras no UV incluem Marte, Saturno, Júpiter e Urano.

Fonte: NASA

sábado, 27 de outubro de 2018

Duas estrelas muito próximas dentro de uma nebulosa planetária

Uma equipe internacional de astrônomos, liderada pelo pesquisador David Jones do Instituto de Astrofísica das Canárias e da Universidade de La Laguna, descobriu um sistema binário com um período orbital de pouco mais de três horas.

nebulosa planetária M3-1

© IAC (nebulosa planetária M3-1)

A descoberta, que envolveu vários anos de campanhas de observação, não é apenas surpreendente devido ao período orbital extremamente pequeno, mas também porque, devido à proximidade de uma estrela com a outra, o sistema poderá resultar numa explosão de nova antes que a nebulosa de curta duração se dissipe.

As nebulosas planetárias são as conchas brilhantes de gás e poeira expelidas por estrelas parecidas com o Sol no final das suas vidas. O estudo focou-se na nebulosa planetária M3-1, uma firme candidata a ter sido o produto de um sistema binário devido aos seus espetaculares jatos, que são tipicamente formados pela interação de duas estrelas.

As observações rapidamente confirmaram as suspeitas dos pesquisadores. O brilho do sistema binário mudava muito depressa e isso podia significar um período orbital bastante curto. Realmente, o estudo revelou que a separação entre as estrelas é de aproximadamente 160.000 quilômetros, ou menos de metade da distância entre a Terra e a Lua.

Depois de várias campanhas de observação no Chile com o Very Large Telescope (VLT) do ESO e com o New Technology Telescope (NTT), os cientistas obtiveram dados suficientes para calcular as propriedades do sistema binário, como a massa, temperatura e tamanho de ambas as estrelas. "Para nossa surpresa, descobrimos que as duas estrelas eram muito grandes e que como estão tão próximas uma da outra, é muito provável que comecem a interagir novamente daqui a apenas alguns milhares de anos, talvez resultando numa nova," disse Paulina Sowicka, estudante de doutoramento no Centro Astronômico Nicolau Copérnico, Polônia.

O resultado contradiz as teorias atuais da evolução estelar binária que preveem que, ao formar a nebulosa planetária, as duas estrelas devem demorar um bom tempo antes de começar a interagem novamente. Quando o fizessem, a nebulosa deveria já ter-se dissipado e não ser mais visível. No entanto, uma explosão de nova em 2007, conhecida como Nova Vul 2007, foi encontrada dentro de outra nebulosa planetária, colocando os modelos em questão. No caso de M3-1 foi encontrado um candidato que talvez possa passar por uma evolução similar. Tendo em conta que as estrelas estão quase se tocando, não devem demorar muito para interagir novamente e, talvez, produzir outra nova dentro de uma nebulosa planetária.

Os resultados do estudo foram publicados na prestigiada revista científica Monthly Notices of the Royal Astronomical Society.

Fonte: Instituto de Astrofísica de Canarias

sexta-feira, 26 de outubro de 2018

O Pirata dos Céus do Sul

Esta imagem da região de formação estelar ativa NGC 2467, por vezes referida como Nebulosa da Caveira e Ossos, tem tanto de sinistro como de bonito.

The Pirate of the Southern Skies

© ESO/VLT (NGC 2467)

A imagem de poeira, gás e estrelas jovens brilhantes ligadas gravitacionalmente em forma de uma caveira sorridente foi obtida pelo instrumento FORS montado no (VLT) Very Large Telescope do ESO.

É fácil perceber o motivo do apelido Caveira e Ossos dada a este objeto, uma vez que esta formação jovem e brilhante assemelha-se bastante a uma caveira, da qual apenas se vê a boca aberta nesta imagem. A NGC 2467 situa-se na constelação da Popa.

Esta coleção nebulosa de aglomerados estelares é o lugar de nascimento de muitas estrelas, onde um excesso de hidrogênio gasoso fornece matéria prima para a formação estelar. Não se trata, de fato, de uma única nebulosa e os seus aglomerados estelares constituintes deslocam-se a velocidades diferentes. Apenas um alinhamento fortuito ao longo da linha de visão faz com que as estrelas e o gás se pareçam com uma cara humanoide quando vistos a partir da Terra. Esta imagem luminosa pode não dar aos astrônomos nenhuma informação nova, no entanto fornece-nos um visão do céu austral, resplandescente de maravilhas invisíveis ao olho humano.

A Popa faz parte das três constelações do céu austral com nomes náuticos que costumavam formar uma única constelação enorme, a constelação do Navio Argo, da história mítica de Jasão e os Argonautas. Esta constelação foi dividida em três partes: a Quilha, a Vela e a Popa. Apesar de ser um herói mítico, Jasão rouba o velo de ouro, por isso esta nebulosa encontra-se não apenas no meio de um vasto navio celeste, mas também entre ladrões, um local mais que apropriado para esta “caveira pirata”.

Fonte: ESO

quarta-feira, 24 de outubro de 2018

O mais jovem pulsar da Via Láctea expõe segredos de morte estelar

Cientistas confirmaram a identidade do mais jovem pulsar na Via Láctea usando dados do observatório de raios X Chandra da NASA. Este resultado pode fornecer aos astrônomos novas informações sobre como algumas estrelas terminam as suas vidas.

pulsar Kes 75

© Chandra/S. Reynolds/PanSTARRS (pulsar Kes 75)

Após algumas estrelas massivas ficarem sem combustível, entram em colapso e explodem como supernovas, deixando para trás "pepitas" estelares densas chamadas estrelas de nêutrons. As estrelas de nêutrons com uma rápida rotação e altamente magnetizadas produzem um feixe de radiação semelhante ao de um farol que são detectados como pulsos à medida que a rotação do pulsar "varre" o feixe através do céu.

Desde que Jocelyn Bell Burnell, Anthony Hewish e colegas descobriram os pulsares através da sua emissão de rádio na década de 1960, foram identificados mais de 2.000 destes objetos exóticos. No entanto, permanecem muitos mistérios sobre os pulsares, incluindo a sua diversidade de comportamentos e a natureza das estrelas que os formam.

Novos dados do Chandra estão ajudando a resolver algumas destas questões. Uma equipe de astrônomos confirmou que o remanescente de supernova Kes 75, localizado a cerca de 19.000 anos-luz da Terra, contém o mais jovem pulsar conhecido da Via Láctea.

A rápida rotação e o forte campo magnético do pulsar geraram um vento de matéria energética e partículas de antimatéria que fluem para longe do pulsar quase à velocidade da luz. Este vento pulsar criou uma grande bolha magnetizada de partículas altamente energéticas chamada nebulosa de vento pulsar, vista como a região azul que rodeia o pulsar.

Nesta composição do Kes 75, os raios X de alta energia observados pelo Chandra são de cor azul e destacam a nebulosa de vento pulsar em torno do pulsar, enquanto os raios X menos energéticos aparecem com tom roxo e mostram os detritos da explosão. Uma imagem óptica do SDSS (Sloan Digitized Sky Survey) revela estrelas no campo.

Os dados do Chandra obtidos em 2000, 2006, 2009 e 2016 mostram mudanças na nebulosa de vento pulsar com o passar do tempo. Entre 2000 e 2016, as observações do Chandra revelam que a orla externa da nebulosa de vento pulsar expande-se incrivelmente a 1 milhão de metros por segundo.

Esta alta velocidade pode ser devida à nebulosa de vento pulsar que se expande para um ambiente de densidade relativamente baixa. Especificamente, os astrônomos sugerem que está se expandindo para uma bolha gasosa soprada por níquel radioativo formado na explosão e expelido à medida que esta explodiu. Este níquel também alimentou a luz da supernova, à medida que se decompôs em gás ferroso difuso que encheu a bolha. Se assim for, isto fornece uma visão do núcleo da explosão estelar e dos elementos que criou.

A taxa de expansão também informa que Kes 75 explodiu há cerca de cinco séculos, a partir da perspetiva da Terra. Ao contrário de outros remanescentes de supernova desta época, como Tycho e Kepler, não existem evidências conhecidas de registos históricos de qualquer observação da explosão que deu origem a Kes 75.

Porque é que Kes 75 não foi vista da Terra? As observações do Chandra, juntamente com observações anteriores por outros telescópios, indicam que a poeira e o gás interestelar que preenchem a nossa Galáxia são muito densas na direção da estrela condenada. Este fator teria tornado a supernova demasiado fraca para observar da Terra há vários séculos atrás.

O brilho da nebulosa de vento pulsar diminuiu 10% entre 2000 e 2016, concentrado principalmente na região norte, com uma diminuição de 30% num nó brilhante. As rápidas mudanças observadas na nebulosa de vento pulsar Kes 75, bem como a sua estrutura incomum, apontam para a necessidade de modelos mais sofisticados da evolução das nebulosas de vento pulsar.

O artigo que descreve estes resultados foi publicado no periódico The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

terça-feira, 23 de outubro de 2018

Estrelas anãs vermelhas dizimam atmosferas planetárias

Explosões violentas de estrela hospedeira podem tornar os exoplanetas inabitáveis, afetando suas atmosferas.

estrela anã vermelha erodindo a atmosfera de planeta

© NASA/ESA/D. Player (estrela anã vermelha erodindo a atmosfera de planeta)

O telescópio espacial Hubble está observando tais estrelas através de um grande programa chamado HAZMAT (HAbitable Zones and M dwarf Activity across Time).

O termo astronômico anã M  refere-se a uma estrela anã vermelha, o menor, mais abundante e mais duradouro tipo de estrela em nossa galáxia. O programa HAZMAT é um levantamento ultravioleta de anãs vermelhas em três diferentes idades: jovens, intermediárias e antigas.

Explosões estelares de anãs vermelhas são particularmente brilhantes em comprimentos de onda ultravioleta, em comparação com estrelas semelhantes ao Sol. A sensibilidade ultravioleta do Hubble torna o telescópio muito valioso para observar estas explosões. Acredita-se que as erupções sejam alimentadas por campos magnéticos intensos que se emaranham com os movimentos agitados da atmosfera estelar. Quando o emaranhado fica muito intenso, os campos se quebram e se reconectam, liberando enormes quantidades de energia.

A equipe descobriu que as labaredas das anãs vermelhas mais jovens, com cerca de 40 milhões de anos, são 100 a 1.000 vezes mais energéticas do que quando as estrelas são mais velhas. Esta idade mais jovem é quando os planetas sólidos estão se formando ao redor de suas estrelas.

Aproximadamente três-quartos das estrelas da nossa galáxia são anãs vermelhas. A maioria dos planetas da "zona habitável" da galáxia - planetas orbitando suas estrelas a uma distância onde as temperaturas são moderadas o suficiente para que a água líquida exista em sua superfície - provavelmente orbitam anãs vermelhas. Na verdade, a estrela mais próxima do nosso Sol, uma anã vermelha chamada Proxima Centauri, tem um planeta do tamanho da Terra em sua zona habitável.

No entanto, jovens anãs vermelhas são estrelas ativas, produzindo explosões ultravioletas que expelem tanta energia que poderiam influenciar a química atmosférica e, possivelmente, remover as atmosferas destes planetas iniciantes.

"O objetivo do programa HAZMAT é ajudar a entender a habitabilidade dos planetas em torno de estrelas de baixa massa," explicou Evgenya Shkolnik, da Universidade Estadual do Arizona. "Estas estrelas de baixa massa são criticamente importantes na compreensão das atmosferas planetárias."

Este estudo examina a frequência de explosões de 12 jovens anãs vermelhas. O programa de observação detectou uma das explosões estelares mais intensas já observadas na luz ultravioleta. Apelidado de "Hazflare", este evento foi mais enérgico do que a mais poderosa explosão de nosso Sol já registrado.

"Com o Sol, temos cem anos de boas observações. E, nesse tempo, vimos uma, talvez duas, labaredas que têm uma energia se aproximando da do Hazflare. Em um pouco menos de um dia de observações do Hubble dessas jovens estrelas, pegamos o Hazflare, o que significa que nós estamos olhando para superexplosões acontecendo todos os dias ou até mesmo algumas vezes por dia," disse Parke Loyd, da Universidade Estadual do Arizona.

Poderiam as superexplosões com tal frequência e intensidade banharem jovens planetas de intensa radiação ultravioleta que eles sempre perderiam as chances de habitabilidade? As explosões observadas têm a capacidade de retirar a atmosfera de um planeta. Mas isso não significa necessariamente a ocorrência da possibilidade de existência de vida no planeta. Pode ser apenas uma vida diferente do que imaginamos. Ou pode haver outros processos que poderiam reabastecer a atmosfera do planeta neste ambiente hostil.

A próxima parte do estudo HAZMAT será estudar anãs vermelhas envelhecidas intermediárias com 650 milhões de anos de idade. Em seguida, as anãs vermelhas mais antigas serão analisadas e comparadas com as estrelas jovens e intermediárias para compreender a evolução do ambiente de radiação ultravioleta de planetas de baixa massa em torno destas estrelas de baixa massa.

Os resultados da primeira parte deste programa estão sendo publicados no The Astrophysical Journal.

Fonte: Space Telescope Science Institute

segunda-feira, 22 de outubro de 2018

Uma galáxia com um coração brilhante

Esta imagem mostra a galáxia espiral não barrada NGC 5033, localizada a cerca de 40 milhões de anos-luz de distância da Terra, na constelação de Canes Venatici (Os Cães de Caça).

A galaxy with a bright heart

© Hubble (NGC 5033)

A galáxia é semelhante em tamanho à nossa própria galáxia, a Via Láctea, com pouco mais de 100.000 anos-luz de diâmetro. Como na Via Láctea, os braços espirais da NGC 5033 são pontilhados de regiões azuis, indicando a formação contínua de estrelas. As manchas azuis abrigam estrelas jovens e quentes no processo de formação, enquanto as estrelas mais antigas, mais frias, povoam o centro da galáxia, fazendo com que ela pareça mais avermelhada.

Em contraste com a Via Láctea, a NGC 5033 não possui uma barra central. Em vez disso, ela tem um núcleo brilhante e energético chamado núcleo galáctico ativo, que é abastecido por um buraco negro supermassivo. Este núcleo ativo dá a classificação de uma galáxia Seyfert. Devido à atividade contínua, o núcleo da NGC 5033 brilha em todo o espectro eletromagnético. Esta energia liberada mostra que o buraco negro central está atualmente devorando estrelas, poeira e gás chegando perto dele. Quando esta matéria cai no buraco negro supermassivo, irradia-se em muitos comprimentos de onda diferentes.

Embora sua proximidade relativa à Terra o torne um alvo ideal para o astrônomo profissional estudar seu núcleo ativo com mais detalhes, seu grande tamanho aparente no céu noturno e seu brilho também o tornam um belo alvo para os astrônomos amadores.

Fonte: ESA

Nubéculas em torno do buraco negro supermassivo local

Esta imagem obtida pelo Atacama Large Millimeter/submillimeter Array (ALMA) mostra a região que rodeia Sagitário A*, o buraco negro supermassivo que se esconde no centro da Via Láctea, assinalado aqui com um pequeno círculo vermelho.

Sagittarius A

© ESO/ALMA/J. R. Goicoechea (Sagittarius A*)

Novos trabalhos de pesquisa revelaram evidências da existência de gás e poeira interestelares orbitando o buraco negro com altas velocidades.

As nuvens ricas em hidrogênio molecular que foram identificadas são conhecidas por nubéculas moleculares e nunca tinham sido antes detectadas de forma clara.

A imagem mostra, na realidade, a distribuição de moléculas de monóxido de carbono, a segunda componente molecular mais abundante das nubéculas. Estas nubéculas situam-se a cerca de 26.000 anos-luz de distância da Terra, em órbita rápida e próxima do buraco negro, a uma distância de cerca de um ano-luz deste objeto.

A elevada resolução do ALMA permitiu aos cientistas detectar estas nubéculas, que resultaram de nuvens massivas pré-existentes que rodavam em torno do centro da galáxia. Estas nuvens foram desfeitas por ação de forças de maré, dando origem a fragmentos densos e a componentes de vida curta e densidade mais baixa. Estes últimos foram identificados graças a sinais deixados pela passagem de radiação síncrotron emitida por Sagitário A* através de gás difuso existente entre as nubéculas.

Apesar das nuvens de gás molecular terem o potencial para formar novas estrelas, é pouco provável que estas nubéculas dêem origem a novas estrelas, uma vez que a sua massa é relativamente pequena, cerca de 60 vezes a massa do Sol, e existem próximo das fortes e turbulentas forças gravitacionais exercidas por Sagitário A*.

Apesar das estrelas que orbitam Sagitário A* terem sido sistematicamente observadas, estas nubéculas moleculares densas não tinham ainda sido detectadas tão próximo do centro da nossa Galáxia.

Fonte: ESO

sábado, 20 de outubro de 2018

Detectado parente de fonte de ondas gravitacionais

Há cerca de um ano, os astrônomos relataram animadamente a primeira detecção de ondas eletromagnéticas, ou luz, de uma fonte de ondas gravitacionais. Agora, um ano depois, pesquisadores estão anunciando a existência de um parente cósmico deste acontecimento histórico.

All in the Family: Kin of Gravitational-Wave Source Discovered

© Chandra/Hubble (GRB 150101B)

A descoberta foi feita usando dados obtidos pelo observatório de raios X Chandra, pelo telescópio espacial de raios gama Fermi, pelo observatório Swift Neil Gehrels, pelo telescópio espacial Hubble e pelo telescópio do Discovery Channel.

O objeto do novo estudo, de nome GRB 150101B, foi reportado pela primeira vez como uma explosão de raios gama detectada pelo Fermi em janeiro de 2015. Esta detecção e observações de acompanhamento, em outros comprimentos de onda, mostram que GRB 150101B partilha semelhanças notáveis com a fusão de estrelas de nêutrons e fonte de ondas gravitacionais descoberta pelo LIGO (Advanced Laser Interferometer Gravitational Wave Observatory) e pelo seu equivalente europeu Virgo em 2017, conhecida como GW170817. O estudo mais recente conclui que estes dois objetos separados podem estar relacionados.

"A nossa descoberta diz-nos que eventos como GW170817 e GRB 150101B podem representar uma nova classe de objetos em erupção que ligam e desligam raios X e podem, na verdade, ser relativamente comuns," comenta Eleonora Troja, autora principal do estudo, do Goddard Space Flight Center da NASA e da Universidade de Maryland em College Park.

Troja e colegas pensam que tanto GRB 150101B como GW170817 foram provavelmente produzidos pelo mesmo tipo de evento: a fusão de duas estrelas de nêutrons, uma coalescência que gerou um jato estreito, ou feixe, de partículas altamente energéticas. O jato produziu uma explosão curta e intensa de raios gama (GRB), um flash de alta energia que pode durar apenas alguns segundos. O GW170817 provou que estes eventos também podem criar ondulações no próprio espaço-tempo, chamadas ondas gravitacionais.

A aparente correspondência entre GRB 150101B e GW170817 é impressionante: ambos produziram uma explosão de raios gama incomumente tênue, ambos foram uma fraca fonte de luz azul com a duração de alguns dias e a emissão de raios X durou muito mais tempo. As galáxias hospedeiras são também incrivelmente similares, com base em observações do telescópio espacial Hubble e do telescópio do Discovery Channel. Ambas são galáxias elípticas brilhantes com uma população de estrelas com alguns bilhões de anos e sem evidências de nova formação estelar.

Nos casos, tanto de GRB 150101B como de GW170817, o aumento lento na emissão de raios X, em comparação com a maioria dos GRBs, implica que a explosão tenha provavelmente sido vista "fora do eixo", isto é, com o jato não apontando diretamente para a Terra. A descoberta do objeto GRB 150101B representa apenas a segunda vez que os astrônomos detectaram um GRB curto fora do eixo.

Embora existam muitas semelhanças entre GRB 150101B e GW170817, existem duas diferenças muito importantes. Uma é a sua localização. O GW170817 está a cerca de 130 milhões de anos-luz da Terra, enquanto o GRB 150101B está a mais ou menos 1,7 bilhões de anos-luz de distância. Mesmo que o LIGO estivesse em operação no início de 2015, muito provavelmente não teria detectado ondas gravitacionais de GRB 150101B devido à sua distância maior.

"A beleza de GW170817 é que nos deu um conjunto de características, como marcadores genéticos, para identificar novos membros da família de objetos explosivos a distâncias ainda maiores do que o LIGO pode atualmente alcançar," afirma Luigi Piro do Instituto Nacional de Astrofísica em Roma, Itália.

A emissão óptica de GRB150101B está em grande parte na porção azul do espectro, fornecendo uma pista importante de que este evento envolveu o que chamamos de uma quilonova, como visto em GW170817. Uma quilonova é uma explosão extremamente poderosa que não apenas libera uma grande quantidade de energia, mas também produz elementos importantes como ouro, platina e urânio que outras explosões estelares não produzem.

É possível que algumas fusões como as vistas em GW170817 e GRB 150101B tenham sido detectadas anteriormente como GRBs curtos, mas não foram identificadas com outros telescópios. Sem detecções em comprimentos de onda mais longos, como raios X ou no visível, as posições dos GRBs não são precisas o suficiente para determinar em qual galáxia estão localizadas.

No caso de GRB 150101B, os astrônomos pensaram inicialmente que o equivalente era uma fonte de raios X detectada pelo Swift no centro de uma galáxia, provavelmente de material caindo para um buraco negro supermassivo. No entanto, as observações de acompanhamento com o Chandra detectaram a homóloga verdadeira longe do centro da galáxia hospedeira.

A outra diferença importante entre GW170817 e GRB 150101B é que sem a detecção de ondas gravitacionais, a equipe não conhece as massas dos dois objetos que se fundiram. É possível que a fusão tenha ocorrido entre um buraco negro e uma estrela de nêutrons, em vez de duas estrelas de nêutrons.

"Precisamos de mais casos como GW170817 que combinam dados de ondas gravitacionais com eletromagnéticos para encontrar um exemplo entre uma estrela de nêutrons e um buraco negro. Esta detecção seria a primeira do tipo," comenta Hendrik Van Eerten da Universidade de Bath, no Reino Unido.

O artigo que descreve estes resultados foi publicado na revista Nature Communications.

Fonte: Harvard-Smithsonian Center for Astrophysics

A formação de planetas gigantes ao redor de estrela jovem

Pesquisadores identificaram uma jovem estrela com quatro planetas do tamanho de Júpiter e de Saturno em órbita, a primeira vez que tantos enormes planetas foram detectados num sistema tão jovem.

ilustração de CI Tau

© Instituto de Astronomia de Cambridge/Amanda Smith (ilustração de CI Tau)

O sistema também quebrou o recorde para o alcance mais extremo de órbitas já observado: o planeta mais exterior está mais de mil vezes mais distante da estrela do que o planeta mais interior, o que levanta questões sobre como tal sistema pode ter-se formado.

A estrela tem apenas dois milhões de anos e está rodeada por um enorme disco de poeira e gelo. Este disco, conhecido como disco protoplanetário, é o local onde se formam os planetas, luas, asteroides e outros objetos astronômicos.

O sistema já era famoso porque contém o primeiro Júpiter quente - um planeta massivo que orbita muito perto da sua estrela - a ser descoberto em torno de uma estrela tão jovem. Embora os Júpiteres quentes tenham sido o primeiro tipo de exoplaneta a ser descoberto, a sua existência há muito tempo que intriga os astrônomos porque muitas vezes se pensa estarem demasiado próximos das estrelas progenitoras para se formarem no local onde se encontram.

Agora, uma equipe de pesquisadores liderada pela Universidade de Cambridge usou o ALMA (Atacama Large Millimeter/submillimeter Array) para procurar "irmãos" planetários deste jovem Júpiter quente. As imagens revelaram três lacunas distintas no disco que, segundo os seus modelos teóricos, foram provavelmente provocadas por três gigantes gasosos adicionais também em órbita da estrela jovem.

A estrela, CI Tau, está localizada a cerca de 500 anos-luz de distância num "berçário" estelar altamente produtivo da Via Láctea. Os seus quatro planetas diferem muito no que respeita às suas órbitas: o mais próximo (o Júpiter quente) está no interior do equivalente à órbita de Mercúrio, enquanto o mais distante orbita a uma distância mais três vezes superior à de Netuno. Os dois planetas mais exteriores têm aproximadamente a massa de Saturno, enquanto os dois planetas mais interiores têm, respetivamente, mais ou menos uma e 10 vezes a massa de Júpiter.

Cerca de 1% das estrelas hospedam Júpiteres quentes, mas a maioria dos Júpiteres quentes são centenas de vezes mais velhos do que CI Tau. "Atualmente, é impossível dizer se a arquitetura planetária extrema vista em CI Tau é comum em sistemas com Júpiteres quentes porque a maneira como estes irmãos planetários foram detectados, através do seu efeito no disco protoplanetário, não funcionaria em sistemas mais antigos que já não têm um disco protoplanetário," comenta a professora Cathie Clarke do Instituto de Astronomia de Cambridge, a autora principal do estudo.

De acordo com os cientistas, também não está claro se os planetas irmãos desempenharam um papel na condução do planeta mais interior até à sua órbita extremamente próxima, e se este é um mecanismo que funciona na produção de Júpiteres quentes em geral. E um outro mistério é saber como os outros dois planetas exterior se formaram.

"Os modelos de formação planetária tendem a concentrar-se em ser capazes de reproduzir os tipos de planetas que já foram observados, de modo que as novas descobertas podem não encaixar necessariamente nos modelos," comenta Clarke. "Supõe-se que os planetas com a massa de Saturno formam-se primeiro, através da acumulação de um núcleo sólido e, em seguida, que puxam uma camada de gás no topo, mas estes processos devem ser muito lentos a grandes distâncias da estrela. A maioria dos modelos lutará para fabricar planetas desta massa a esta distância."

A tarefa que os cientistas têm pela frente é o estudo deste sistema intrigante em múltiplos comprimentos de onda a fim de obter mais pistas sobre as propriedades do disco e dos seus planetas. Enquanto isso, o ALMA, o primeiro telescópio com a capacidade de fotografar planetas em formação, provavelmente descobrirá novas surpresas em outros sistemas, remodelando a nossa imagem de como os sistemas planetários se formam.

Os resultados da pesquisa foram publicados no periódico The Astrophysical Journal Letters.

Fonte: University of Cambridge

quinta-feira, 18 de outubro de 2018

Descoberto um titã cósmico no Universo primordial

Uma equipe de astrônomos, liderada por Olga Cucciati do Istituto Nazionale di Astrofisica (INAF), Bologna, em Itália, utilizou o instrumento VIMOS montado no Very Large Telescope (VLT) do ESO para identificar um gigantesco proto-superaglomerado de galáxias formando-se no Universo primordial, apenas 2,3 bilhões de anos após o Big Bang.

o proto-superaglomerado Hyperion

© ESO/L. Calçada/O. Cucciati (o proto-superaglomerado Hyperion)

Esta estrutura, à qual os astrônomos deram o nome de Hyperion, é a maior e mais massiva estrutura encontrada tão cedo na formação do Universo. Calcula-se que a enorme massa do proto-superaglomerado seja mais de um quatrilhão de vezes a do Sol. Esta massa colossal é semelhante à das maiores estruturas observadas no Universo atual, no entanto a descoberta de um tal objeto tão massivo no Universo primordial foi surpreendente.

“Trata-se da primeira vez que uma estrutura tão grande foi identificada com um desvio para o vermelho tão elevado, correspondente a um pouco mais de 2 bilhões de anos após o Big Bang,” explicou Olga Cucciati. “Normalmente este tipo de estruturas são conhecidas mas com desvios para o vermelho mais baixos, o que corresponde a uma época em que o Universo teve muito mais tempo para se desenvolver e construir algo tão grande. Foi uma surpresa encontrar uma estrutura tão evoluída quando o Universo era ainda relativamente jovem!”

A luz que chega à Terra emitida por galáxias extremamente distantes levou muito tempo para viajar, abrindo-nos assim uma janela para o passado, quando o Universo era muito mais jovem. O comprimento de onda desta radiação foi “esticado” pela expansão do Universo ao longo da sua viagem, um efeito chamado desvio para o vermelho cosmológico. Objetos mais distantes e mais velhos têm um desvio para o vermelho maior, o que leva os astrônomos a usar frequentemente o desvio para o vermelho e a idade de forma semelhante. O desvio para o vermelho do Hyperion é 2,45, o que significa que os astrônomos observaram este proto-superaglomerado como ele era 2,3 bilhões de anos após o Big Bang.

Situado no campo COSMOS na constelação do Sextante, o Hyperion foi  identificado ao analizar uma enorme quantidade de dados obtidos durante o Rastreio Ultra-profundo do VIMOS, liderado por Olivier Le Fèvre (Aix-Marseille Université, CNRS, CNES). Este rastreio fornece-nos um mapa tridimensional sem precedentes da distribuição de mais de 10 mil galáxias no Universo longínquo.

A equipe descobriu que o Hyperion possui uma estrutura muito complexa, que contém pelo menos sete regiões de alta densidade ligadas por filamentos de galáxias, e que o seu tamanho é comparável ao de superaglomerados próximos, apesar da estrutura ser muito diferente.

“Os superaglomerados mais próximos da Terra tendem a apresentar uma distribuição de massas muito mais concentrada, com estruturas bem definidas,” explica Brian Lemaux, astrônomo na Universidade da California, Davis, e LAM, e membro da equipe responsável por esta descoberta. “Mas no Hyperion, a massa encontra-se distribuída de forma muito mais uniforme numa série de nódulos ligados, populados por associações pouco agregadas de galáxias.”

Esta diferença deve-se muito provavelmente ao fato dos superaglomerados próximos terem tido bilhões de anos para juntar a matéria em regiões mais densas por efeito da gravidade, um processo que atua há muito menos tempo no jovem Hyperion.

Dado o enorme tamanho que apresenta já tão cedo na história do Universo, espera-se que o Hyperion se desenvolva em algo semelhante às imensas estruturas do Universo local, tais como os superaglomerados que compõem a Grande Muralha Sloan ou o Superaglomerado da Virgem, que contém a nossa própria galáxia, a Via Láctea. “Compreender o Hyperion e ver como se compara a estruturas semelhantes recentes pode dar-nos pistas sobre como é que o Universo se desenvolveu no passado e como evoluirá no futuro, dando-nos ainda a oportunidade de desafiar alguns modelos de formação de superaglomerados,” conclui Cucciati. “A descoberta deste titã cósmico ajuda-nos a descobrir a história destas estruturas de larga escala.”

Este trabalho será publicado na revista especializada Astronomy & Astrophysics.

Fonte: ESO

terça-feira, 16 de outubro de 2018

Júpiter em luz ultravioleta

Júpiter parece um pouco diferente em luz ultravioleta.

Júpiter no ultravioleta

© Hubble/Judy Schmidt (Júpiter no ultravioleta)

Para melhor interpretar os movimentos da nuvem de Júpiter e ajudar a nave robótica Juno da NASA a compreender o contexto planetário dos pequenos campos que ela vê, o telescópio espacial Hubble está sendo direcionado para a imagem regular de todo o gigante joviano.

As cores de Júpiter sendo monitoradas vão além do alcance visual humano normal para incluir luz ultravioleta e infravermelha. Destacado a partir de 2017, Júpiter aparece diferente na luz ultravioleta próxima, em parte porque a quantidade de luz solar refletida é distinta, dando diferentes alturas de nuvens e latitudes de brilhos discrepantes.

No ultravioleta próximo, os polos de Júpiter parecem relativamente escuros, assim como sua Grande Mancha Vermelha e um oval menor (opticamente) branco à direita. O Colar de Perólas de Júpiter se aproxima mais à direita, no entanto, é mais brilhante em ultravioleta próximo, e então aqui aparece (cor falsa) rosa.

A maior lua de Júpiter, Ganimedes, aparece no canto superior esquerdo.

Juno continua em sua órbita circular de 53 dias em torno de Júpiter, enquanto o Hubble em órbita da Terra está se recuperando da perda de um giroscópio estabilizador.

Fonte: NASA

O sussurro de uma estrela moribunda

Uma equipe de pesquisadores do California Institute of Technology (Caltech) observou a morte peculiar de uma estrela massiva que explodiu como uma supernova surpreendentemente fraca e que rapidamente desvaneceu.

supernova iPTF 14gqr

© SDSS/Caltech/Keck (supernova iPTF 14gqr)

Os três painéis representam momentos antes, durante e depois da tênue supernova iPTF 14gqr, visível no painel do meio, ter aparecido nas orlas de uma galáxia espiral situada a 920 milhões de anos-luz.

Estas observações sugerem que a estrela tem uma companheira invisível, desvinculando gravitacionalmente a massa da estrela para deixar para trás uma estrela "despida" que explodiu como uma rápida supernova. Pensa-se que a explosão tenha resultado numa estrela de nêutrons moribunda que orbita a sua companheira densa e compacta, sugerindo que, pela primeira vez, os cientistas testemunharam o nascimento de um sistema binário e compacto composto por estrelas de nêutrons.

Quando uma estrela massiva, com pelo menos oito vezes a massa do Sol, fica sem combustível para queimar no seu núcleo, o núcleo colapsa sobre si próprio e depois rebate para fora numa poderosa explosão chamada supernova. Depois da explosão, todas as camadas exteriores da estrela foram destruídas, deixando para trás uma densa estrela de nêutrons, mais ou menos do tamanho de uma cidade pequena, mas contendo mais massa do que o Sol. Uma colher de chá de uma estrela de nêutrons pesaria tanto quanto uma montanha.

Durante uma supernova, a estrela moribunda repele todo o material nas suas camadas exteriores. Normalmente, corresponde a algumas vezes a massa do Sol. No entanto, o evento observado pelos pesquisadores, denominado iPTF 14gqr, expeliu matéria com apenas 20% da massa do Sol.

Esta supernova é denominada de invólucro ultra-despojado e há muito que se previa a sua existência. Esta é a primeira vez que foi vista de forma convincente, evidenciando o colapso do núcleo de uma estrela massiva que está tão desprovida de matéria.

O fato da estrela sequer ter conseguido explodir implica que devia estar previamente envolvida por uma grande quantidade de material, ou o seu núcleo nunca se teria tornado massivo o suficiente para colapsar. Mas onde estava então a massa perdida?

Os cientistas inferiram que a massa deve ter sido capturada; a estrela deve ter algum tipo de companheira densa e compacta, ou uma anã branca, uma estrela de nêutrons ou um buraco negro, suficientemente perto para extrair gravitacionalmente a sua massa antes que explodisse. A estrela de nêutrons que ficou para trás deve então ter nascido em órbita daquela companheira densa. A observação de iPTF 14gqr foi na realidade a observação do nascimento de um sistema binário compacto composto por duas estrelas de nêutrons. Dado que esta nova estrela de nêutrons e a sua companheira estão tão perto uma da outra, eventualmente se fundirão numa colisão semelhante ao evento de 2017 que produziu tanto ondas gravitacionais como ondas eletromagnéticas.

Não só iPTF 14gqr é um evento notável como o fato de sequer ter sido observado foi fortuito, uma vez que estes fenômenos são raros e de curta duração. Foi somente através das observações das fases iniciais da supernova que os pesquisadores puderam deduzir as origens da explosão como uma estrela massiva.

O evento foi visto pela primeira vez no Observatório de Palomar como parte do iPTF (intermediate Palomar Transient Factory), um levantamento noturno do céu que procura eventos cósmicos transitórios, ou de curta duração, como supernovas. Dado que o levantamento iPTF mantém um olhar tão atento no céu, iPTF 14gqr foi observado nas primeiras horas após a explosão. À medida que a Terra girava e o telescópio Palomar se movia para fora do campo de observação, os astrônomos de todo o mundo colaboraram para monitorar iPTF 14gqr, observando continuamente a sua evolução com uma série de telescópios que hoje formam a rede Global Relay of Observatories Watching Transients Happen (GROWTH) de observatórios, liderado pelo Caltech.

O Complexo Transiente Zwicky, o sucessor do iPTF no Observatório Palomar, está examinando o céu de forma ainda mais ampla e frequente na esperança de capturar mais destes eventos raros, que representam apenas 1% de todas as explosões observadas. Estes levantamentos, em parceria com redes de acompanhamento coordenado como o GROWTH, permitirá um entendimento melhor de como os sistemas binários evoluem a partir de estrelas binárias massivas.

A pesquisa foi descrita num artigo publicado na revista Science.

Fonte: California Institute of Technology

domingo, 14 de outubro de 2018

Núcleos galácticos ativos e formação estelar

A maioria das galáxias hospeda um buraco negro supermassivo (SMBH) em seu núcleo (um buraco negro supermassivo é aquele cuja massa excede um milhão de massas solares).

galáxia UGC 5101 contendo um núcleo galáctico ativo

© Hubble (galáxia UGC 5101 contendo um núcleo galáctico ativo)

Um problema chave não resolvido na formação e evolução de galáxias é a função desses SMBHs na modelagem de suas galáxias. A maioria dos astrônomos concorda que deve haver uma forte conexão por causa das correlações observadas entre a massa de um SMBH e sua luminosidade, massa estelar e os movimentos estelares da galáxia. Essas correlações se aplicam tanto nas galáxias locais quanto nas épocas cósmicas anteriores. Mas, apesar do progresso no estudo dos SMBHs, como eles afetam seus hospedeiros ainda não são compreendidas. Em alguns cenários sugeridos, o SMBH suprime a formação de estrelas na galáxia, expulsando o material. Em outros, como no cenário de fusões, o efeito é o oposto: o SMBH aumenta a formação de estrelas ao ajudar a elevar o meio interestelar. Simulações computacionais foram realizadas para tentar resolver essas diferenças, e elas tendem a mostrar que o gás frio que flui a partir do meio intergaláctico pode alimentar tanto o crescimento da SMBH quanto da galáxia.

A formação de estrelas é um dos principais marcadores do crescimento de galáxias. Observações de galáxias possibilitam medir a formação de estrelas ao correlacionar a taxa de formação com a luminosidade intrínseca (a formação de estrelas aquece a poeira cuja emissão infravermelha pode dominar a luminosidade). No entanto, a emissão na região em torno de um buraco negro supermassivo que está ativamente acendendo, um núcleo galáctico ativo (AGN), pode ser facilmente confundido com a emissão da formação de estrelas. Os raios X ou a emissão de íons altamente excitados podem ser usados ​​para determinar as contribuições do AGN de ​​forma independente, mas essas medidas podem ser complicadas pela intervenção de extinção de poeira ou outros efeitos. Além disso, há evidências de que em galáxias pequenas ou menos luminosas, ou naquelas de épocas cósmicas anteriores, outros fatores, como abundância de elementos, influenciaram fortemente o desenvolvimento da galáxia.

Belinda Wilkes e Joanna Kuraszkiewicz, astrônomos do Harvard-Smithsonian Center for Astrophysics (CfA), examinaram 323 galáxias conhecidas por abrigarem AGNs de sua forte emissão de raios X (medida pelo telescópio XMM-Newton) e também por ter formação ativa de estrelas em andamento, conforme determinado por sua emissão no infravermelho distante (medida com o telescópio espacial Herschel). As galáxias estão todas a distâncias tais que a sua luz tem viajado entre dois e onze bilhões de anos. A análise estatística da amostra mostra que, em média, o AGN contribui com cerca de 20% para a luminosidade do infravermelho, embora às vezes possa ser >90%. Eles chegam às conclusões importantes de que não há evidência (pelo menos neste conjunto de objetos) para uma forte correlação entre os dois ou que o AGN extingue a formação estelar. Na verdade, parece que ambos crescem juntos.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Harvard-Smithsonian Center for Astrophysics

sexta-feira, 12 de outubro de 2018

A composição dos planetas

Pesquisadores da Universidade de Zurique analisaram a composição e estrutura de exoplanetas distantes usando ferramentas estatísticas.

ilustração de exoplanetas e as suas atmosferas

© Arkadlusz Wargula (ilustração de exoplanetas e as suas atmosferas)

A sua análise indica se um planeta é parecido com a Terra, se é composto por rocha pura ou um mundo de água. Quanto maior o planeta, mais hidrogênio e hélio tem.

Será que existe uma segunda Terra no espaço? O nosso conhecimento de sistemas planetários distantes está evoluindo constantemente, à medida que surgem novas tecnologias que continuam aprimorando as nossas observações astronômicas. Até à data já foram descobertos mais de 3.700 planetas localizados além do nosso Sistema Solar. As massas e os raios dos planetas podem ser usados para inferir a sua densidade média, mas não a sua composição e estrutura química exatas. A intrigante questão sobre o aspeto destes planetas está, portanto, ainda em aberto.

"Teoricamente, podemos assumir várias composições, como um mundo de água pura, um mundo de rocha pura, planetas com atmosfera de hidrogênio-hélio e explorar quais os raios esperados," explica Michael Lozovsky, candidato a doutoramento no grupo do professor Ravit Helled do Instituto de Ciência Computacional da Universidade de Zurique.

Lozovksy e colaboradores usaram bases de dados e ferramentas estatísticas para caracterizar os exoplanetas e as suas atmosferas. Estes são bastante comuns e estão rodeados por uma camada volátil de hidrogênio e hélio. No entanto, os dados medidos anteriormente por via direta não permitem com que os cientistas determinem a estrutura exata, dado que diferentes composições podem levar à mesma massa e raio. Além da precisão dos dados relativos à massa e ao raio, a equipe também investigou a estrutura interna, a temperatura e a radiação refletida em 83 dos 3.700 exoplanetas conhecidos, para os quais as massas e raios estão bem determinados.

"Usamos uma análise estatística para definir limites em possíveis composições. Usando uma base de dados de exoplanetas detectados, descobrimos que cada estrutura planetária teórica tem um 'limite de raio', um raio planetário acima do qual não existem planetas desta composição," explica Lozovsky. A quantidade de elementos, na camada gasosa, mais pesados do que o hélio, a percentagem de hidrogênio e hélio, bem como a distribuição de elementos na atmosfera, são fatores importantes na determinação do limite de raio.

Os pesquisadores do Instituto de Ciência Computacional descobriram que os planetas com um raio até 1,4 vezes o da Terra (6.371 quilômetros) podem ter uma composição semelhante à da Terra. Os planetas com raios acima deste limite têm uma maior proporção de silicatos ou outros materiais leves. A maioria dos planetas com um raio acima de 1,6 raios terrestres deve ter uma camada gasosa de hidrogênio-hélio ou água além do seu núcleo rochoso, enquanto aqueles com mais de 2,6 raios terrestres não podem ser mundos oceânicos e, portanto, devem estar rodeados por uma atmosfera. Espera-se que os planetas com raios superiores a 4 raios terrestres sejam muito gasosos e tenham, pelo menos, de 10% de hidrogênio e hélio, parecidos a Urano e Netuno.

As descobertas deste estudo fornecem novas informações sobre o desenvolvimento e diversidade destes planetas. Um limite particularmente interessante diz respeito à diferença entre grandes planetas terrestres, também conhecidos como super-Terras, pequenos planetas gasosos, também referidos como mini-Netunos. Segundo os cientistas, este limite situa-se num raio de três vezes o da Terra. Abaixo deste limite, é possível encontrar planetas semelhantes à Terra na vasta extensão da Galáxia.

Um artigo foi publicado esta semana no periódico The Astrophysical Journal.

Fonte: University of Zurich