segunda-feira, 7 de fevereiro de 2022

Um buraco negro pego soprando uma rajada de vento

Situada a cerca de 70 milhões de anos-luz de distância da Terra na direção da constelação do Grou, encontra-se a galáxia espiral NGC 7582, que abriga no seu centro um buraco negro supermassivo.

© ESO/VLT (NGC 7582)

Estas imagens foram obtidas com o auxílio do instrumento MUSE montado no Very Large Telescope (VLT) do ESO como parte de um estudo que pretende descobrir o efeito de um buraco negro ativo na formação estelar na galáxia.

Esta galáxia possui um núcleo galáctico ativo (AGN, sigla do inglês), um motor central extremamente energético alimentado por um buraco negro supermassivo que "engole" matéria da sua vizinhança imediata.

Este processo aquece a matéria, ejetando enormes quantidades de energia e ventos poderosos para a região que o circunda. No entanto, que efeito terá este processo na galáxia como um todo? 

Para o descobrir, um estudo recente, liderado por Stéphanie Juneau do NOIRLab nos EUA, analisou a distribuição de diferentes elementos ionizados na NGC 7582. A imagem da direita mostra oxigênio, nitrogênio e hidrogênio em azul, verde e vermelho, respectivamente. As áreas vermelhas brilhantes são regiões de intensa atividade de formação estelar, enquanto as regiões dominadas por azul mostram o material em forma de cone fluindo para fora do AGN. A imagem da esquerda, que cobre a mesma região, mostra uma vista mais clássica desta galáxia, com correntes de poeira obscurecendo o azul e laranja da luz das estrelas. 

O MUSE permitiu também à equipe mapear o movimento das estrelas e do gás. Os cientistas descobriram que a galáxia NGC 7582 pode ter uma estrutura em torno de seu buraco negro supermassivo central que protege o resto da galáxia do forte fluxo de energia proveniente do AGN, desviando-o dele na forma de um vento extremamente poderoso. 

Fonte: ESO

sexta-feira, 4 de fevereiro de 2022

Descoberto o segundo asteroide troiano da Terra

Ao examinar o céu muito perto do horizonte ao nascer do Sol, o telescópio SOAR no Chile, parte do Observatório Interamericano Cerro-Tololo, um programa do NOIRLab, ajudou os astrônomos a confirmar a existência de apenas o segundo asteroide troiano da Terra conhecido e a revelar que tem mais de um quilometro de largura, cerca de três vezes maior do que o primeiro.

© NOIRLab (ilustração de asteroide troiano da terra)

Usando o Telescópio SOAR (Southern Astrophysical Research) de 4,5 metros no Cerro Pachón no Chile, astrônomos liderados por Toni Santana-Ros da Universidade de Alicante e do Instituto de Ciências do Cosmos da Universidade de Barcelona observaram o asteroide recentemente descoberto 2020 XL5 para restringir a sua órbita e tamanho.

Os resultados confirmam que 2020 XL5 é um troiano da Terra, ou seja, um asteroide companheiro da Terra que orbita o Sol pelo mesmo percurso que o nosso planeta, e que é o maior até agora encontrado.

Os troianos são objetos que partilham uma órbita com um planeta, agrupados em torno de uma de duas áreas especiais gravitacionalmente equilibradas ao longo da órbita do planeta conhecidas como pontos de Lagrange. Sabe-se que vários planetas do Sistema Solar têm asteroides troianos, mas 2020 XL5 é apenas o segundo asteroide troiano conhecido encontrado perto da Terra. 

Também foram feitas observações do asteroide 2020 XL5 pelo telescópio Lowell Discovery de 4,3 metros no Observatório Lowell, Arizona, EUA, e pela Optical Ground Station de 1 metro da ESA em Tenerife, nas Ilhas Canárias. 

Descoberto no dia 12 de dezembro de 2020 pelo telescópio Pan-STARRS no Havaí, o asteroide 2020 XL5 tem cerca de 1,2 quilômetros de diâmetro, sendo muito maior do que o primeiro asteroide troiano da Terra descoberto, de nome 2010 TK7. Quando 2020 XL5 foi descoberto, a sua órbita em torno do Sol não era suficientemente bem conhecida para dizer se se tratava de um asteroide próximo da Terra atravessando a nossa órbita, ou se se tratava de um verdadeiro troiano.

Embora outros estudos tenham apoiado a identificação do asteroide troiano, os novos resultados tornam esta determinação muito mais robusta e fornecem estimativas do tamanho de 2020 XL5 e qual o tipo de asteroide.

Os dados do SOAR permitiu fazer uma primeira análise fotométrica do objeto, revelando que 2020 XL5 é provavelmente um asteroide do tipo C, que é escuro, contém muito carbono e é o tipo de asteroide mais comum no Sistema Solar.

Os resultados também mostraram que 2020 XL5 não permanecerá para sempre um asteroide troiano. Permanecerá estável na sua posição durante pelo menos mais 4.000 anos, mas eventualmente ficará gravemente perturbado e escapará para vaguear pelo espaço.

Os asteroides 2020 XL5 e 2010 TK7 podem não estar sozinhos, podem haver muitos mais troianos da Terra que até agora não foram detectados à medida que aparecem perto do Sol no céu. Isto significa que as buscas e observações de troianos da Terra devem ser realizadas perto do nascer ou do pôr do Sol, com o telescópio apontando perto do horizonte, através da parte mais espessa da atmosfera, o que resulta em más condições de visão.

O SOAR conseguiu apontar até 16 graus acima do horizonte, enquanto muitos telescópios de 4 metros (e maiores) não são capazes de apontar tão baixo. Estas foram observações muito desafiantes, exigindo que o telescópio seguisse corretamente o seu limite de elevação mais baixo, uma vez que o objeto estava muito perto do horizonte oeste ao amanhecer. 

Por serem feitos de material primitivo que remonta ao nascimento do Sistema Solar e por poderem representar alguns dos blocos de construção que formaram o nosso planeta, os asteroides troianos são alvos atrativos para futuras missões espaciais.

Fonte: Lowell Observatory

Buraco negro que desencadeia formação estelar em galáxia anã

Os buracos negros são muitas vezes descritos como os monstros do Universo, dilacerando estrelas, consumindo tudo o que se aproxima demasiado, e mantendo a luz em cativeiro.

© STScI (galáxia anã Henize 2-10)

Evidências detalhadas do telescópio espacial Hubble, no entanto, mostram um buraco negro sob uma nova luz: fomentando, em vez de reprimir, a formação estelar. As imagens do Hubble e a espectroscopia da galáxia anã "starbust" Henize 2-10 mostram claramente um fluxo gasoso que se estende do buraco negro a uma região brilhante de nascimento estelar, desencadeando a já densa nuvem a formar aglomerados de estrelas. 

Os astrônomos já debateram anteriormente que uma galáxia anã poderia ter um buraco negro análogo aos buracos negros supermassivos em galáxias maiores. Um estudo mais aprofundado das galáxias anãs, que permaneceram pequenas ao longo do tempo cósmico, pode esclarecer a questão de como as primeiras "sementes" de buracos negros supermassivos se formaram e evoluíram ao longo da história do Universo.

Um buraco negro no núcleo da galáxia anã Henize 2-10 está criando estrelas em vez de as devorar. O buraco negro está aparentemente contribuindo para a formação de novas estrelas que está tendo lugar na galáxia. A galáxia anã encontra-se a 30 milhões de anos-luz de distância, na direção da constelação do hemisfério sul da Bússola. 

Esta nova descoberta faz com que a pequena Henize 2-10, contendo apenas um-décimo do número de estrelas encontradas na Via Láctea, esteja prestes a desempenhar um grande papel na resolução do mistério de onde vieram os buracos negros supermassivos em primeiro lugar.

"Há dez anos, enquanto estudante e pensando que ia passar a minha carreira dedicada à formação estelar, olhei para os dados de Henize 2-10 e tudo mudou," disse Amy Reines, que publicou as primeiras evidências de um buraco negro na galáxia em 2011 e é a principal pesquisadora sobre das novas observações. "Desde o início que sabia que algo de incomum e especial estava acontecendo em Henize 2-10, e agora o Hubble forneceu uma imagem muito clara da ligação entre o buraco negro e uma vizinha região de formação estelar localizada a 230 anos-luz do buraco negro," disse Reines.

Esta ligação é um fluxo de gás que se estende através do espaço como um cordão umbilical até um brilhante berçário estelar. A região já era o lar de um denso casulo de gás quando o fluxo lento aí chegou. A espectroscopia do telescópio espacial Hubble mostra que o fluxo se movia a cerca de 1 milhão de quilômetros por hora, batendo contra o gás denso como água de uma mangueira de jardim batendo num montinho de pó e a espalhá-lo para longe.

Aglomerados de estrelas recém-nascidas pontilham o percurso do fluxo, as suas idades calculadas pelo telescópio espacial Hubble. Este é o efeito oposto ao que se vê em galáxias maiores, onde o material que cai em direção ao buraco negro é arrastado pelos campos magnéticos circundantes, formando jatos escaldantes de plasma e movendo-se a uma velocidade próxima da da luz. As nuvens de gás apanhadas no percurso dos jatos seriam aquecidas muito além da sua capacidade de arrefecer novamente e de formar estrelas. Mas com o buraco negro menos massivo em Henize 2-10, e o seu fluxo menos agressivo, o gás foi comprimido apenas o suficiente para precipitar a formação de novas estrelas. 

Desde a sua primeira descoberta de emissões distintas de rádio e raios X em Henize 2-10, Reines pensou que provavelmente vinham de um enorme buraco negro, mas não tão supermassivo como aqueles observados em galáxias maiores. Outros astrônomos, contudo, pensaram que a radiação mais provavelmente estava sendo emitida por um remanescente de supernova, o que seria uma ocorrência familiar numa galáxia que está formando estrelas massivas rapidamente e onde cujas estrelas massivas também explodem rapidamente. O modelo de um fluxo oscilante e em precessão oriundo de um buraco negro é mais provável do que um remanescente de supernova. 

A relação entre a massa da galáxia e o seu buraco negro pode fornecer pistas. O buraco negro em Henize 2-10 tem cerca de 1 milhão de massas solares. Em galáxias maiores, os buracos negros podem ter mais de 1 bilhão de vezes a massa do nosso Sol. Quanto mais massiva for a galáxia hospedeira, mais massivo será o buraco negro central.

As teorias atuais sobre a origem dos buracos negros supermassivos dividem-se em três categorias: 1) formaram-se como os buracos negros de massa estelar menores, a partir da implosão de estrelas, e de alguma forma reuniram material suficiente para se tornarem supermassivos, 2) condições especiais no Universo inicial permitiram a formação de estrelas supermassivas, que colapsaram para formar "sementes" de buracos negros supermassivos, ou 3) as sementes de futuros buracos negros supermassivos nasceram em densos aglomerados de estrelas, onde a massa global do aglomerado teria sido suficiente para, de alguma forma, os formar a partir do colapso gravitacional.

Até agora, nenhuma destas teorias estão concretizadas. As galáxias anãs como Henize 2-10 fornecem potenciais aspectos promissores, porque permaneceram pequenas ao longo do tempo cósmico, em vez de crescerem fundindo-se com galáxias maiores como a Via Láctea.

Os astrônomos pensam que os buracos negros em galáxias anãs podem servir como um análogo para os buracos negros no Universo primitivo, quando estavam apenas começando a formar-se e a crescer.

As novas observações do telescópio espacial Hubble foram publicadas na revista Nature.

Fonte: Space Telescope Science Institute

terça-feira, 1 de fevereiro de 2022

Descoberto um objeto incomum com campo magnético extremo

Uma equipe de mapeamento de ondas de rádio no Universo descobriu algo incomum que libera uma enorme explosão de energia três vezes por hora e que é diferente de qualquer objeto visto antes.

© ICRAR (ilustração de um magnetar)

Este objeto pode ser uma estrela de nêutrons ou uma anã branca, ou seja, núcleos colapsados de estrelas, com um campo magnético ultrapoderoso. Girando no espaço, o estranho objeto envia um feixe de radiação que atravessa a nossa linha de visão e, durante um minuto em cada vinte, é uma das fontes de rádio mais brilhantes do céu. 

O objeto transiente está a cerca de 4.000 anos-luz de distância e foi descoberto pelo estudante da Universidade Curtin, Tyrone O'Doherty, usando o telescópio MWA (Murchison Widefield Array) no "outback" australiano e uma nova técnica que desenvolveu. A Dra. Natasha Hurley-Walker, astrofísica do ICRAR (International Centre for Radio Astronomy Research) na Universidade Curtin, liderou a equipe que fez a descoberta. O telescópio MWA é um instrumento precursor do SKA (Square Kilometre Array), uma iniciativa global para construir os maiores radiotelescópios do mundo na Austrália Ocidental e na África do Sul.

Os transientes lentos, como supernovas, podem aparecer ao longo de alguns dias e desaparecer após alguns meses. Os transientes rápidos, como um tipo de estrela de nêutrons chamada pulsar, "ligam-se e desligam-se" em milissegundos ou segundos. Mas encontrar algo que se "ligasse" durante um minuto é realmente estranho.

O objeto misterioso é incrivelmente brilhante e menor do que o Sol, emitindo ondas de rádio altamente polarizadas, sugerindo que o objeto possui um campo magnético extremamente forte. As observações correspondem a um objeto astrofísico previsto chamado magnetar de período ultralongo. É um tipo de estrela de nêutrons com rotação lenta que se previu existir na teoria. Mas ninguém esperava detectar diretamente uma como esta, porque não era esperado que fosse tão brilhante. De alguma forma está convertendo energia magnética em ondas de rádio muito mais eficazmente do que qualquer outro astro visto antes. Mais detecções confirmará se este foi um acontecimento raro e único ou uma vasta nova população que nunca foi notado antes.

Um artigo foi publicado na revista Nature.

Fonte: International Centre for Radio Astronomy Research

segunda-feira, 31 de janeiro de 2022

Intrusa estelar perturba disco protoplanetário

Cientistas usaram o ALMA (Atacama Large Millimeter/submillimeter Array) e o VLA (Karl G. Jansky Very Large Array) para fazer uma rara detecção de um provável evento de invasão estelar no sistema Z Canis Majoris (Z CMa).

© ALMA/VLA/Subaru (sistema Z Canis Majoris)

Uma intrusa, não ligada ao sistema, passou muito perto e interagiu com o ambiente que rodeia a protoestrela binária, provocando a formação de correntes caóticas e esticadas de poeira e gás no disco ao redor. 

Embora tais eventos rasantes já tenham sido anteriormente testemunhados com alguma regularidade nas simulações computorizadas de formação estelar, poucas observações diretas e convincentes foram alguma vez feitas e, até agora, os eventos tinham permanecido em grande parte teóricos.

Perturbações como os de Z CMa não são tipicamente provocados por intrusas, mas sim por estrelas-irmãs que crescem juntas no espaço. Na maioria das vezes, as estrelas formam-se isoladamente. As gêmeas, ou até trigêmeas ou quadrigêmeas, nascidas juntas podem ser atraídas gravitacionalmente e, como resultado, aproximarem-se umas das outras. Durante estes momentos, algum material nos discos protoplanetários das estrelas pode ser removido para formar extensas correntes de gás que fornecem pistas aos astrônomos sobre a história de encontros estelares passados.

No caso de Z CMa, foi a morfologia, ou estrutura, destas correntes que ajudou os cientistas a identificar e a localizar a intrusa estelar. Quando um encontro estelar ocorre, provoca alterações na morfologia do disco, gerando espirais, deformações, sombras, etc. 

Os eventos de passagem rasante podem perturbar dramaticamente os discos circunstelares em torno das estrelas intervenientes, como vistos na produção de longas correntes em torno de Z CMa. Estas intrusas perturbadoras não só propiciam fluxos gasosos, como também podem ter impacto na história térmica das estrelas hospedeiras envolvidas. Isto pode levar a eventos violentos como surtos de acreção, e também impactar o desenvolvimento do sistema estelar global.

O estudo da evolução e crescimento de jovens sistemas estelares por toda a Galáxia ajuda os cientistas a compreender melhor a origem do nosso próprio Sistema Solar. Neste momento, o VLA e o ALMA forneceu as primeiras evidências para resolver este mistério, e as próximas gerações destas tecnologias vão abrir janelas para o Universo.

Um artigo foi publicado na revista Nature Astronomy.

Fonte: National Radio Astronomy Observatory

sexta-feira, 28 de janeiro de 2022

Descoberta a primeira explosão de uma estrela Wolf-Rayet

Um estudo, com a participação de pesquisadores do GTC (Gran Telescopio Canarias) filiados ao IAC (Instituto de Astrofísica de Canarias), descobriu uma estrela explosiva inédita que se pensava existir apenas na teoria.

© Wissam Ayoub (WR 134)

Num passado não muito distante, a descoberta de uma supernova, uma estrela em explosão, era considerada uma ocasião rara. Hoje em dia, os instrumentos de medição e os avançados métodos de análise permitem detectar diariamente cinquenta destas explosões, o que também aumentou a probabilidade de detectar tipos mais raros de explosões que até agora só existiam teoricamente. 

Recentemente, uma equipe internacional de cientistas, liderada por Avishay Gal-Yam do Departamento de Física de Partículas e Astrofísica do Instituto Weizmann, descobriu uma supernova que nunca tinha sido observada antes. A explosão de uma estrela Wolf-Rayet, um tipo de estrela massiva altamente evoluída que perde uma grande quantidade de massa devido a ventos estelares intensos. 

O núcleo de cada estrela é alimentado pela fusão nuclear, onde os núcleos de elementos mais leves se fundem para formar elementos mais pesados. A fusão de quatro núcleos de hidrogênio resulta na formação de um átomo de hélio, enquanto vários núcleos de hélio combinados resultam na formação de carbono, oxigênio e assim por diante. O último elemento que se irá formar naturalmente através da fusão nuclear é o ferro, que é o núcleo atômico mais estável. 

Em circunstâncias normais, a energia produzida no núcleo da estrela mantém temperaturas extremamente elevadas que provocam a expansão da sua matéria gasosa, preservando assim o fino equilíbrio com a força da gravidade, atraindo a massa da estrela para o seu centro. Quando a estrela fica sem elementos para fundir e deixa de produzir energia, este equilíbrio é perturbado, levando ou a um buraco negro que se abre no coração da estrela, provocando o colapso sob si própria, ou à explosão da estrela, que libeta os elementos pesados para o espaço. 

 A vida das estrelas massivas é considerada relativamente curta, alguns milhões de anos no máximo. O Sol, em comparação, tem uma expectativa de vida de cerca de 10 bilhões de anos. Os processos subsequentes de fusão nuclear no núcleo das estrelas massivas levam à sua estratificação, em que os elementos pesados se concentram no núcleo e gradualmente elementos mais leves compõem as camadas externas.

As estrelas Wolf-Rayet são estrelas particularmente massivas que não têm uma ou mais das camadas externas que são compostas por elementos mais leves. Desta forma, em vez do hidrogênio, a superfície da estrela é caracterizada pela presença de hélio, ou mesmo de carbono e elementos mais pesados. Uma explicação possível para este fenômeno é que ventos fortes que sopram devido à alta pressão no invólucro da estrela, dispersam a sua camada mais externa, fazendo com que a estrela perca uma camada após a outra ao longo de várias centenas de milhares de anos. 

Apesar da sua vida relativamente curta e do seu estado de desintegração progressiva, a análise do número sempre crescente de descobertas de supernovas levou à hipótese de que as estrelas Wolf-Rayet simplesmente não explodem, elas simplesmente colapsam silenciosamente em buracos negros, caso contrário, já teriam sido observadas. Esta hipótese, contudo, acabou de ser abalada devido à recente descoberta. 

A análise espectroscópica da luz emitida pela explosão levou à descoberta de assinaturas espectrais que estão associadas a elementos específicos. Desta forma, foi possível demonstrar que a explosão continha átomos de carbono, oxigênio e neônio, este último um elemento que ainda não tinha sido observado desta maneira em nenhuma supernova até à data. Além disso, os pesquisadores identificaram que a matéria que "jorrava" radiação cósmica não participou na explosão, mas que tinha origem no espaço que rodeava a estrela volátil. Isto, por sua vez, reforçou a sua hipótese a favor de ventos fortes que tomaram parte na remoção do invólucro externo da estrela.

Os pesquisadores estimam que a massa que se dispersou durante a explosão é provavelmente igual à massa do Sol ou à de uma estrela ligeiramente menor; a estrela que explodiu era significativamente mais massiva, tendo pelo menos 10 vezes a massa do Sol.

As descobertas foram publicadas na revista Nature.

Fonte: Instituto de Astrofísica de Canarias

segunda-feira, 24 de janeiro de 2022

O efeito borboleta

A cerca de 60 milhões de anos-luz de distância, na constelação da Virgem, as duas galáxias NGC 4567 e NGC 4568, também chamadas Galáxias Borboleta devido à sua estrutura parecida com asas, começam a colidir e a se fundirem uma à outra.

© ESO/VLT (NGC 4567 e NGC 4568)

Podemos ver isso mesmo nesta imagem captada pelo instrumento FORS2 (FOcal Reducer and low dispersion Spectrograph 2), montado no Very Large Telescope (VLT) do ESO no Observatório do Paranal, nos Andes chilenos. 

Colisões de galáxias não são incomuns no Universo. Podemos imaginá-las violentas e catastróficas, mas, na realidade, são processos surpreendentemente pacíficos, tal como uma valsa executada por estrelas, gás e poeira e coreografada pela gravidade. 

Pensa-se que este tipo de colisão e fusão seja também o eventual destino da Via Láctea, que irá sofrer uma interação semelhante com a nossa galáxia vizinha, Andrômeda. 

O instrumento FORS2 é frequentemente apelidado de o "canivete suíço" do Paranal, devido à sua incrível versatibilidade, sendo um dos instrumentos mais requisitados. Além de captar imagens como esta, também pode obter espectros de até várias dezenas de objetos cósmicos simultaneamente, ou estudar luz polarizada. 

Esta imagem foi criada como parte do programa Joias Cósmicas do ESO, uma iniciativa de divulgação para produzir imagens de objetos interessantes, intrigantes ou visualmente atraentes, utilizando os telescópios do ESO, para fins de educação e divulgação científica. O programa utiliza tempo de telescópio que não pode ser usado em observações científicas. Todos os dados obtidos podem ter igualmente interesse científico e são, por isso, postos à disposição dos astrônomos através do arquivo científico do ESO. 

Fonte: ESO

O jato de estrela jovem MHO 2147

Estrelas guias a laser e óptica adaptativa aguçaram esta impressionante imagem terrestre de jatos estelares do Observatório Gemini Sul, nos Andes chilenos.

© Gemini (MHO 2147)

Estes jatos gêmeos de MHO 2147 são de uma jovem estrela em formação. Encontra-se em direção à Via Láctea central e ao limite das constelações de Sagitário e Ofiúco a uma distância estimada de cerca de 10.000 anos-luz. No centro, a própria estrela é obscurecida por uma densa região de poeira fria. 

Mas a imagem infravermelha ainda traça os jatos sinuosos em um quadro que abrange cerca de 5 anos-luz na distância estimada do sistema. Impulsionado para fora pela jovem estrela em rotação, a aparente direção errante dos jatos é provavelmente devido à precessão. Parte de um sistema estelar múltiplo, o eixo de rotação da jovem estrela iria lentamente efetuar precessão ou oscilar como um pião sob a influência da gravitação de seus companheiros próximos. 

Fonte: NASA

Rigel e a Nebulosa da Cabeça da Bruxa

À luz das estrelas, este rosto misterioso brilha no escuro, um perfil torto evocando seu nome popular, a Nebulosa da Cabeça da Bruxa.

© José Mtanous (Rigel e IC 2118)

De fato, este fascinante retrato telescópico dá a impressão de que a bruxa fixou seu olhar na brilhante estrela supergigante de Órion, Rigel. Mais formalmente conhecida como IC 2118, a Nebulosa da Cabeça da Bruxa se estende por cerca de 50 anos-luz e é composta de grãos de poeira interestelar refletindo a luz da estrela Rigel. 

A cor azul da Nebulosa da Cabeça da Bruxa e da poeira ao redor de Rigel é causada não apenas pela intensa luz azul da estrela Rigel, mas porque os grãos de poeira espalham a luz azul com mais eficiência do que a vermelha. O mesmo processo físico faz com que o céu diurno da Terra pareça azul, embora os dispersores na atmosfera da Terra sejam moléculas de nitrogênio e oxigênio. 

A estrela Rigel, a Nebulosa da Cabeça da Bruxa e o gás e a poeira que os cercam estão a cerca de 800 anos-luz de distância.

Fonte: NASA

Trio de galáxias interagindo

A imagem destaca um grupo de três galáxias, conhecidas coletivamente como NGC 7764A. Elas foram fotografadas pelo telescópio espacial Hubble, usando sua Advanced Camera for Surveys (ACS) e Wide Field Camera 3 (WFC3).

© Hubble (NGC 7764A)

As duas galáxias no canto superior direito da imagem parecem estar interagindo uma com a outra. Os longos rastros de estrelas e gás que se estendem de ambas dão a impressão de que elas acabaram de ser atingidas com grande velocidade, jogadas pela galáxia em forma de bola de boliche no canto inferior esquerdo da imagem. 

Na realidade, as interações entre as galáxias acontecem em períodos de tempo muito longos, e as galáxias raramente colidem de frente umas com as outras. Também não está claro se a galáxia no canto inferior esquerdo está realmente interagindo com as outras duas, embora estejam tão relativamente próximas no espaço que parece possível que estejam. Por feliz coincidência, a interação coletiva entre estas galáxias fez com que as duas no canto superior direito formassem uma forma que, da perspectiva do nosso Sistema Solar, lembra a nave estelar conhecida como USS Enterprise de Star Trek! 

A NGC 7764A, que fica a cerca de 425 milhões de anos-luz da Terra na constelação de Phoenix, é um exemplo fascinante de quão estranha a nomenclatura astronômica pode ser. As três galáxias são individualmente referidas como NGC 7764A1, NGC 7764A2 e NGC 7764A3, e uma galáxia totalmente separada, chamada NGC 7764, fica nos céus a uma distância de uma Lua (como vista da Terra) de distância. Esta nomeação bastante aleatória faz mais sentido quando consideramos que muitos dos catálogos para rastrear corpos celestes foram compilados há mais de 100 anos, muito antes de a tecnologia moderna tornar a padronização da terminologia científica muito mais fácil. 

Fonte: ESA

terça-feira, 18 de janeiro de 2022

Uma superlua localizada além do Sistema Solar

Os astrônomos relataram uma segunda lua gigante, em órbita de um exoplaneta do tamanho de Júpiter, localizada além do nosso Sistema Solar.

© H. V. Widerström (ilustração de exolua com seu exoplaneta)

Se confirmado, este avistamento pode significar que as exoluas são tão comuns no Universo quanto os exoplanetas, e que as luas, grandes ou pequenas, são uma característica dos sistemas planetários. 

Mas pode ser uma longa espera. O primeiro avistamento de uma exolua, há quatro anos, ainda está à espera de confirmação e a verificação desta nova candidata pode ser igualmente longa e controversa.

A equipe avistou a candidata a exolua gigante em órbita do planeta Kepler-1708b, um mundo a 5.500 anos-luz da Terra na direção das constelações de Cisne e de Lira. Esta nova candidata é cerca de um-terço menor do que a lua do tamanho de Netuno que foi encontrada anteriormente em órbita de um planeta semelhante a Júpiter, Kepler-1625b.

Ambas as candidatas a superlua são provavelmente feitas de gás que se acumulou sob a atração gravitacional provocada pelo seu enorme tamanho. Se a hipótese estiver correta, as luas podem até ter começado a sua vida como planetas de pleno direito, apenas para serem puxadas para a órbita de um exoplaneta ainda maior como Kepler-1625b ou 1708b. Ambas as luas estão localizadas longe da sua estrela hospedeira, onde há menos gravidade para puxar os planetas e para despojá-los das suas luas. 

Os pesquisadores procuraram planetas gigantes gasosos e frios em órbitas largas na sua busca por exoluas precisamente porque os análogos no nosso Sistema Solar, Júpiter e Saturno têm, entre eles, mais de cem luas. 

As exoluas fascinam os astrônomos pelas mesmas razões que os exoplanetas. Têm o potencial de revelar como e onde a vida pode ter surgido no Universo. No presente estudo, os pesquisadores analisaram a amostra de planetas gigantes gasosos e mais frios captada pela missão Kepler da NASA. Depois de analisarem detalhadamente 70 planetas, encontraram apenas um candidato, o Kepler-1708b, com um sinal semelhante ao de uma exolua.

Avistar uma lua ou até um planeta a centenas ou a milhares de anos-luz da Terra não é simples. As luas e os planetas só podem ser observados indiretamente à medida que passam em frente das suas estrelas hospedeiras, fazendo com que a luz estelar diminua intermitentemente. Captar um destes sinais fugazes de trânsito, com um telescópio, é complexo, assim como a interpretação dos dados da curva de luz. As luas são ainda mais difíceis de detectar porque são menores e bloqueiam menos luz.

A descoberta foi publicada na revista Nature Astronomy.

Fonte: Columbia University

Navegando nas estrelas

Os braços espirais da galáxia NGC 3318 estão preguiçosamente espalhados por esta imagem do telescópio espacial Hubble.

© Hubble (NGC 3318)

Esta galáxia espiral fica na constelação de Vela e está a cerca de 115 milhões de anos-luz da Terra. Vela era originalmente parte de uma constelação muito maior, conhecida como Argo Navis, em homenagem ao lendário navio Argo da mitologia grega, mas esta constelação desajeitada provou ser impraticavelmente grande.

A Argo Navis foi dividida em três partes separadas chamadas Carina, Puppis e Vela. Como convém a uma galáxia em uma constelação de inspiração náutica, as bordas externas do da NGC 3318 quase se assemelham às velas de um navio ondulando em uma brisa suave.

Apesar de sua aparência plácida, a NGC 3318 foi palco de um fenômeno astronômico espetacularmente violento, uma supernova titânica detectada pela primeira vez por um astrônomo amador em 2000. Graças à distância da NGC 3318 da Terra, a supernova original deve ter ocorrido por volta de 1885. Coincidentemente , este foi o ano em que a única supernova já detectada em nossa galáxia vizinha Andrômeda foi testemunhada por astrônomos do século XIX.

Fonte: ESA

domingo, 16 de janeiro de 2022

Um exoplaneta com formato de bola de rugby

A missão exoplanetária Cheops da ESA revelou que um exoplaneta que orbita a sua estrela hospedeira em menos de um dia tem uma forma mais parecida à de uma bola de rugby do que de uma esfera.

© ESA (ilustração do exoplaneta WASP-103b e da sua estrela hospedeira)

Esta é a primeira vez que se detecta deformação num exoplaneta, fornecendo novas informações sobre a estrutura interna destes planetas que orbitam as suas estrelas. 

O planeta, conhecido como WASP-103b, está localizado na direção da constelação de Hércules. Foi deformado pelas fortes forças de maré entre o planeta e a sua estrela progenitora WASP-103, que é cerca de 200 graus mais quente e 1,7 vezes maior do que o Sol. 

Os oceanos da Terra têm marés principalmente devido a um ligeiro puxão da Lua. O Sol também tem um efeito menor, mas significativo, sobre as marés, contudo está demasiado longe da Terra para provocar grandes deformações no nosso planeta. O mesmo não pode ser dito de WASP-103b, um planeta com quase o dobro do tamanho de Júpiter, com 1,5 vezes a sua massa, que orbita a sua estrela hospedeira em menos de um dia. 

Os astrônomos já suspeitavam que uma proximidade tão íntima provocaria marés monumentais, mas até agora não tinham sido capazes de as medir. Utilizando novos dados do telescópio espacial Cheops da ESA, combinados com dados que já tinham sido obtidos pelo telescópio espacial Hubble e pelo telescópio espacial Spitzer da NASA, os astrônomos conseguiram agora detectar como as forças das marés deformam o exoplaneta WASP-103b de uma esfera normal para uma forma mais parecida à de uma bola de rugby. 

O Cheops mede trânsitos exoplanetários, ou seja, a queda na luz provocada quando um planeta passa em frente da sua estrela, a partir do nosso ponto de vista. Normalmente, o estudo da forma da curva de luz irá revelar detalhes sobre o planeta, tais como o seu tamanho. A alta precisão do Cheops, juntamente com a sua flexibilidade de apontamento, que permite com que o satélite regresse a um alvo e observe múltiplos trânsitos, permitiu a detecção do minúsculo sinal da deformação de maré de WASP-103b. Esta assinatura distinta pode ser utilizada para desvendar ainda mais informações sobre o planeta.

A equipe foi capaz de usar a curva de luz do trânsito de WASP-103b para derivar um parâmetro - os números de Love - que medem a forma como a massa é distribuída dentro de um planeta. A compreensão de como a massa é distribuída pode revelar detalhes sobre a estrutura interna do planeta. A resistência de um material a ser deformado depende da sua composição. Por exemplo, aqui na Terra temos marés devido à Lua e ao Sol, mas só podemos ver marés nos oceanos. A parte rochosa não se move assim tanto. Ao medir quanto o planeta é deformado, podemos dizer que porcentagem é rochosa, gasosa ou água.

Os números de Love para WASP-103b são semelhantes aos de Júpiter, o que sugere provisoriamente que a estrutura interna é idêntica, apesar de WASP-103b ter o dobro do raio. Em princípio, esperava-se que um planeta com 1,5 vezes a massa de Júpiter tivesse aproximadamente o mesmo tamanho, por isso WASP-103b deve estar muito inflado devido ao aquecimento da sua estrela e talvez devido a outros mecanismos. 

Uma vez que a incerteza nos números de Love ainda é bastante elevada, serão necessárias observações futuras com o Cheops e com o telescópio espacial James Webb para decifrar os detalhes. A precisão extremamente alta do Webb irá melhorar as medições da deformação das marés exoplanetárias, permitindo uma melhor comparação entre estes chamados "Júpiteres quentes" e os planetas gigantes no Sistema Solar. 

O WASP-103b também tem outro mistério. As interações de maré entre uma estrela e um planeta do tamanho de Júpiter, muito próximo, fariam com que o período orbital do planeta fosse encurtado, aproximando-o gradualmente da estrela antes de ser eventualmente engolido por sua estrela. No entanto, as medições de WASP-103b parecem indicar que o período orbital pode estar aumentando e que o planeta está a se afastando lentamente da estrela. Isto indicaria que algo, para além das forças de maré, é o fator dominante que afeta este planeta. 

Os astrônomos analisaram outros potenciais cenários, tais como uma estrela companheira da hospedeira afetando a dinâmica do sistema, ou a órbita do planeta ser ligeiramente elíptica. Não foram capazes de confirmar estes cenários, mas também não conseguiram excluí-los. É também possível que o período orbital esteja diminuindo, em vez de aumentar, mas apenas observações adicionais dos trânsitos de WASP-103b com o Cheops e outros telescópios vão ajudar a esclarecer este mistério.

Um artigo foi publicado no periódico Astronomy & Astrophysics.

Fonte: Observatoire de Paris