domingo, 9 de junho de 2019

Dois planetas são observados diretamente crecendo em torno de estrela

Os astrônomos fotografaram diretamente dois exoplanetas que esculpem, gravitacionalmente, uma grande divisão dentro de um disco de formação planetária ao redor de uma jovem estrela.


© STScI/J. Olmsted (ilustração de dois exoplanetas gigantes em órbita de jovem estrela)

Embora já tenham sido observados diretamente mais de uma dúzia de exoplanetas, este é apenas o segundo sistema multiplanetário a ser fotografado (o primeiro foi um sistema com quatro planetas em órbita da estrela HR 8799). Ao contrário de HR 8799, os planetas neste sistema ainda estão crescendo a partir da acreção de material do disco.

"Esta é a primeira deteção inequívoca de um sistema com dois planetas que criam uma lacuna no disco," comenta Julien Girard do STScI (Space Telescope Science Institute).

A estrela hospedeira, conhecida como PDS 70, está localizada a cerca de 370 anos-luz da Terra. A jovem estrela com 6 milhões de anos é um pouco menor e menos massiva que o nosso Sol e ainda está acumulando gás. É rodeada por um disco de gás e poeira que tem uma grande abertura que se estende de mais ou menos 3 a 6,1 bilhões de quilômetros.

O PDS 70 b, planeta mais interior conhecido, está localizado dentro da divisão do disco a uma distância de aproximadamente 3,2 bilhões de quilômetros da sua estrela, equivalente à órbita de Urano no nosso Sistema Solar. Estima-se que tenha uma massa de 4 a 17 vezes superior à de Júpiter. Foi detectado pela primeira vez em 2018.

O PDS 70 c, planeta recém-descoberto, está localizado perto da orla externa da lacuna do disco, a cerca de 5,3 bilhões de quilômetros da estrela, parecida à distância de Netuno ao Sol. É menos massivo do que o planeta b, entre 1 e 10 vezes a massa de Júpiter. As duas órbitas planetárias estão perto de uma ressonância de 2 para 1, o que significa que o planeta interior orbita a estrela duas vezes no tempo que leva o planeta mais exterior para completar uma órbita.

A descoberta destes dois mundos é importante porque fornece evidências diretas de que a formação de planetas pode varrer material suficiente de um disco protoplanetário para criar uma lacuna observável.

A equipe detetou PDS 70 c a partir do solo, usando o espectrógrafo MUSE acoplado ao VLT (Very Large Telescope) do ESO. A sua nova técnica depende da combinação da alta resolução espacial fornecida pelo telescópio de metros, equipado com quatro lasers, e da resolução espectral média do instrumento que permite cingir-se à luz emitida pelo hidrogênio, que é um sinal de acreção de gás.

No futuro, o telescópio espacial James Webb da NASA poderá ser capaz de estudar este sistema e outros berçários planetários usando uma técnica espectral similar para se restringir a vários comprimentos de onda do hidrogênio. Isto permitirá que os cientistas possam medir a temperatura e a densidade do gás no disco, o que ajudaria a nossa compreensão do crescimento dos planetas gigantes. O sistema também pode ser alvo da missão WFIRST, que transportará uma demonstração tecnológica de um coronógrafo de alto desempenho que pode bloquear a luz da estrela a fim de revelar a luz mais fraca do disco circundante e dos planetas que o acompanham.

Estes resultados foram publicados na revista Nature.

Fonte: Space Telescope Science Institute

Anel nublado e frio em torno do buraco negro supermassivo da Via Láctea

Novas observações do ALMA revelam um disco nunca antes visto de gás interestelar frio envolvido em torno do buraco negro supermassivo no centro da Via Láctea. Este disco nublado fornece novas informações sobre o funcionamento da acreção: o desvio de material para a superfície de um buraco negro.


© ALMA (disco de hidrogênio gasoso em torno de buraco negro supermassivo)

A imagem acima mostra o disco de hidrogênio gasoso em torno do buraco negro supermassivo no centro da nossa Galáxia. As cores representam o movimento do gás em relação à Terra; a porção avermelhada move-se para longe, de modo que as ondas rádio detectadas pelo ALMA são ligeiramente alongadas, para a porção "vermelha" do espectro; a cor azul representa gás que se move em direção à Terra, de modo que as ondas rádio são ligeiramente comprimidas para a porção "azul" do espectro.

Através de décadas de estudo, os astrônomos desenvolveram uma imagem mais clara da vizinhança caótica e povoada ao redor do buraco negro supermassivo no centro da Via Láctea. O nosso Centro Galáctico está a aproximadamente 26.000 anos-luz da Terra e o buraco negro supermassivo, conhecido como Sagitário A*, tem 4 milhões de vezes a massa do nosso Sol. Sabemos agora que esta região está repleta de estrelas errantes, nuvens de poeira interestelar e um grande reservatório de gases fenomenalmente quentes e comparativamente mais frios. Pensa-se que estes gases orbitem o buraco negro num vasto disco de acreção que se estende alguns décimos de um ano-luz do horizonte de eventos do buraco negro.

No entanto, até agora, os astrônomos só tinham conseguido fotografar a porção quente e tênue deste gás em acreção, que forma um fluxo aproximadamente esférico e que não mostra uma rotação óbvia. A sua temperatura está estimada em 10 milhões de graus Celsius, ou cerca de metade da temperatura do núcleo do nosso Sol. A esta temperatura, o gás brilha intensamente em raios X, permitindo que seja estudado por telescópios de raios X no espaço, até à escala de um-décimo de um ano-luz do buraco negro.

Além deste gás incandescente e quente, observações anteriores com telescópios de comprimento de onda milimétrico detectaram um grande reservatório de hidrogênio gasoso comparativamente mais frio (cerca de 10 mil graus Celsius) a poucos anos-luz em torno do buraco negro. A contribuição deste gás para o fluxo de acreção do buraco negro era anteriormente desconhecida.

Embora o buraco negro do nosso Centro Galáctico seja relativamente calmo, a radiação ao seu redor é forte o suficiente para fazer com que os átomos de hidrogênio continuem a perder e a recombinar-se com os seus elétrons. Esta recombinação produz um sinal distintivo de comprimento de onda milimétrico, que é capaz de atingir a Terra com muito poucas perdas no caminho. Com a sua notável sensibilidade e capacidade em ver detalhes, o ALMA (Atacama Large Millimeter/submillimeter Array) foi capaz de detectar este tênue sinal de rádio e de produzir a primeira imagem do disco de gás mais frio que rodeia o buraco negro supermassivo da Via Láctea a apenas um-centésimo de ano-luz de distância, ou cerca de 1.000 vezes a distância da Terra ao Sol. Estas observações permitiram que os astrônomos mapeassem a localização e rastreassem o movimento deste gás. Os pesquisadores estimam que a quantidade de hidrogênio neste disco frio é equivalente a um-décimo da massa de Júpiter, ou a 1/10.000 da massa do Sol.

Através do mapeamento dos desvios nos comprimentos de onda desta radiação de rádio devido ao efeito Doppler, os astrônomos puderam ver claramente que o gás está girando em torno do buraco negro. Esta informação fornecerá novas detalhes sobre como os buracos negros devoram a matéria e a complexa interação entre um buraco negro e a sua vizinhança galáctica.

"Fomos os primeiros a fotografar este disco elusivo e a estudar a sua rotação," comentou Elena Murchikova, do Instituto de Estudos Avançados em Princeton, EUA. "Também estamos estudando a acreção para o buraco negro. Isto é importante porque é o buraco negro supermassivo mais próximo. Mesmo assim, ainda não temos um bom entendimento de como funciona a acreção. Esperamos que estas novas observações do ALMA ajudem o buraco negro a ceder alguns dos seus segredos."

Os resultados foram publicados na revista Nature.

Fonte: National Radio Astronomy Observatory

terça-feira, 4 de junho de 2019

A passagem de um asteroide duplo pela Terra

A Rede Internacional de Alerta de Asteroides (IAWN, sigla em inglês) coordenou uma campanha de observação, que envolveu diversas organizações, do asteroide 1999 KW4 quando este passou próximo da Terra, chegando a uma distância mínima do nosso planeta de 5,2 milhões de km no dia 25 de maio de 2019.


© ESO/VLT (asteroide 1999 RW4)

Esta distância corresponde a cerca de 14 vezes a distância entre a Terra e a Lua (384,4 mil quilômetros).

O 1999 KW4 tem uma dimensão de cerca de 1,3 km e não constitui qualquer perigo para a Terra. Uma vez que a sua órbita é bem conhecida, os cientistas puderam prever esta passagem e preparar uma campanha de observação.

O ESO juntou-se à campanha com a sua infraestrutura emblemática, o Very Large Telescope (VLT). O VLT está equipado com o SPHERE, um dos poucos instrumentos do mundo capaz de obter imagens suficientemente nítidas para distinguir os dois componentes do asteroide, os quais estão separados de cerca de 2,6 km.

O SPHERE foi concebido para observar exoplanetas; o seu sistema de óptica adaptativa de vanguarda corrige a turbulência atmosférica, fornecendo-nos imagens tão nítidas como se o telescópio estivesse no espaço. O instrumento está igualmente equipado com coronógrafos que diminuem o brilho das estrelas, tornando assim possível observar os exoplanetas tênues que as orbitem.

Tirando uma folga do seu trabalho noturno usual de caçador de exoplanetas, as observações do 1999 KW4 obtidas pelo SPHERE forneceram dados que ajudaram os astrônomos a caracterizar o asteroide duplo. Em particular, é agora possível sabermos se o asteroide menor tem a mesma composição que o objeto maior.

O asteroide duplo passou pela Terra com a velocidade de 70.000 km/h, o que tornou as observações do VLT bastante difíceis.

Apesar de não representar nenhum perigo para a Terra, o 1999 KW4 é bastante parecido com outro sistema de asteroides binário chamado Didymos que poderá constituir uma ameaça para a Terra num futuro distante.

Didymos e o seu companheiro Didymoon são o alvo de uma futura experiência pioneira de defesa planetária. A sonda DART da NASA irá se chocar com Didymoon numa tentativa de alterar a sua órbita em torno do seu irmão maior, num teste pensado para determinar a viabilidade de deflexão de asteroides. Após o impacto, a missão Hera da ESA irá em 2026 observar os asteroides Didymos de modo a obter as suas características, incluindo a massa de Didymoon, as propriedades da sua superfície e a forma da cratera de impacto da DART.

O sucesso de tais missões depende de colaborações entre organizações e o rastreamento de Objetos Próximos da Terra é um ponto principal da colaboração entre o ESO e a ESA. Este esforço cooperativo ocorre deste o primeiro rastreamento bem sucedido de um destes objetos potencialmente perigosos que foi finalizado no início de 2014.

Este encontro recente com o 1999 KW4 ocorre um mês antes do Dia do Asteroide, um dia oficial das Nações Unidas para a educação e tomada de consciência relativa a asteroides, que será celebrado em 30 de junho.

Fonte: ESO

segunda-feira, 3 de junho de 2019

Maturidade galáctica

Esta imagem impressionante foi obtida pela Wide Field Camera 3 (WFC3) do telescópio espacial Hubble, um instrumento poderoso instalado no telescópio em 2009. O WFC3 é responsável por muitas das fotografias mais deslumbrantes e icônicas do Hubble, incluindo o Pictures of the Week.


© Hubble/J. Walsh (NGC 7773)

A NGC 7773, vista na imagem acima, é um belo exemplo de uma galáxia espiral barrada. Uma estrutura em forma de barra luminosa corta proeminentemente através do núcleo brilhante da galáxia, estendendo-se até o limite interno dos braços espirais tipo catavento.

Os astrônomos pensam que essas estruturas de barra emergem mais tarde na vida de uma galáxia, enquanto o material de formação de estrelas faz seu caminho em direção ao centro galáctico, espirais mais jovens não apresentam estruturas barradas com tanta frequência quanto as espirais mais antigas, sugerindo que as barras são um sinal de galáxias com maior maturidade. Elas também podem atuar como berçários estelares, como elas brilham com um número copioso de estrelas jovens.

Acredita-se que nossa galáxia, a Via Láctea, seja uma espiral barrada como a NGC 7773. Ao estudar espécimes galácticos como a NGC 7773 em todo o Universo, os pesquisadores esperam aprender mais sobre os processos que moldaram nossa casa cósmica.

Fonte: ESA

O Quinteto de Stephan

Quando estas grandes galáxias começaram a dançar?


© Hubble/Daniel Nobre (Quinteto de Stephan)

Realmente apenas quatro das cinco do Quinteto de Stephan estão interligadas em uma dança cósmica de repetidos encontros imediatos a cerca de 300 milhões de anos-luz de distância. A quatro das galáxias do Quinteto de Stephan formam uma associação física, chamada de Grupo Compacto de Hickson 92.

A galáxia singular é fácil de ser detectada nesta imagem recentemente processada pelo telescópio espacial Hubble; as galáxias interagindo, NGC 7319, 7318B, 7318A e 7317 (da esquerda para a direita), têm um formato amarelado mais dominante. Elas também tendem a ter caudas distorcidas, cultivadas sob a influência de marés gravitacionais perturbadoras.
 
A galáxia predominantemente azulada, a grande NGC 7320 na parte inferior esquerda, está em primeiro plano a cerca de 40 milhões de anos-luz de distância, e por isso não faz parte do grupo em interação. Dados e modelagem indicam que o NGC 7318B é um intruso relativamente novo.
 
A NGC 7320 indica um pequeno desvio para o vermelho (790 km/s) enquanto os outros membros do grupo apresentam um grande desvio para o vermelho (6.600 km/s). Como o desvio para o vermelho é proporcional à distância, a NGC 7320 está a aproximadamente 39 milhões de anos-luz da Terra, uma distância bem menor que os 210-340 milhões de anos-luz das outras quatro galáxias.

Um recém-descoberto halo de velhas estrelas vermelhas em torno do Quinteto de Stephan indica que pelo menos algumas destas galáxias começaram a se enredar por mais de um bilhão de anos.
 
O Quinteto de Stephan foi descoberto por Édouard Stephan em 1877, no Observatório de Marselha. Ele é visível com um telescópio de tamanho moderado em direção à constelação de Cavalo Alado (Pegasus).

Fonte: NASA

domingo, 2 de junho de 2019

Uma erupção estelar gigante detectada pela primeira vez

Uma erupção estelar gigante foi detectada pela primeira vez numa estrela.


© NASA/SDO (ejeção de massa coronal no Sol)

A imagem acima mostra uma ejeção de massa coronal (CME) do nosso Sol, conforme observado pelo Solar Dynamics Observatory (SDO) da NASA em 31 de agosto de 2012.

Uma ejeção de massa coronal de uma estrela envolve uma expulsão em grande escala de material e têm sido frequentemente observados no Sol. Um novo estudo usando o observatório de raios X Chandra da NASA detectou uma CME de uma estrela diferente, fornecendo uma nova visão sobre esses fenômenos poderosos. Como o nome indica, esses eventos ocorrem na coroa, que é a atmosfera externa de uma estrela.

Esta CME extrassolar foi vista a partir de uma estrela chamada HR 9024, localizada a cerca de 450 anos-luz da Terra. Isso representa a primeira vez que os pesquisadores identificaram e caracterizaram completamente uma CME de uma estrela diferente do Sol. Este evento foi marcado por um intenso clarão de raios X, seguido pela emissão de uma bolha gigante de plasma, isto é, gás quente contendo partículas carregadas.

Os resultados confirmam que as CMEs são produzidas em estrelas magneticamente ativas e também abrem a oportunidade de estudar sistematicamente esses eventos dramáticos em outras estrelas que não o Sol.

O High-Energy Transmission Grating Spectrometer (HETGS), a bordo do Chandra é o único instrumento que permite medições dos movimentos de plasmas coronais com velocidades de apenas algumas dezenas de milhares de quilômetros por hora, como aquelas observadas na HR 9024.

As observações do Chandra detectaram claramente material muito quente (entre 10 e 25 milhões de graus Celsius) que primeiro sobe e depois cai com velocidades entre 362 mil e 145 milhões de km por hora. Isto está em excelente concordância com o comportamento esperado do material ligado ao alargamento estelar.

Um artigo descrevendo este estudo foi publicado na Nature Astronomy.

Fonte: Harvard-Smithsonian Center for Astrophysics

Chandra descobre pares de estelares banidas de galáxias

Esta imagem do observatório de raios X Chandra da NASA mostra a região em torno de NGC 1399 e NGC 1404, duas das maiores galáxias do aglomerado de galáxias Fornax.


© Chandra (NGC 1399 e NGC 1404)

Localizado a uma distância de cerca de 60 milhões de anos-luz, Fornax é um dos aglomerados de galáxias mais próximos da Terra. Essa proximidade relativa permite que os astrônomos estudem o aglomerado Fornax em maior detalhe do que a maioria dos outros aglomerados de galáxias.

Um novo estudo é um exemplo do que pode ser alcançado quando telescópios como o Chandra estudam o aglomerado Fornax por longos períodos de tempo. Ao combinar 15 dias de observação do aglomerado Fornax entre 1999 e 2015 através do Chandra, os astrônomos descobriram que pares de estrelas haviam sido expelidos das galáxias do aglomerado.

Esses pares estelares podem consistir de combinações de estrelas como o nosso Sol, ou variedades mais exóticas e mais densas, como estrelas de nêutrons ou até mesmo buracos negros. Estrelas de nêutrons se formam quando uma estrela massiva explode como uma supernova e o núcleo da estrela colapsa sobre si mesma. Sob certas condições, essas explosões gigantescas não são simétricas. O recuo causado por esta assimetria pode lançar a estrela com tanta força que é expelida da galáxia onde ela reside. Esses novos resultados do Chandra mostram que às vezes a estrela companheira de uma estrela de nêutrons é forçada a sair da galáxia também.

Enquanto esta imagem mostra fontes pontuais, além da emissão de raios X mais difusa detectada pelo Chandra, não é possível identificar quais destas fontes podem ser os binários expulsos. A razão para isso é que os pesquisadores empregaram uma metodologia estatística para determinar que 30 das cerca de 1.200 fontes de raios X, associadas a 29 galáxias no aglomerado Fornax, provavelmente seriam pares de estrelas que haviam sido expulsas do centro de suas galáxias hospedeiras.

Além desses binários de raios X banidos, os pesquisadores encontraram cerca de 150 outras fontes localizadas fora dos limites das galáxias observadas pelo Chandra. Uma explicação possível para essas fontes é que elas residem nos halos, ou áreas mais distantes, da galáxia central do aglomerado Fornax, onde foram formadas. Outra opção é que elas são binários de raios X que foram afastados de uma galáxia pela força gravitacional de uma galáxia próxima durante um sobrevoo, ou binárias de raios X deixados para trás como parte dos remanescentes de uma galáxia desprovida da maioria de suas estrelas por uma colisão galáctica. Espera-se que tais interações sejam relativamente comuns em uma região populosa como a do aglomerado Fornax.

Um artigo descrevendo esses resultados foi publidado no periódico The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

sábado, 1 de junho de 2019

Galáxia espiral com um anel interno

Por que algumas galáxias espirais têm um anel ao redor do centro?


© Hubble/Robert Gendler/Roberto Colombari (M95)

Em primeiro lugar, a M95 é um dos exemplos mais próximos de uma grande e bela galáxia espiral barrada. Visíveis na combinação de imagens do Hubble e de vários telescópios terrestres estão os braços espirais delineados por aglomerados abertos de estrelas azuis brilhantes, trilhas de poeira escura, o brilho difuso de bilhões de estrelas fracas e uma barra curta no centro da galáxia.

No entanto, o que intriga muitos astrônomos é o anel circumnuclear em torno do centro da galáxia, visível logo fora da barra central. Embora a estabilidade a longo prazo deste anel permaneça um tópico de pesquisa, as observações indicam que seu brilho atual é pelo menos aumentado por surtos transitórios de formação estelar.

A M95, também conhecida como NGC 3351, se estende por cerca de 50.000 anos-luz, a cerca de 30 milhões de anos-luz de distânciada Terra, e pode ser vista com um pequeno telescópio em direção à constelação do Leão.

Fonte: NASA

Estrelas, poeira e gás perto da NGC 3572

Este retrato cósmico colorido apresenta gás incandescente e poeira escura perto de algumas estrelas recentemente formadas na NGC 3572, um aglomerado estelar pouco estudado perto da Nebulosa Carina.


© Andrew Campbell (NGC 3572)

As estrelas da NGC 3572 são visíveis perto da parte inferior da imagem, enquanto a nuvem de gás expansiva acima é provavelmente o que resta da sua nebulosa em formação.

Os matizes marcantes da imagem foram criados com cores específicas emitidas por hidrogênio, oxigênio e enxofre e misturando-os com imagens gravadas por filtros de banda larga em vermelho, verde e azul.

Esta nebulosa perto da NGC 3572 se estende por cerca de 100 anos-luz e fica a aproximadamente 9.000 anos-luz de distância em direção à constelação do hemisfério celestial sul da Quilha(Carina).

Dentro de alguns milhões de anos, o gás provavelmente se dispersará, enquanto os encontros gravitaionais provavelmente dispersarão as estrelas do aglomerado ao longo de um bilhão de anos.

Fonte: NASA

Misterioso exoplaneta é encontrado em lugar inesperado

O exoplaneta tem temperatura de 1 mil graus centígrados e massa 20 vezes a da Terra. Mas o mais surpreendente desse exoplaneta é o lugar onde ele está.


© Universidade de Warwick (ilustração do exoplaneta NGTS-4b)

Uma equipe internacional de cientistas descobriu o primeiro exoplaneta no chamado Deserto Netuniano, região tão próxima de uma estrela e tão sujeita à radição que não era esperado que nenhum planeta de tamanho similar a Netuno pudesse existir por ali.

O Deserto Netuniano consiste em áreas de intensa radiação e calor, até agora consideradas extremamente inóspitas para a presença de planetas.

Pensava-se que no Deserto Netuniano um planeta de tamanho similar a Netuno evaporaria quase totalmente pela radiação, já que grande parte desses planetas é composta de gás, com um único núcleo rochoso. Os astrônomos já conheciam planetas do tamanho de Júpiter que vivem nessa órbita. Também já haviam sido encontrados ali planetas muito pequenos, ou pequenos núcleos rochosos, mas jamais um planeta como o recém-descoberto, que retenha sua atmosfera.

O exoplaneta foi detectado com o telescópio NGTS (Next Generation Transit Survey), que se encontra no observatório europeu no Cerro Paranal, no deserto chileno do Atacama. Esses exoplanetas são detectados porque, quando passam diante de sua estrela, a luz dela se atenua. Mas a mudança é extremamente pequena, neste caso menor que 0,2%. Por isso, são necessários instrumentos muito precisos, e o deserto chileno foi escolhido por ser uma área de pouca poluição luminosa e pouca presença de nuvens, o que ajuda na visualização do céu.

O nome científico do novo planeta é NGTS-4b. Ele é um pouco menor que Netuno e está a 920 anos-luz de distância da Terra. O NGTS-4b orbita ao redor de sua estrela em apenas 1,3 dia, e nesse período percorre distância equivalente à órbita da Terra ao redor do Sol em um ano. O grande enigma é como esse exoplaneta conseguiu reter sua atmosfera. Os cientistas acham possível que ele só tenha chegado à posição onde está, no último milhão de anos. Outra possibilidade é que o planeta tenha sido maior e que a sua atmosfera esteja em pleno processo de evaporação.

E que implicações essa descoberta tem para estudos futuros sobre a formação dos planetas? Sabendo que esse tipo de planeta existe, é possível analisar os dados obtidos para encontrar outros. Além disso, a descoberta também indica aos astrônomos que os planetas talvez se formem de uma maneira diferente do que se pensava, que podem ter uma composição diferente do esperado, que lhes permita reter sua atmosfera, ou que a radiação de sua estrela possa ser menos intensa.

O estudo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: University of Warwick

quarta-feira, 29 de maio de 2019

Centenário da Teoria da Relatividade

Os buracos negros estão entre os objetos mais fascinantes do Universo. Envolvendo enormes quantidades de matéria em regiões relativamente pequenas, estes objetos compactos têm densidades enormes que dão origem a alguns dos campos gravitacionais mais fortes do cosmos, tão fortes que nada pode escapar, nem mesmo a luz.


© Scientific American (ilustração de dois buracos negros em fusão)

Uma fusão de um buraco negro foi detectada pela primeira vez em 2015 pelo LIGO, o Observatório de Ondas Gravitacionais por Interferômetro a Laser, que detectou as ondas gravitacionais, ou seja, flutuações no tecido do espaço-tempo criadas pela colisão gigante.
  
Os buracos negros e ondas gravitacionais são previsões da Teoria da Relatividade Geral de Albert Einstein, a qual foi apresentada em 1915 e permanece, até hoje, a melhor teoria para descrever a gravidade em todo o Universo.

Karl Schwarzschild derivou as equações para buracos negros em 1916, mas estas permaneceram uma curiosidade teórica durante várias décadas, até que as observações de raios X realizadas com telescópios espaciais puderam finalmente sondar a emissão altamente energética da matéria na vizinhança desses objetos extremos. A primeira imagem da silhueta escura de um buraco negro, lançada contra a luz da matéria no seu entorno imediato, só foi captada recentemente pelo telescópio Event Horizon e publicada no mês passado.

Quanto às ondas gravitacionais, foi o próprio Einstein quem previu a sua existência a partir da sua teoria, também em 1916, mas levaria outro século para finalmente se observar essas flutuações. Desde 2015, os observatórios terrestres LIGO e Virgo reuniram mais de uma dúzia de detecções, e a astronomia de ondas gravitacionais é um novo campo de pesquisa em desenvolvimento.

Mas outra das previsões de Einstein encontrou prova de observação muito mais cedo: a curvatura gravitacional da luz, que foi demonstrada apenas alguns anos depois da teoria aparecer, durante um eclipse total do Sol em 1919.

No contexto da relatividade geral, qualquer objeto com massa dobra o tecido do espaço-tempo, desviando o caminho de qualquer objeto que passe por perto, incluindo a luz. Uma visão artística dessa distorção, também conhecida como lente gravitacional, encontra-se retratada nesta representação de dois buracos negros em fusão.

Há cem anos, os astrônomos começaram a testar a relatividade geral, observando se e como a massa do Sol desvia a luz de estrelas distantes. Esta experiência só poderia ser realizada obscurecendo a luz do Sol para revelar as estrelas ao seu redor, algo que é possível durante um eclipse solar total.

Em 29 de maio de 1919, Sir Arthur Eddington observou as estrelas distantes ao redor do Sol durante um eclipse na ilha do Príncipe, na África Ocidental, enquanto Andrew Crommelin realizou observações semelhantes em Sobral, no nordeste do Brasil. Os seus resultados, apresentados seis meses depois, indicaram que as estrelas observadas perto do disco solar durante o eclipse foram levemente deslocadas em relação à sua posição normal no céu, aproximadamente pela quantidade prevista pela teoria de Einstein para o seu desvio devido à massa do Sol.

“Acende todos os mortos no céu”, destacou o New York Times em novembro de 1919 para anunciar o triunfo da nova teoria de Einstein. Isto inaugurou um século de experiências excitantes pesquisando a gravidade na Terra e no espaço e provando a relatividade geral de um modo cada vez mais preciso.

Veja um documentário preparado pelo Observatório Nacional que apresenta o Eclipse de Sobral e a Teoria da Relatividade Geral. Click na imagem a seguir.


© ON (o Eclipse de Sobral e a Teoria da Relatividade Geral)

Demos saltos gigantescos nos últimos cem anos, mas ainda há muito para descobrir. Athena, o futuro observatório de raios X da ESA, investigará detalhadamente, e sem precedentes, os buracos negros supermassivos que se situam no centro das galáxias. LISA, outra futura missão da ESA, detectará as ondas gravitacionais a partir de órbita, procurando as flutuações de baixa frequência que são liberadas quando dois buracos negros supermassivos se fundem e só podem ser detectados a partir do espaço.

Ambas as missões estão atualmente em fase de estudo, e estão programadas para lançamento no início dos anos 2030. Se Athena e LISA pudessem operar em conjunto por pelo menos alguns anos, poderiam realizar uma experiência única: observar a fusão de buracos negros supermassivos tanto em ondas gravitacionais quanto em raios X.

Precisamos do LISA para detectar as ondas gravitacionais e nos dizer onde procurar no céu, depois precisamos que o Athena a observe com alta precisão em raios X para ver como a poderosa colisão afeta o gás que circunda os buracos negros. Não sabemos o que acontece durante um confronto cósmico desse tipo, portanto, essa experiência, muito parecida com o eclipse de 1919 que primeiro provou a teoria de Einstein, está preparada para abalar a nossa compreensão da gravidade e do Universo.

Fontes: Observatório Nacional e Scientific American

segunda-feira, 27 de maio de 2019

Uma galáxia quebrando a tendência

Este globo luminoso é a galáxia NGC 4621, mais conhecida como Messier 59 (M59).


© Hubble (M59)

A galáxia foi listada no famoso catálogo de objetos do céu profundo compilado pelo caçador de cometas francês Charles Messier em 1779. No entanto, o astrônomo alemão Johann Gottfried Koehler é creditado com a descoberta da galáxia apenas alguns dias antes de Messier adicioná-lo à sua coleção.

Observações modernas mostram que M59 é uma galáxia elíptica, um dos três principais tipos de galáxias, juntamente com espirais e irregulares. As elípticas tendem a ser as mais evoluídas do trio, cheias de velhas estrelas vermelhas e exibindo pouca ou nenhuma nova formação estelar. No entanto, a M59 é contrária a esta tendência; a galáxia mostra sinais de formação de estrelas, com algumas estrelas recém-nascidas residindo dentro de um disco próximo ao núcleo.

Localizada no Aglomerado de Virgem de 2.000 galáxias dentro da constelação de Virgem, a M59 fica a aproximadamente 50 milhões de anos-luz de distância da Terra.

Fonte: ESA

sábado, 25 de maio de 2019

Metais raros da Terra são encontrados em exoplaneta gasoso

O KELT-9b é conhecido como o exoplaneta mais quente já detectado até agora pela humanidade.


© NASA/JPL-CALTECH (exoplaneta orbitando uma estrela azul supergigante)

Devido ao calor extremo, elementos como ferro e titânio estão dispersos em forma de gás em sua atmosfera, conforme descoberto no ano passado.

Mas agora um novo estudo, das Universidades de Berna e Geneva, na Suíça, aponta que esse corpo celeste também possui metais raros da Terra, como escândio e ítrio, além de outros metais vaporizados como sódio, crômio e magnésio.

O KELT-9b é um exoplaneta, pois está bem distante de nós, fora do nosso Sistema Solar. Para ter ideia, o Sol está a oito minutos-luz da Terra (um trajeto de 149.600.000 km), enquanto que esse exoplaneta fica a 620 anos-luz de distância do nosso planeta.

O exoplaneta está orbitando a estrela azul supergigante HD 195689, com temperaturas que um pouco mais abaixo do que a temperatura do Sol (5.500 ºC).

A estrela está bem próxima do exoplaneta, pois o que separa os dois é um trajeto que tem apenas 3% da distância entre a Terra e o Sol. Isso garante que o KELT-9b tenha uma temperatura de 4.327 ºC.

Devido às altas temperaturas, a atmosfera do KELT-9b- apresenta apenas gases. Com isso, os átomos vaporizados do exoplaneta são capazes de absorverem comprimentos de onda de luz: os astrônomos usaram espectrômetros para detectar tais comprimentos de onda e identificar os elementos químicos presentes durante esse fenômeno.

Além de encontrarem componentes raros que existem na Terra, os pesquisadores descobriram as latitudes nas quais os elementos atingiam a atmosfera do exoplaneta e conseguiram deduzir os padrões dos ventos no KELT-9b.

As técnicas desenvolvidas podem ajudar na identificação de elementos nas atmosferas de outros planetas, abrindo a possibilidade para entendermos como e por que existe vida na Terra.

Fonte: Galileu

segunda-feira, 20 de maio de 2019

Hubble observa a destruição criativa quando as galáxias colidem

O telescópio espacial Hubble deu uma nova olhada na espetacular galáxia irregular NGC 4485, que foi deformada por sua vizinha galáctica maior.


© Hubble (NGC 4485)

A gravidade da segunda galáxia interrompeu a coleta ordenada de estrelas, gás e poeira, dando origem a uma região irregular de estrelas recém-nascidas, quentes e azuis, aglomerados caóticos e fluxos de poeira e gás.

A galáxia irregular NGC 4485 esteve envolvida em uma interação gravitacional dramática com a galáxia maior NGC 4490, que está localizada no canto inferior direito fora desta imagem. Encontrado a cerca de 30 milhões de anos-luz de distância da Terra na constelação de Canes Venatici (Cães de Caça), o estranho resultado dessas galáxias em interação resultou em uma entrada no Atlas de Galáxias Peculiares: Arp 269.

Tendo já feito a sua abordagem mais próxima, a NGC 4485 e a NGC 4490 estão agora se afastastando entre si, muito alteradas em relação aos seus estados originais. Ainda engajadas em uma dança destrutiva, mas criativa, a força gravitacional entre elas continua deformando cada uma delas, enquanto ao mesmo tempo cria as condições para enormes regiões de formação estelar intensa.

Este cabo-de-guerra galáctico criou um fluxo de material de cerca de 25.000 anos-luz que liga as duas galáxias. Essa conexão é composta de nós brilhantes e enormes bolsões de regiões gasosas, bem como enormes regiões de formação de estrelas nas quais nascem jovens estrelas azuis. De curta duração, no entanto, essas estrelas rapidamente ficam sem combustível e terminam suas vidas em explosões dramáticas. Embora tal evento pareça ser puramente destrutivo, ele também enriquece o ambiente cósmico com elementos mais pesados ​​e fornece material novo para formar uma nova geração de estrelas.

Duas regiões muito diferentes são agora aparentes na NGC 4485; à esquerda, há indícios da estrutura espiral anterior da galáxia, que estava passando por uma evolução galáctica “normal”. A direita da imagem revela uma porção da galáxia rasgada em direção ao sua vizinha maior, explodindo com estrelas azuis quentes e fluxos de poeira e gás.

Esta imagem, captada pela Wide Field Camera 3 (WFC3) no telescópio espacial Hubble, adiciona luz através de dois novos filtros que fornecem mais informações sobre o campo complexo e misterioso da evolução da galáxia.

Fonte: ESA

domingo, 19 de maio de 2019

Supernovas primordiais lançaram jatos de material em galáxias próximas

As primeiras estrelas do Universo eram extremamente quentes e incrivelmente grandes, muitas vezes atingindo centenas de vezes a massa do Sol.


© Melanie Gonick (simulação do aparecimento das primeiras supernovas do Universo)

Esta simulação mostra como as primeiras supernovas do Universo podem ter surgido. O instantâneo acima, que mostra a forma da supernova 50 segundos após sua explosão inicial, destaca dois poderosos jatos que expelem elementos pesados como zinco (pontos verdes) para o espaço.

Estas estrelas se formaram apenas algumas centenas de milhões de anos após o Big Bang, estas gigantes ferventes não continham virtualmente nenhum elemento mais pesado que hidrogênio e hélio, que eram os únicos materiais prontamente disponíveis na época. Mas devido à sua estatura considerável, as primeiras estrelas também viveram rápido e morreram duramente, durando apenas alguns milhões de anos antes de explodirem como supernovas poderosas.

Quando estas primeiras estrelas rapidamente queimaram seu combustível, forjaram elementos mais leves em elementos mais pesados, como carbono, ferro e zinco. Então, durante a dramática agonia da morte, elas lançaram seus constituintes ao espaço, semeando a próxima geração de estrelas com elementos pesados. E embora os astrônomos ainda não tenham detectado diretamente nenhuma destas primeiras gigantes, eles encontraram evidências de sua existência.

Agora, uma nova pesquisa sugere que estas estrelas em chamas eram especiais por outro motivo: quando explodiram, elas não saíram como supernovas esféricas normais. Em vez disso, as explosões ostentaram jatos violentos que expeliram material a mais de 145 milhões de quilômetros por hora, ou cerca de 13% da velocidade da luz. Estes jatos permitiram que alguns dos elementos pesados ​​(chamados metais) presos dentro das estrelas pudessem chegar às galáxias vizinhas, incluindo a incipiente Via Láctea.

"Esta é a primeira evidência observacional de que uma supernova assimétrica ocorreu no início do Universo," disse Rana Ezzeddine, do Massachusetts Institute of Technology (MIT).

Para realizar o estudo, os pesquisadores usaram o Cosmic Origins Spectrograph no telescópio espacial Hubble para investigar uma estrela peculiar conhecida como HE 1327-2326, localizada a cerca de 5.000 anos-luz de distância da Terra, no halo da Via Láctea. Enquanto as primeiras estrelas são chamadas de estrelas da População III, a HE 1327-2326 é um membro da próxima geração, chamada de estrelas da População II. Como as estrelas da População III, as estrelas da População II contêm uma relativa escassez de elementos pesados; no entanto, elas contêm alguns.

"As estrelas menores que se formaram como a segunda geração ainda estão disponíveis hoje, e preservam o material primitivo deixado por estas primeiras estrelas," disse a física Anna Frebel, do MIT, que descobriu a HE 1327-2326 em 2005. "A HE 1327-2326 tem apenas uma pitada de elementos mais pesados ​​que o hidrogênio e o hélio, por isso sabemos que ela deve ter se formado como parte da segunda geração de estrelas.”

Neste caso, "uma pitada" pode ser um exagero. Até 2014, a HE 1327-2326 detinha o título de estrela com a mais baixa abundância conhecida de ferro, um indicador comum da quantidade total de metal em uma estrela. De fato, a HE 1327-2326 contém várias centenas de milhares de vezes menos ferro relativo que o Sol.

Mas, apesar de sua deficiência de ferro, os pesquisadores descobriram que a HE 1327-2326 tem uma quantidade surpreendente de zinco. Os pesquisadores realizaram dezenas de milhares de simulações de estrelas da População III explodindo e semeando a próxima geração de estrelas. Embora houvesse uma série de simulações de supernovas esféricas que reproduzissem com precisão o teor de ferro extremamente baixo visto na HE 1327-2326, nenhuma delas foi capaz de replicar o sinal de zinco observado. Isso efetivamente eliminou a possibilidade de que uma supernova esférica alimentasse de zinco extra a HE 1327-2326.

Em vez disso, eles concluíram que a única maneira provável pela qual a HE 1327-2326 só poderia ter adquirido tanto zinco, embora tendo ao mesmo tempo tão pouco ferro, é se a estrela da População III original explodisse assimetricamente, lançando seu zinco com jatos tremendamente poderosos.

Mas estas supernovas da População III não são apenas especiais porque geraram jatos, elas também deram um impacto maior do que a maioria das supernovas que vemos hoje. "Descobrimos que esta primeira supernova foi muito mais enérgica do que se pensava antes, cerca de cinco a dez vezes mais," disse Ezzeddine. "Na verdade, a idéia anterior da existência de uma supernova mais fraca para explicar as estrelas de segunda geração pode em breve precisar ser retirada."

“A hipótese de trabalho é: talvez estrelas de segunda geração deste tipo se formem nestes sistemas virgens poluídos, e não no mesmo sistema que a própria explosão de supernova, que é sempre o que assumimos, sem pensar de outra maneira,” disse Frebel. "Então, isto está abrindo um novo canal para a formação inicial de estrelas."

A nova pesquisa foi publicada no periódico The Astrophysical Journal.

Fonte: Astronomy