quarta-feira, 30 de junho de 2010

Identificada nuvem verde no espaço

Cientistas desenvolveram uma possível explicação para uma estranha e monstruosa concentração de gás verde brilhante no espaço entre galáxias. A nuvem de gás foi descoberta em 2007 pela professora escolar holandesa Hanny van Arkel quando combinava imagens do projeto Galaxy Zoo.
ic 2497
© Discovery News (nuvem de gás em verde) 
O Voorwerp ("objeto", em holandês) de Hanny, como é chamado, é uma gigantesca mancha verde com um enorme buraco de 16 mil anos-luz de largura no seu centro e que fica próximo à galáxia IC 2497, a 700 milhões de anos-luz da Terra. O Voorwerp obviamente não é uma galáxia (já que não tem estrelas). Observações confirmaram que se trata de uma nuvem de gás.
Contudo, o que deixava os astrônomos mais curiosos era o inexplicável brilho verde que o objeto emite. Algumas teorias já foram propostas sobre o que é o Voorwerp, mas sem muita aceitação. Agora, cientistas do Instituto Joint, na Holanda, dizem que medições em diversos comprimentos de ondas indicam que, assim como muitas galáxias, a IC 2497 tem um buraco negro supermassivo em seu centro.
A pesquisa holandesa indica que a absorção de matéria pelo buraco negro gera um cone de radiação que está ionizando o Voorwerp de Hanny e causando o brilho verde. O astrofísico Darren Croton, da Universidade Swinburne, de Melbourne, na Austrália, afirmou que objetos como o Voorwerp são muito raros, já que os cones de radiação dificilmente atingem uma nuvem de gás.
O astrofísico diz que o estudo holandês ainda indica que existe uma grande quantidade de gás no espaço intergaláctico, "é apenas difícil de vê-lo", diz o cientista. Mas, graças a esse núcleo galáctico ativo próximo à nuvem de gás, é possível ver que o gás está ali.
Fonte: Discovery News

Planeta em órbita de estrela semelhante ao Sol

Novas observações confirmaram que um planeta com cerca de oito vezes a massa de Júpiter está mesmo em órbita de uma estrela semelhante ao Sol. A distância entre estrela e planeta é cerca de 300 vezes maior que a que separa a Terra do Sol.
1RXS 1609
© Observatório Gemini (a estrela e o planeta em órbita)
O planeta recém-confirmado é o menor que se conhece numa órbita tão distância de sua estrela.
A descoberta havia sido anunciada em 2008, por uma equipe liderada por David Lafrenière, então na Universidade de Toronto, atualmente na Universidade de Montreal. Mas eram necessárias mais observações para confirmar que planeta e estrela realmente compunham um sistema conjunto; era possível que a imagem em que ambos apareciam juntos fosse fruto de um alinhamento casual.
"Nossas novas observações eliminam a possibilidade de alinhamento casual, e confirma que planeta e estrelas estão relacionados", disse Lafrenière.
Com a confirmação, o sistema, classificado como 1RXS 1609, passa a representar um desafio às teorias de formação planetária, por conta de seu afastamento extremo em relação à estrela. "A localização improvável desse mundo alienígena pode estar nos dizendo que a natureza tem mais de um jeito de fazer planetas", afirma o coautor Ray Jayawardhana.
Quando foi detectado inicialmente, com o uso do Observatório Gemini, em abril de 2008, o objeto tornou-se o primeiro planeta a provavelmente orbitar uma estrela semelhante ao Sol e que havia sido revelado por uma imagem direta.
A equipe de cientistas também obteve um espectro do planeta e foi capaz de determinar muitas de suas características, confirmadas no novo trabalho. "Em retrospecto, isso faz de nossos dados iniciais o primeiro espectro de um exoplaneta confirmado de todos os tempos!", disse Lafrenière.
Desde a observação inicial, diversos outros planetas foram descobertos por meio de imagem direta, incluindo um sistema de três planetas em torno da estrela HR 8799, também encontrado com o Gemini.
A estrela do sistema 1RXS 1609 fica a 500 anos-luz da Terra, em um grupo de estrelas jovens. O planeta tem temperatura estimada em cerca de 1.500º C.
A estrela tem massa estimada em cerca de 85% da do Sol. A juventude do sistema ajuda a explicar a alta temperatura do planeta, já que a contração gravitacional do mundo, durante a fase de formação, deve ter elevado a temperatura rapidamente. Quando a contração terminar, o astro esfriará, irradiando infravermelho. Em bilhões de anos, atingirá uma temperatura semelhante à de Júpiter, que no alto da atmosfera chega a 110º C negativos.
Esses resultados serão publicados no Astrophysical Journal.
Fonte: Observatório Gemini

terça-feira, 29 de junho de 2010

Nebulosa em forma de favo de mel

Uma nova análise fornece uma explicação para o formato da Nebulosa Favo de Mel, assim chamada pelo improvável arranjo de gases interestelares na forma de favos de mel.
Desde sua descoberta em 1992, a curiosa forma da nebulosa, próxima à Grande Nuvem de Magalhães, tem sido um mistério.
Como a nebulosa está situada em uma área assolada por explosões de supernovas, uma teoria é a de que o padrão poderia ter sido causado por um conjunto de ondas criadas quando restos de uma supernova antiga foram atingidos por restos de uma supernova mais recente.
nebulosa favo de mel
© NASA (nebulosa Favo de Mel)
Essa teoria foi agora reforçada pelo trabalho de John Meaburn e sua equipe, da Universidade de Manchester, no Reino Unido, que analisaram o espectro de luz da Nebulosa Favo de Mel e descobriram que ele se assemelha ao espectro produzido por gás movendo-se a alta velocidade em restos de outra supernova conhecida.
Contudo, há outra possibilidade: o favo de mel poderia vir de um jato de alta velocidade oriundo de um buraco negro atingindo o gás que o cerca. Mas a equipe diz que o espectro de luz da nebulosa é diferente daquele observado em um jato de buraco negro em um sistema binário chamado SS 433, favorecendo a hipótese anterior (da onda de restos de supernova).
Os resultados serão publicados na revista "Monthly Notices of the Royal Astronomical Society".
Fonte: New Scientist

domingo, 27 de junho de 2010

Descobertas as estrelas mais frias conhecidas

Astrônomos do telescópio espacial Spitzer, administrado pela Nasa e pelo Instituto de Tecnologia da Califórnia, nos Estados Unidos, afirmam ter descoberto 14 das mais frias estrelas conhecidas no Universo. Esses astros, chamados de anãs marrons, são tão frios se comparados com suas irmãs que é impossível vê-los em telescópios comuns. Contudo, o infravermelho do Spitzer conseguiu registrá-las.
anã marron
© NASA (estrela anã marron)
O objeto vermelho no centro da imagem é a estrela chamada de SDWFS J143524.44 335334.6, uma das 14 anãs marrons encontradas pelo Spitzer em registros em infravermelho.
As estrelas descobertas estão em uma categoria chamada de anãs T, com temperaturas abaixo de 1227 °C. Uma delas, inclusive, é tão fria que os astrônomos propõem colocá-la em uma nova classe, já teorizada anteriormente, a de anãs Y. Há várias classificações para estrelas conforme sua temperatura, supermassivas, por exemplo, são chamadas de O, enquanto o nosso Sol é uma estrela G.
Segundo a administração do telescópio, as estrelas descobertas têm temperaturas entre 176°C e 327°C, consideradas muito frias tendo temperaturas semelhantes aos planetas. Os cientistas afirmam que esses corpos permaneceram desconhecidos por anos, mas começarão a ser mais conhecidos com os telescópios em infravermelho, como o Wise da, que pretende registrar todo o céu nesse comprimento de onda, enquanto o Spitzer registra apenas um alvo designado.
"O Wise está procurando por todos os lugares, então as mais frias anãs marrons vão aparecer ao nosso redor", diz Peter Eisenhardt, cientista deste projeto. "Nós podemos inclusive encontrar uma anã marrom que é tão próxima de nós quanto Proxima Centauri, a mais próxima estrela conhecida", diz o pesquisador.
As anãs marrons se formam de maneira similar às outras estrelas, mas são menores que estas (com tamanho equivalente a de planetas gasosos), não conseguindo reunir massa suficiente para dar início a uma fusão nuclear. Inicialmente, esses astros têm calor resultante da sua formação, mas, com o tempo, eles tendem a esfriar. A primeira anã marrom foi descoberta em 1995.
Fonte: NASA

quinta-feira, 24 de junho de 2010

Hubble faz fotos de berçário de estrelas

A Nasa capturou através do telescópio Hubble uma rede complexa de nuvens de gás e aglomerados de estrelas em nossa galáxia vizinha, a Grande Nuvem de Magalhães. Esta região de nascimento de estrelas é uma das mais ativas no Universo.
n11
© ESA (LHA 120-N 11)
A Grande Nuvem de Magalhães contém muitas bolhas brilhantes de gás incandescente. Uma das maiores e mais espetacular é a LHA 120-N 11, mais conhecida como N11 desde que foi catalogada, em 1956, pelo astrônomo e astronauta Karl Henize.
A N11 se estende por mil anos-luz, é a segunda região de maior formação de estrelas na Grande Nuvem de Magalhães e produziu algumas das estrelas mais massivas já conhecidas.
De perto, a N11 é uma nuvem de gás brilhante cor-de-rosa e se assemelha a um redemoinho de "algodão doce" e é relativamente compacta e densa. Mais distante, a sua forma global distinta levou alguns observadores a chamá-la de "a nebulosa de feijão". As características coloridas da nebulosa são os sinais indicadores do nascimento da estrela.
É o processo de nascimento da estrela que dá a N11 uma aparência diferente. Três gerações sucessivas de estrelas, cada qual formada mais longe do centro da nebulosa, criaram escudos de gás e poeira. Estes escudos foram fundidos longe das estrelas recém-nascidas na agitação de seu nascimento energético criando o anel que dá a forma tão proeminente observada na imagem.
Embora seja muito menor do que nossa galáxia, a Grande Nuvem de Magalhães é uma região forte de formação de estrelas. Estudando esses berçários estrelares os astrônomos conseguem entender mais sobre como nascem as estrelas e o tempo de seu desenvolvimento final.
Tanto a Grande Nuvem de Magalhães quanto sua companheira, a Pequena Nuvem de Magalhães, são facilmente visíveis a olho nu e tem sido sempre familiar às pessoas que vivem no hemisfério sul. O crédito por trazer estas galáxias à atenção dos europeus é geralmente dada ao explorador Português Fernando de Magalhães e a sua tripulação, que a avistaram em viagem marítima em 1519. No entanto, o astrônomo persa Abd Al-Rahman Al Sufi e o explorador italiano Américo Vespúcio já haviam registrado a Grande Nuvem de Magalhães, muito antes, em 964 e 1503, respectivamente.
Fonte: ESA

quarta-feira, 23 de junho de 2010

Tempestade de vento assola Osíris

Tempestades com ventos de 5 mil a 10 mil km/h de velocidade, uma temperatura de superfície de mais de 1 mil °C: o clima extremo do exoplaneta apelidado de Osíris continua a seduzir os pesquisadores, como evidenciou um estudo publicado pela revista científica Nature.
osíris
© Nature (exoplaneta Osíris, concepção artística)
HD209458b, nome oficial de Osíris, fica muito próximo de sua estrela e percorre sua órbita em 3,5 dias em uma velocidade de 140 km/s, quase cinco vezes mais rápido do que a Terra gira em torno do Sol, segundo Ignas Snellen, do observatório de Leiden, na Holanda, e sua equipe.
Cada vez que o planeta passa em frente a sua estrela, uma fração da luz do astro é bloqueada durante três horas. Situado a 150 anos-luz da Terra, Osíris foi o primeiro exoplaneta descoberto em 1999.
A atmosfera deste planeta maciço (quase dois terços da massa de Júpiter) escapa no espaço, como se perdesse sua substância, por isso, o nome Osíris. O deus egípcio que lhe dá nome foi morto pelo seu irmão que em seguida dispersou pedaços do seu corpo.
Como o planeta sempre apresenta a mesma face para a estrela, sua temperatura de superfície é mais fria no lado "noite" do que no lado "dia", onde ela pode atingir 1 mil °C.
"Na Terra, as grandes diferenças de temperaturas são causadas inevitavelmente pelos ventos fortes e, como mostra os instrumentos, a situação é a mesma em HD209458b", disse Simon Albrecht, do Massachusetts Institute of Technology (MIT), em Cambridge, Estados Unidos.
Graças ao VLT (Telescópio Muito Grande) do Observatório Astronômico Europeu do Sul (ESO) instalado no Chile, os astrônomos puderam observar durante cinco horas a atmosfera deste planeta, composto de monóxido de carbono, no momento em que ele passava na frente da sua estrela.
Estudando este gás mortal, "nós descobrimos um supervento, que sopra entre 5 mil e 10 mil km/h", declarou Snellen. Experimentando outros métodos que poderiam servir para descobrir vida em outros exoplanetas, foi analisado com o espectrógrafo CRIRES, a luz da estrela filtrada através da atmosfera de Osíris.
Assim, foi possível mensurar com grande precisão a velocidade do monóxido de carbono, graças ao efeito Doppler, impressão deixada pelo gás variando de acordo com sua proximidade ou distanciamento da Terra. Eles puderam também, pela primeira vez, calcular diretamente a velocidade do exoplaneta, sua massa e descobrir que sua atmosfera seria "tão rica em carbono quanto Saturno e Júpiter".
Fonte: Nature

Telescópio capta imagem de 'lábios humanos'

O telescópio em infacermelho Wise da NASA (agência espacial americana) capturou uma imagem inusitada no espaço. O que parece uma boca humana é uma nuvem de poeira soprando de uma estrela gigante. A estrela (ponto branco no centro do anel vermelho) é uma das moradoras mais maciças da nossa galáxia Via Láctea, a V385 Carinae e fica a uma distância de cerca de 16 mil anos-luz da Terra.
v385 carinae
© NASA (V385 Carinae)
Objetos como esse são chamados de estrelas Wolf-Rayet e, em comparação, fazem com que o nosso Sol pareça insignificante. A V385 Carinae é 35 vezes mais massiva que nosso Sol, e tem um diâmetro quase 18 vezes maior. É mais quente e brilha com mais de um milhão de vezes a quantidade de luz.
Estrelas ardentes assim queimam rapidamente, tendo uma vida considerada curta para o espaço, apenas poucos milhões de anos. À medida que envelhecem, os átomos mais pesados vão aquecendo dentro delas, como os átomos de oxigênio que são necessários para a vida como nós conhecemos.
O material resultante desta queima é soprado para fora em nuvens, como a que brilha intensamente na cor vermelha na imagem do Wise.
Fonte: NASA

terça-feira, 22 de junho de 2010

Sonda Rosetta a caminho de Lutécia

O caça-cometas da ESA, Rosetta, está rumo a um encontro com o asteroide Lutécia. A Rosetta ainda não sabe qual é o aspecto de Lutécia mas, bonito ou não, os dois irão se encontrar no dia 10 de Julho. Assim como nos primeiros encontros, a Rosetta vai se encontrar com Lutécia no Sábado à noite, viajando até a uma distância de 3200 Km do rochedo.
rosetta e asteroide steins
© ESA (sonda Rosetta e o asteroide Steins)
A Rosetta vem captando dados de posicionamento do Lutécia desde o final de Maio para que os controladores em terra possam determinar quaisquer correções de trajetória necessárias para atingir a distância de passagem desejada. A passagem permitirá obter duas horas de boas imagens. A sonda começará a enviar imediatamente os dados para a Terra e a primeira imagem será revelada ainda na noite de Sábado.
A Rosetta passou pelo asteroide Steins em 2008 e outras missões espaciais têm-se deparado com diversos asteroides. Cada um deles revelou ter características únicas e espera-se que o Lutécia mantenha a tendência.
O maior objetio será o encontro em 2014 com o cometa Churyumov-Gerasimenko.
Fonte: ESA

sábado, 19 de junho de 2010

Galáxia tem "cauda" de gás e estrelas

Observações em ultravioleta da galáxia IC 3418 indicam que, apesar de parecer mais uma galáxia espiral comum, ela tem uma espécie de "cauda". Não só isso, essa região é composta de milhares de jovens estrelas.
ic 3418
© NASA/JPL (IC 3418, ultravioleta e visível)
O aglomerado de estrelas fica localizado a 54 milhões de anos-luz no meio do imenso agrupamento de Virgem (que tem mais de 1,5 mil galáxias próximas). Esse agrupamento é tão grande que sua força gravitacional está puxando IC 3418 para o seu centro a uma velocidade de 3,6 milhões de km/h, o que deixa para trás amontoados de gás que formam um rastro.
Segundo um estudo publicado neste mês no The Astrophysical Journal Letters, esse gás é influenciado pelas outras galáxias (assim como a cauda de um cometa é atingida pelos ventos solares), acaba por condensar e formar estrelas.
De acordo com a pesquisa, essa "cauda" de jovens estrelas oferece uma possibilidade de estudar a formação desses astros muito mais facilmente do que em outras galáxias, onde esse processo fica encoberto por grandes nuvens de gás e poeira.
Fonte: Science

sexta-feira, 18 de junho de 2010

O segredo de Perseu

Uma galáxia gorda, velha e decadente que parece ter tomado emprestado gás de suas vizinhas para voltar a fabricar estrelas está ajudando um grupo de astrônomos a decifrar os mistérios dos aglomerados de galáxias, os tijolos formadores das maiores estruturas do Universo.
NGC 1275
© NASA/ESA (NGC 1275 no aglomerado de Perseu)
Com a forma de uma esfera achatada, a galáxia se localiza na direção da constelação de Perseu, o mitológico herói grego que decapitou a Medusa, e é imensa: abriga de 10 a 100 vezes mais matéria do que a nossa galáxia, a Via Láctea, formada por cerca de 200 bilhões de estrelas, e mantém outras aprisionadas gravitacionalmente ao seu redor. Conhecido como aglomerado de Perseu, esse grupo de galáxias tem uma característica marcante que há tempos intriga quem o estuda: é permeado por uma gigantesca nuvem de gás muito rarefeito e quente, com algumas regiões apresentando temperaturas bem mais elevadas do que seria de esperar.
As leis da física preveem que, à medida que o gás das galáxias vizinhas é atraído pela gravidade rumo à galáxia central, no caso, a NGC 1275, distante 235 milhões de anos-luz da Terra, sua densidade deve aumentar enquanto sua temperatura diminui acentuadamente. “Como o gás se torna mais denso próximo ao centro do aglomerado, as partículas que o formam colidem mais facilmente umas com as outras e perdem energia na forma de radiação”, explica a astrofísica Elisabete de Gouveia Dal Pino, que vem estudando o aglomerado de Perseu nos últimos anos. Assim, quanto maior a densidade e a proximidade da galáxia central, mais frio deve se tornar o gás. Isso, no entanto, não é bem o que acontece com Perseu.
A temperatura do gás do aglomerado até diminui, é verdade. Mas não tanto quanto, nem como deveria. Medições feitas por telescópios em terra e no espaço revelaram que ela passa de quase 10 milhões de graus nas regiões mais distantes da NGC 1275 para cerca de 3 milhões de graus por volta da metade do caminho. E depois se estabiliza, quando o esperado era que baixasse para algumas centenas de milhares de graus. Esse efeito só se justificaria se algo estivesse reaquecendo o gás na região mais central do aglomerado, equilibrando a perda de calor.
Há algum tempo os pesquisadores até têm um candidato: um gigantesco buraco negro, com massa equivalente à de centenas de milhões de estrelas como o Sol, situado bem no centro da NGC 1275. Os buracos negros são objetos tão densos e compactos que impedem que qualquer coisa escape de sua superfície, inclusive a luz. Mas na sua vizinhança é liberada muita energia. Antes de ser sugada e absorvida, a matéria que espirala ao redor do buraco negro é acelerada pela gravidade. Parte dela, auxiliada por campos magnéticos, escapa em dois feixes estreitos que saem dos polos do buraco negro, originando os jatos de partículas que se deslocam a velocidades próximas à da luz. Esses jatos emitem ondas de rádio que são detectadas pelos astrônomos.
Imagens feitas a partir de outra forma de radiação, os raios X, mostravam que as proximidades do buraco negro da NGC 1275, região do espaço também conhecida como núcleo galáctico ativo por emitir mais energia do que o restante da galáxia, liberavam energia suficiente para manter o gás aquecido na porção mais central do aglomerado. Mas havia um mistério: como as temperaturas do gás podiam ser mais ou menos homogêneas, se os jatos de radiação gerados a partir do buraco negro eram tão estreitos?
Ao conduzir simulações em computador, o grupo coordenado por Elisabete Dal Pino e Zulema Abraham, pesquisadoras do Instituto de Astronomia, Geo­física e Ciências Atmosféricas da Universidade de São Paulo (IAG-USP), na capital paulista, encontrou uma possível resposta. “As temperaturas poderiam ser as observadas, caso o núcleo galáctico ativo estivesse em precessão (mudança de inclinação no eixo de rotação)”, afirma Elisabete. A ideia pode ser traduzida assim: para manter a temperatura aproximadamente homogênea, é preciso que o eixo de rotação do objeto central varie de inclinação e os jatos oscilem distribuindo melhor a energia. Ou, de modo mais simples, isso pode acontecer se o buraco negro bambolear como um pião que perde velocidade.
As simulações realizadas por Diego Falceta-Gonçalves, da Universidade Cruzeiro do Sul (Unicsul), em São Paulo, produziram resultados similares aos observados na natureza quando o ângulo de variação do eixo era grande: 60 graus. No artigo do Astrophysical Journal Letters em que apresentaram os resultados no início de 2010, os pesquisadores explicam: como os jatos oscilam com o tempo, a energia liberada é aproximadamente igual em todas as direções. Mas essa pode não ser a única explicação.
Em meados de 2008, Elisabete Dal Pino visitava a Universidade de Wisconsin em Madison, nos Estados Unidos, quando o astrônomo americano John Gallagher mostrou a ela um resultado que havia acabado de obter e nem sequer havia publicado. Gallagher e seu grupo tinham feito medições dos filamentos de gás que existem ao redor da NGC 1275. “Ele ficou intrigado porque eles obtiveram mapas das velocidades dos filamentos e perceberam que alguns deles estavam se afastando da galáxia, e não se aproximando, como seria o esperado”, conta a astrofísica.
O resultado, publicado no ano seguinte na Nature, era uma medição inesperada. Indicava que alguma força estava contrabalançando a gravidade e empurrando o gás para fora da NGC 1275. Além disso, forças magnéticas faziam os filamentos arquear. Era pouco provável que o núcleo galáctico ativo, por mais poderoso que fosse, estivesse produzindo o fenômeno sozinho. O que estaria acontecendo?
“Foi aí que eu tive a ideia das supernovas”, diz a pesquisadora brasileira. Supernova é o nome que se dá a uma estrela com massa muito elevada que consumiu todo o seu combustível e explodiu. É um dos eventos mais energéticos do Universo. Uma série de supernovas poderia explicar o formato dos filamentos ao redor da galáxia central do aglomerado. O único problema é que supernovas recentes implicam formação estelar recente. E uma galáxia como a NGC 1275 não tem mais matéria-prima para fabricar estrelas com massa elevada.
Em outra série de simulações, dessa vez em parceria com John Gallagher e Alex Lazarian, ambos de Wisconsin, Falceta-Gonçalves e Elisabete mostraram que o gás em queda proveniente das galáxias vizinhas poderia produzir uma onda de choque na superfície da NGC 1275 e gerar um súbito episódio de formação estelar. Estrelas com muita massa queimam seu combustível mais rapidamente do que astros menores como o Sol, que precisam de bilhões de anos para esgotá-lo. Por isso, poderia haver uma onda de explosões de supernovas uns poucos milhões de anos após o processo de formação estelar.
Com auxílio de computadores, os pesquisadores reproduziram o que acontecia 120 milhões de anos, após o nascimento das estrelas. O trabalho, também publicado no Astrophysical Journal Letters, indicou que a interação da radiação emitida pelo núcleo galáctico ativo com as turbulências geradas pelas supernovas produz um padrão de filamentos muito parecido com o observado ao redor da NGC 1275. “Cada simulação, em resolução máxima, de 100 milhões de pixels, demora cerca de 20 dias para ser completada”, conta Falceta-Gonçalves, que conduziu a maior parte dos testes e é o primeiro autor dos artigos.
Esses trabalhos apresentam, sem dúvida, explicações plausíveis para os mistérios da NGC 1275. Mas como saber qual é a real causa da distribuição homo­gênea de temperatura do gás e dos filamentos observados ao redor da galáxia? Uma das formas de comprovar essas explicações seria procurar, com o auxílio de telescópios, sinais deixados por estrelas com massa muito elevada e por supernovas nas regiões mais externas da NGC 1275. Outra estratégia, mais ao alcance da equipe brasileira, é realizar novas simulações,  dessa vez combinando o efeito da precessão do núcleo galáctico ativo com a  explosão das supernovas nas bordas da galáxia e verificar o que acontece.
De toda forma, já se avançou um pouco mais na compreensão da dinâmica de aglomerados de galáxias como o de Perseu e, por extensão, do aglomerado do qual faz parte a Via Láctea. Esses tijolos do Universo, que numa escala maior se organizam em superaglomerados, ainda guardam muitos segredos. Mas, por sorte, os astrônomos não desistem facilmente.
Fonte: FAPESP (Pesquisa)

quinta-feira, 17 de junho de 2010

Visto objeto nos confins do sistema solar

Um grupo de astrônomos de vários países disse ter observado, pela primeira vez, um objeto gelado em órbita além de Netuno, nos confins do Sistema Solar. O objeto é conhecido como KBO 55636 (sigla para Kuiper Belt Object, Objeto do Cinturão de Kuiper) porque habita a região chamada Cinturão de Kuiper, onde estão agrupados milhares de objetos remanescentes do período em que se formou o Sistema Solar.
objeto do cinturão de kuiper
© NASA (KBO, concepção artística)
Os astrônomos sabiam da existência do KBO 55636 há vários anos, mas só puderam vê-lo porque ele passou na frente de uma estrela brilhante e refletiu sua luz. Liderados pelos Estados Unidos, cientistas de 18 observatórios espaciais em vários pontos do planeta participaram da busca.
Quando um corpo celeste esconde uma estrela ao passar em frente a ela no espaço, ocorre uma ocultação estelar. A equipe usou uma ocasião como essa para estudar o KBO 55636. A ocultação durou apenas dez segundos, mas foi suficiente para que eles determinassem o tamanho e a capacidade de reflexão do objeto.
O Cinturão de Kuiper ocupa uma região que fica além da órbita do planeta mais distante do Sistema Solar, Netuno. Ele é semelhante a um cinturão de asteroides, mas em vez de ser composto principalmente de rochas e metais, a maioria dos objetos que agrupa é feita de materiais voláteis (metano, amônia e água).
Até agora, especialistas conseguiram detectar mais de mil KBOs, mas eles acreditam que haja cerca de 70 mil deles. O autor principal do estudo, James Elliot, professor de astronomia planetária do Massachusetts Institute of Technology (MIT), em Massachusetts, nos Estados Unidos, disse à BBC que o KBO 55636 foi formado, provavelmente, como resultado de uma colisão espacial ocorrida há um bilhão de anos.
Ele disse que um planeta anão conhecido como Haumea pode ter sido atingido por outro objeto e o impacto teria levado a crosta gelada que cobria o Haumea a se partir em uma dúzia de pedaços menores, entre eles, o KBO 55636.
O Cinturão de Kuiper abriga pelo menos três planetas anões. Um deles é Plutão, o maior KBO de que se tem conhecimento. Para poder ver o KBO 55636 no exato momento em que passava em frente a uma estrela, foi necessário reunir uma equipe de 42 astrônomos de 18 observatórios na Austrália, África do Sul, México e Estados Unidos.
"Vínhamos calculando com precisão a posição do KBO há vários anos. Com uma órbita precisa, projetamos onde ele ia estar no céu e procuramos por estrelas que ele poderia ocultar", disse James Elliot. O cientista explicou que foi difícil prever exatamente onde o KBO iria passar.
Para maior segurança, a equipe pediu o auxílio de vários observatórios espaciais situados em uma faixa de 5.900 km da superfície da Terra. Esse trecho correspondia ao percurso que, os especialistas previam, seria percorrido pela sombra do corpo celeste.
De 18 telescópios apontados para o céu, apenas dois observatórios, ambos no Havaí, conseguiram detectar a ocultação estelar de dez segundos.
Usando a medida exata do tempo durante o qual a estrela ficou oculta e a velocidade da sobra do KBO se movendo pelo Havaí, os astrônomos puderam determinar o tamanho do objeto, cerca de 300 km de diametro, e a sua capacidade de refletir a luz.
Eles imaginavam que a superfície do KBO 55636 seria opaca, com pouca capacidade de reflexão por causa do acúmulo de poeira e bombardeios de raios cósmicos. "Descobrimos que esse objeto é muito menor do que achávamos e que tem bastante capacidade de reflexão, ele reflete a maior parte da luz que atinge sua superfície".
A superfície do objeto é provavelmente feita de gelo, como a superfície de Plutão. Mas não se sabe por que o índice de reflexão do KBO 55636 é tão alto. Talvez porque superfícies compostas de gelo sejam mais robustas e não se escureçam com o impacto de raios cósmicos e outras coisas que escurecem outras superfícies.
Fonte: Nature e BBC Brasil

Reencontrada a listra desaparecida de Júpiter

Novas imagens do telescópio Hubble confirmam que uma das listras de Júpiter que tinha desaparecido estava apenas encoberta por nuvens de amônia. A listra escura do planeta, que fica na região sul de Júpiter, havia desaparecido completamente em maio de 2010.
júpiter
© NASA/Hubble (listras em Júpiter)
No dia 7 de junho, o Hubble foi direcionado ao gigante gasoso para investigar um estranho objeto que teria se chocado contra o planeta sem deixar rastros, que foi identificado como sendo um meteoro.
Durante a observação, uma das câmeras do telescópio confirmou que eram nuvens de amônia, que ficam numa altitude maior que as escuras, encobrindo-as. Além disso, o Hubble registrou pontos escuros mais ao sul. Os cientistas acreditam que a faixa deve voltar a ficar totalmente visível em alguns meses.
"O cinto sul equatorial desapareceu pela última vez no início dos anos 70. Nós não fomos capazes de estudar esse fenômeno com esse nível de detalhe anteriormente", diz Amy Simon-Miller, da Nasa (agência espacial americana). "As mudanças dos últimos anos estão adicionando um extraordinário banco de dados sobre as dramáticas mudanças nas nuvens de Júpiter", afirma a cientista.
Fonte: NASA

quarta-feira, 16 de junho de 2010

Identificada luz misteriosa em Júpiter

Observando detalhadamente as imagens do telescópio espacial Hubble, astrônomos conseguiram uma explicação para a misteriosa luz vista em Júpiter no dia 3 de junho. Os cientistas acreditam que ela pode ser resultado de um meteoro gigante que queimou antes de chegar às nuvens mais altas do planeta, o que explicaria o fato de não haver nenhum sinal de destroços nas nuvens, como ocorreu em colisões anteriores no planeta.
impacto em júpiter
© NASA/Hubble (impacto de um meteoro em Júpiter)
Segundo a NASA (agência espacial americana), astrônomos de todo o mundo notaram que algo atingiu o planeta e produziu luz suficiente para que o fenômeno fosse visto da Terra, mas eles não sabiam o quão profundo o objeto penetrou no gigante gasoso. Desde então, eles empreenderam buscas por alguma pista nas nuvens de Júpiter.
No dia 7 de junho, o Hubble foi direcionado ao planeta e fez diversas observações, inclusive em ultravioleta, para tentar esclarecer o que e como atingiu Júpiter. Os registros não mostraram nenhum sinal de destroços nas nuvens mais altas. Segundo os cientistas, isso indica que o objeto não penetrou e explodiu dentro do gigante gasoso, o que teria deixado marcas visíveis ao ultravioleta.
Em 2009, um asteroide muito maior atingiu o planeta e criou uma grande explosão. De acordo com a NASA, como resultado do choque surgiu uma grande quantidade de poeira, que pôde ser vista, ao contrário do fenômeno ocorrido recentemente.
Fonte: NASA

sexta-feira, 11 de junho de 2010

Movimento de exoplaneta é registrado

O ESO (Observatório Europeu do Sul) afirma que astrônomos conseguiram pela primeira vez seguir o movimento de um exoplaneta (planeta que está fora do sistema solar), o Beta Pictoris b que é um gigante com nove vezes a massa de Júpiter. Segundo os cientistas, o astro tem a menor órbita já detectada em um exoplaneta ao redor de sua estrela, a Beta Pictoris.
estrela beta pictoris
© ESO (estrela Beta Pictoris e o exoplaneta)
Observações feitas em 2003 mostravam uma fraca fonte vinda de Beta Pictoris. Em 2008, essa fonte havia sumido e, em 2009, imagens mostravam que ele estava do outro lado do disco de poeira que cerca a estrela, o que confirmava que essa fonte era um exoplaneta que orbitava sua estrela.
A estrela Beta Pictoris é muito jovem (12 milhões de anos, três milésimos da idade do Sol), mas tem 75% mais massa que a nossa estrela. Os astrônomos acreditam que o planeta pode ter se formado de maneira semelhante aos gigantes do sistema solar. Os dados mostram ainda que planetas gigantes gasosos podem se formar em discos de gás e poeira em apenas alguns milhões de anos.
A estrela Beta Pictoris fica a 60 anos-luz da Terra e é um dos exemplos mais conhecidos de estrela rodeada por um disco de poeira e resíduos de matéria. Em observações anteriores foi observado uma deformação no disco, além de um disco secundário inclinado e cometas em rotas de colisão com a estrela.
"Estes eram sinais indiretos, mas indicativos da presença de um planeta de grande massa e as nossas novas observações demonstram este fato de forma definitiva. Uma vez que a estrela é muito jovem, os nossos resultados mostram que planetas gigantes podem formar-se nestes discos em escalas de tempo tão pequenas como alguns milhares de anos", diz Anne-Marie Lagrange, que liderou a equipe que fez as observações.
Fonte: ESO e Science

quinta-feira, 10 de junho de 2010

Estrela gigante é abatecida por uma menor

A administração do telescópio Chandra divulgou uma imagem do sistema binário de estrelas CH Cyg, que fica a 800 anos-luz da Terra e no qual uma anã branca é abastecida pelos ventos de uma gigante vermelha.
estrelas ch cyg
© Chandra/Hubble/VLA (sistema binário CH Cyg)
O vento na verdade é formado por partículas emanadas pela gigante vermelha. Essas partículas se acumulam e formam um disco antes de chegarem ao astro menor. Segundo os cientistas, o telescópio registrou um poderoso jato emanado pela estrela maior a uma velocidade de aproximadamente 4,8 milhões de km/h.
Os astrônomos afirmam que é a primeira vez que um jato desses é visto em raio-X tão detalhadamente nesse sistema, podendo, inclusive, ser distinguida a direção na qual gira o disco criado pelo vento da estrela.
Ainda de acordo com os cientistas, a extensão do jato chega a 750 unidades astronômicas (ou seja, 750 vezes a distância da Terra ao Sol, ou 20 vezes a da nossa estrela a Plutão). Os astrônomos acreditam que a qualidade da observação pode fazer com que ela seja utilizada como modelo para estudar a formação e propagação de jatos de partículas em sistemas estelares muito mais complexos e distantes que o nosso.
Fonte: Observatório Chandra