sábado, 6 de setembro de 2025

Erupções solares são mais quentes do que se pensava

Uma nova pesquisa propôs que as partículas das erupções solares são 6,5 vezes mais quentes do que se pensava e forneceu uma solução inesperada para um mistério com 50 anos sobre a nossa estrela mais próxima.

© Solar Dynamics Observatory (Sol)

As erupções solares são súbitas e enormes liberações de energia na atmosfera exterior do Sol que aquecem partes da mesma a mais de 10 milhões de graus. Estes eventos dramáticos aumentam consideravelmente os raios X solares e a radiação que chega à Terra e são perigosos para as naves espaciais e para os astronautas, além de afetarem a atmosfera superior do nosso planeta.

O plasma solar é constituído por íons e elétrons. A nova pesquisa argumenta que os íons das erupções solares, partículas de carga positiva que constituem metade do plasma, podem atingir mais de 60 milhões de graus. Analisando os dados de outras áreas de pesquisa, a equipe, liderada pelo Dr. Alexander Russell, professor de Teoria Solar da Escola de Matemática e Estatística da Universidade de St. Andrews, percebeu que é muito provável que as erupções solares aqueçam mais os íons do que os elétrons, durante a reconexão magnética. Esta parece ser uma lei universal e foi confirmada no espaço próximo da Terra, no vento solar e em simulações de computador. No entanto, até agora ninguém tinha relacionado o trabalho nesses campos com as erupções solares.

A física solar tem historicamente assumido que os íons e os elétrons devem ter a mesma temperatura. No entanto, ao refazer os cálculos com dados modernos, foi descoberto que as diferenças de temperatura entre íons e elétrons podem durar até dezenas de minutos em partes importantes das erupções solares, abrindo caminho para considerar pela primeira vez íons superquentes. A nova temperatura dos íons corresponde bem à largura das linhas espectrais das erupções, o que pode resolver um mistério astrofísico que se mantém há quase meio século.

Desde a década de 1970 que se coloca a questão de saber por que razão as linhas espectrais das erupções, que são aumentos brilhantes da radiação solar em "cores" específicas no ultravioleta extremo e em raios X, são mais largas do que o esperado. Historicamente, pensava-se que este fato só poderia ser devido a movimentos turbulentos, mas essa interpretação tem estado sob pressão à medida que os cientistas tentam identificar a natureza da turbulência. Após quase 50 anos, o novo trabalho defende uma mudança de paradigma em que a temperatura dos íons pode dar uma grande contribuição para explicar as enigmáticas larguras de linha nos espectros das erupções solares.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: University of St Andrews

O conflito interno de uma estrela antes da sua explosão

De acordo com um novo estudo do observatório de raios X Chandra da NASA, o interior de uma estrela "deu voltas" antes de explodir de forma espetacular.

© Chandra (Cassiopeia A)

Hoje, esta estrela estilhaçada, conhecida como o remanescente de supernova Cassiopeia A, é um dos objetos mais conhecidos e bem estudados do céu. No entanto, há mais de trezentos anos, era uma estrela gigante à beira da autodestruição.

O novo estudo do Chandra revela que, poucas horas antes de explodir, o interior da estrela reorganizou-se violentamente. Esta alteração de última hora do seu ventre estelar tem profundas implicações para a compreensão da forma como as estrelas massivas explodem e de como os seus remanescentes depois se comportam.

A Cassiopeia A (Cas A) foi um dos primeiros objetos que o telescópio espacial observou após o seu lançamento em 1999 e os astrônomos voltaram várias vezes para o observar. 

À medida que as estrelas massivas envelhecem, formam-se elementos cada vez mais pesados no seu interior, através de reações nucleares, criando camadas tipo cebola de diferentes elementos. A sua camada exterior é majoritariamente constituída por hidrogênio, seguida de camadas de hélio, carbono e elementos progressivamente mais pesados - estendendo-se até ao centro da estrela. Quando o ferro começa a formar-se no núcleo da estrela, o jogo muda. Assim que o núcleo de ferro cresce para além de uma certa massa (cerca de 1,4 vezes a massa do Sol), já não consegue suportar o seu próprio peso e colapsa. A parte exterior da estrela cai sobre o núcleo em colapso e rebenta como uma supernova de colapso do núcleo.

A nova observação com dados do Chandra revela uma mudança que ocorreu nas profundezas da estrela nos últimos momentos da sua vida. Depois de viver durante mais de um milhão de anos, Cas A sofreu grandes alterações nas suas últimas horas antes de explodir. Pouco antes da estrela Cas A entrar em colapso, parte de uma camada interna com grandes quantidades de silício viajou para o exterior e invadiu uma camada vizinha com muito neônio. Trata-se de um acontecimento violento em que a barreira entre estas duas camadas desaparece. Esta agitação não só fez com que o material rico em silício se deslocasse para o exterior, como também forçou o material rico em neônio se deslocar para o interior.

A sobrevivência destas regiões não só fornece evidências críticas das alterações interiores da estrela, como também mostra que a mistura completa do silício e do neônio com outros elementos não ocorreu imediatamente antes ou depois da explosão. Esta ausência de mistura é prevista por modelos computacionais detalhados de estrelas massivas perto do fim das suas vidas.

Há várias implicações significativas para este tumulto interno da estrela condenada. Primeiro, pode explicar diretamente a forma assimétrica, em vez de simétrica, do remanescente Cas A em três dimensões. Segundo, uma explosão assimétrica e um campo de detritos podem ter dado um poderoso pontapé ao núcleo remanescente da estrela, agora uma estrela de nêutrons, explicando a elevada velocidade observada deste objeto. Finalmente, os fortes fluxos turbulentos criados pelas mudanças internas da estrela podem ter promovido o desenvolvimento da onda de choque da supernova, facilitando a explosão da estrela.

Estes resultados foram publicados no periódico The Astrophysical Journal.

Fonte: Harvard–Smithsonian Center for Astrophysics

O complexo coração de uma borboleta cósmica

O telescópio espacial James Webb revelou novos pormenores do núcleo da Nebulosa Borboleta, catalogada como NGC 6302.

© Hubble / Webb (três imagens da Nebulosa Borboleta)

Este conjunto mostra três imagens da Nebulosa Borboleta. A primeira e a segunda das três imagens aqui apresentadas realçam a natureza bipolar da Nebulosa Borboleta no visível e no infravermelho próximo pelo telescópio espacial Hubble. A nova imagem do Webb, à direita, amplia o centro da Nebulosa Borboleta, proporcionando uma visão sem precedentes da sua complexa estrutura. Os dados do Webb são complementados com dados do ALMA.

Desde o toro denso e poeirento que rodeia a estrela escondida no centro da nebulosa até aos seus jatos, as observações do Webb revelam muitas novas descobertas que pintam um retrato nunca antes visto de uma nebulosa planetária dinâmica e estruturada.

A Nebulosa Borboleta, localizada a cerca de 3.400 anos-luz de distância na direção da constelação de Escorpião, é uma das nebulosas planetárias mais bem estudadas da nossa Galáxia. Esta espantosa nebulosa foi anteriormente fotografada pelo telescópio espacial Hubble. Agora, o Webb captou uma nova imagem desta nebulosa.

As nebulosas planetárias estão entre os objetos mais belos e mais elusivos do zoo cósmico. Estas nebulosas formam-se quando estrelas com massas entre 0,8 e 8 vezes a massa do Sol perdem a maior parte da sua massa no final das suas vidas. A fase de nebulosa planetária é efêmera, durando apenas cerca de 20.000 anos.

Ao contrário do que o nome indica, as nebulosas planetárias não têm nada a ver com planetas: a confusão de nomes começou há várias centenas de anos, quando os astrônomos referiram que estas nebulosas pareciam redondas, como os planetas. O nome pegou, apesar de muitas nebulosas planetárias não serem redondas de todo, e a Nebulosa Borboleta é um excelente exemplo das formas fantásticas que estas nebulosas podem assumir.

A NGC 6302 é uma nebulosa bipolar, o que significa que tem dois lóbulos que se estendem em direções opostas, formando as "asas" da borboleta. Uma banda escura de gás poeirento constitui o "corpo" da borboleta. Esta banda é na realidade um toro em forma de rosquinha que está sendo visto de lado, escondendo a estrela central da nebulosa, o núcleo antigo de uma estrela semelhante ao Sol que dá energia à nebulosa e a faz brilhar.

Esta nova imagem do Webb faz zoom até ao centro da Nebulosa Borboleta e até ao seu toro poeirento, proporcionando uma visão sem precedentes da sua complexa estrutura. A imagem utiliza dados do MIRI (Mid-InfraRed Instrument) do Webb, funcionando em modo de unidade de campo integral. Este modo combina uma câmara e um espectrógrafo para obter imagens em muitos comprimentos de onda diferentes simultaneamente, revelando como a aparência de um objeto muda com o comprimento de onda. As observações do Webb foram complementadas com dados do ALMA (Atacama Large Millimetre/submillimetre Array), uma poderosa rede de antenas de rádio. 

Os pesquisadores que analisaram estes dados do Webb identificaram cerca de 200 linhas espectrais, cada uma das quais contém informação sobre os átomos e as moléculas da nebulosa. Estas linhas revelam estruturas aninhadas e interligadas definidas por diferentes substâncias químicas. Foi identificada a posição da estrela central da Nebulosa Borboleta, que aquece uma nuvem de poeira anteriormente não detectada ao seu redor, fazendo com que esta brilhe intensamente nos comprimentos de onda do infravermelho médio a que o MIRI é sensível.

A localização da estrela central da nebulosa tem permanecido incerta até agora, porque a poeira que a envolve torna-a invisível em comprimentos de onda ópticos. As pesquisas anteriores para encontrar a estrela não tinham a combinação de sensibilidade infravermelha e resolução necessárias para detectar a nuvem de poeira quente que a obscurece. Com uma temperatura de 220.000 K, esta é uma das estrelas centrais mais quentes conhecidas numa nebulosa planetária da nossa Galáxia. Este motor estelar em chamas é responsável pelo brilho deslumbrante da nebulosa, mas o seu poder total pode ser canalizado pela densa banda de gás poeirento que a rodeia: o toro.

Os novos dados do Webb mostram que o toro é composto por silicatos cristalinos como o quartzo, bem como por grãos de poeira de forma irregular. Os grãos de poeira têm tamanhos da ordem de um milionésimo de metro. Fora do toro, a emissão de diferentes átomos e moléculas assume uma estrutura em várias camadas. Os íons que requerem a maior quantidade de energia para se formarem estão concentrados perto do centro, enquanto os que requerem menos energia encontram-se mais longe da estrela central.

O ferro e o níquel são particularmente interessantes, traçando um par de jatos que se projetam para fora da estrela em direções opostas. Curiosamente, a equipe também detectou luz emitida por moléculas à base de carbono conhecidas como hidrocarbonetos aromáticos policíclicos, ou HAPs. Estas moléculas formam estruturas planas em forma de anel, muito parecidas com as formas de favo de mel encontradas nas colmeias. Na Terra, é frequente encontrarmos HAPs na fumaça de fogueiras, no escape dos automóveis ou em pão torrado queimado. Dada a localização dos HAPs, suspeita-se que estas moléculas se formam quando uma "bolha" de vento da estrela central irrompe no gás que a rodeia. Esta pode ser a primeira evidência da formação de HAPs numa nebulosa planetária rica em oxigênio, fornecendo um importante vislumbre dos detalhes da formação destas moléculas.

Os resultados foram publicados no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: ESA

quarta-feira, 3 de setembro de 2025

Descoberto exoplaneta situado num anel em formação

Astrônomos descobriram, pela primeira vez, um exoplaneta que abriu uma lacuna no disco protoplanetário em torno da sua estrela.

© ESO / VLT (exoplaneta WISPIT 2b)

Esta observação rara fornece novos conhecimentos sobre a forma como os jovens planetas moldam o seu ambiente. Ao longo da última década, os avanços na astronomia observacional revolucionaram o estudo das regiões em torno de estrelas jovens onde os planetas nascem.

Foram captadas centenas de imagens de alta resolução de discos em formação planetária, muitos dos quais mostram estruturas como anéis e braços em espiral, características que se pensa indicarem a formação de planetas. No entanto, desde a descoberta do sistema planetário PDS 70 em 2018 que nenhum outro planeta embebido tinha sido confirmado. Os astrônomos têm andado à procura de um sistema semelhante ao longo dos últimos sete anos.

A equipe encontrou agora um planeta deste tipo através de um programa de investigação chamado WISPIT (WIde Separation Planets In Time), utilizando o instrumento SPHERE montado no VLT (Very Large Telescope) do ESO no Chile. O sistema recém-descoberto foi batizado de WISPIT 2 e o planeta de WISPIT 2b.

Espera-se que este sistema tenha um grande impacto na comunidade de formação de planetas e que sirva de referência para modelos de formação planetária e interações disco-planeta nos próximos anos. Compreender como os planetas se formam é uma questão fundamental em astronomia. Sabemos que se formam num disco em torno de uma estrela jovem. De acordo com a teoria principal, um planeta começa por construir um núcleo e depois abre caminho no disco, puxando gás e poeira sob a sua própria gravidade. 

Até à data, os astrônomos confirmaram a existência de cerca de 6.000 planetas e centenas de discos, mas apenas um sistema mostrava planetas ainda embebidos no seu disco: PDS 70, que contém dois planetas dentro de uma grande lacuna interior. Duas observações coronográficas de banda-H com o VLT/SPHERE (cada uma com uma duração inferior a cinco minutos e obtidas com um ano de intervalo) revelaram um disco em torno desta estrela. 

Suspeitou-se que poderia haver um planeta no interior da divisão interior, e foram efetuadas observações de acompanhamento com o SPHERE, tanto em luz polarizada como não polarizada, para estudar o disco e eventuais planetas embebidos. O sistema também foi observado em luz H-alfa, um comprimento de onda óptico específico usado para detectar gás hidrogênio caindo sobre um planeta. A detecção de um planeta nesta banda estreita indica que está ativamente acretando gás e poeira.

Estas observações de acompanhamento forneceram fortes evidências da existência de WISPIT 2b. Uma reanálise das imagens originais também revelou o planeta, permitindo à equipe seguir parte da sua órbita.

Dois artigos científicos foram publicados no periódico The Astrophysical Journal Letters.

Fonte: University of Arizona

terça-feira, 26 de agosto de 2025

Estrutura poeirenta explica o desaparecimento de uma estrela distante

As estrelas morrem e desaparecem de vista a toda a hora, mas os astrônomos ficaram intrigados quando uma estrela que se tinha mantido estável durante mais de uma década quase desapareceu durante oito meses.

© ChatGPT 5 (ilustração do sistema ASASSN-24fw)

Entre o final de 2024 e o início de 2025, uma estrela da nossa Galáxia, designada por ASASSN-24fw, diminuiu o seu brilho em cerca de 97%, antes de aumentar novamente. Desde então, os cientistas têm vindo a trocar teorias sobre o que estará por detrás deste acontecimento raro. A ASASSN-24fw é uma estrela de classe F, uma estrela um pouco mais massiva do que o nosso Sol e com cerca do dobro do tamanho, e está localizada a cerca de 3.000 anos-luz da Terra.

Agora, uma equipe internacional liderada por cientistas da Universidade do Estado do Ohio, EUA, poderá ter encontrado uma resposta para o mistério. Num novo estudo, os astrônomos sugerem que, uma vez que a cor da luz da estrela permaneceu inalterada durante o seu escurecimento, o evento não foi causado por uma qualquer evolução da estrela, mas sim por uma grande nuvem de poeira e gás em torno da estrela que ocultou a visão da Terra.

Os pesquisadores estimam que a nuvem em forma de disco que a rodeia tem cerca de 1,3 unidades astronômicas (UA) de diâmetro, uma distância ainda maior do que a que separa o Sol do nosso planeta (1 UA é a distância entre o centro da Terra e o centro do Sol).

Este disco também é provavelmente constituído por grandes aglomerados de carbono ou água gelada, com dimensões próximas das de um grande grão de poeira encontrado na Terra. Este material é suficientemente semelhante aos discos de formação planetária para que o seu estudo possa fornecer novos conhecimentos sobre a formação e evolução estelar.

No entanto, estas descobertas por si só não explicam todas as anomalias do sistema. Ao invés, os pesquisadores pensam que uma estrela menor e mais fria pode também orbitar ASASSN-24fw, o que faria dele um sistema binário oculto. A segunda estrela, que é muito mais fraca e menos massiva, pode estar provocando as mudanças na geometria que levam aos eclipses.

O sistema foi descoberto no âmbito do projeto ASAS-SN (All-Sky Automated Survey for Supernovae), uma rede de pequenos telescópios que monitoram todo o céu noturno visível. Desde a sua criação, há mais de uma década, que o ASAS-SN já recolheu cerca de 14 milhões de imagens do cosmos.

De acordo com a equipe, o sistema ASASSN-24fw deverá passar por um eclipse aproximadamente a cada 43,8 anos, sendo que o próximo só deverá ocorrer por volta de 2068. Serão utilizados telescópios maiores, como o telescópio espacial James Webb e o LBT (Large Binocular Telescope), para fazer observações mais completas do sistema à medida que este regressa ao brilho total.

Um artigo foi publicado no periódico The Open Journal of Astrophysics.

Fonte: The Ohio State University

A evolução de uma estrela moribunda durante mais de um século

Pela primeira vez, os cientistas seguiram diretamente a lenta transformação de uma estrela moribunda ao longo de mais de um século, revelando que está aquecendo mais depressa do que qualquer outra estrela típica alguma vez observada.

© Hubble (IC 418)

A imagem acima mostra a nebulosa planetária IC 418 em cores falsas, obtida pelo telescópio espacial Hubble em 1999.

A pesquisa rastreia 130 anos de mudanças na nebulosa planetária IC 418, uma concha brilhante de gás e poeira expelida por uma estrela moribunda a cerca de 4.000 anos-luz da Terra.

Reunindo observações que remontam a 1893, quando os astrônomos registaram pela primeira vez a nebulosa através de um telescópio, até aos dias de hoje, os cientistas descobriram que a característica luz verde da nebulosa, emitida pelos átomos de oxigênio, se tornou cerca de 2,5 vezes mais forte desde que os astrônomos vitorianos a estudaram pela primeira vez.

Esta mudança está sendo impulsionada pela subida da temperatura da estrela central, que aumentou cerca de 3.000° C desde 1893, ou seja, aproximadamente 1.000° C a cada 40 anos. Para comparação, o Sol aumentou o mesmo valor durante a sua formação, mas demorou 10 milhões de anos a fazê-lo.

No entanto, embora a estrela esteja aquecendo mais depressa, continua sendo mais lentamente do que os modelos mais recentes previam. Isto desafia as teorias atuais sobre a forma como as estrelas envelhecem e morrem, e pode forçar os astrônomos a repensar as massas das estrelas capazes de produzir carbono.

Uma nebulosa planetária assinala uma das fases finais da vida de uma estrela. À medida que o núcleo da estrela se torna instável, libera as suas camadas exteriores para o espaço. O núcleo remanescente aquece rapidamente, energizando o gás e a poeira circundantes para formar belas estruturas. No caso de IC 418, isto cria uma estrutura intrincada e rodopiante, que lhe valeu a alcunha de "Nebulosa do Espirógrafo". O nosso Sol terá o mesmo destino daqui a cerca de 5 bilhões de anos.

Ao passo que as nebulosas planetárias normalmente evoluem de forma lenta, os pesquisadores descobriram que IC 418 está evoluindo depressa o suficiente para ser seguida durante uma vida humana. Isto faz com que seja a transformação mais prolongada e rápida alguma vez registada numa nebulosa planetária, e possivelmente em qualquer estrela.

Os astrônomos verificaram, calibraram e combinaram os dados antes de os compararem com modelos detalhados de evolução estelar. Isto permitiu-lhes medir o ritmo de aquecimento da estrela, determinar a sua massa atual e até estimar a massa da estrela antes de começar a sua transformação.

As descobertas oferecem uma visão rara de como as nebulosas planetárias evoluem e sugerem que o céu noturno pode mudar muito mais depressa do que normalmente pensamos.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: The University of Manchester