Mostrando postagens com marcador Cometas. Mostrar todas as postagens
Mostrando postagens com marcador Cometas. Mostrar todas as postagens

sábado, 9 de setembro de 2023

A passagem do cometa Nishimura

O cometa Nishimura está contornando o Sol com velocidade de 70 Km/s.


© Peter Kennett (cometa Nishimura)

O astrônomo amador japonês Hideo Nishimura fez uma descoberta, no dia 11 de agosto deste ano, ao detectar um objeto brilhante nas proximidades do Sol.

Este objeto, anteriormente invisível devido ao brilho do Sol, revelou-se como um cometa completamente novo e brilhante. Em 15 de agosto, o Minor Planet Center confirmou oficialmente a descoberta e nomeou o cometa como C/2023 P1 (Nishimura). 

O cometa Nishimura tem um período orbital estimado em 334 anos, segundo os dados do Jet Propulsion Laboratory (JPL) da NASA. O cometa tem atualmente uma magnitude de 4,5. Ele está se tornando gradualmente mais brilhante. Sua cauda crescente agora tem quase 8 minutos de arco de comprimento. 

O cometa Nishimura está atualmente na constelação de Leão, entre as órbitas de Mercúrio e Vênus, seu nascente ocorre às 6h02 e a 20° do Sol que aparece às 6h20. O cometa aparecerá muito baixo no céu ao amanhecer até o final do mês, visível com binóculos e dependendo das condições até a olho nu

Em 2 de setembro, o astrofotógrafo Gerald Rhemann obteve uma imagem da desconexão de cauda do cometa devido ao vento solar forte, quando uma Ejeção de Massa Coronal atingiu o cometa, provavelmente oriunda da mancha solar ativa AR3413.


© Gerald Rhemann (desconexão de cauda do cometa Nishimura)

Em 13 de setembro, o cometa atingirá a maior aproximação à Terra, a uma distância de 0,85 UA (128 milhões de quilômetros) e magnitude 3,6. Em 17 de setembro, o C/2023 P1 (Nishimura) atingirá seu periélio, o ponto mais próximo do Sol, a uma distância de cerca de 0,2 UA (30 milhões de quilômetros). Neste momento, ele estará a 12º do Sol e atingirá seu brilho máximo, podendo chegar a uma magnitude 2,7.

No entanto, sua proximidade com o Sol no céu pode tornar a observação desafiadora. Em geral, um objeto celeste com uma magnitude aparente menor que aproximadamente 6,0 é considerado visível a olho nu em condições de céu escuro e limpo. Quanto menor o valor da magnitude aparente, mais brilhante o objeto. 

Cálculos recentes sugerem que este cometa pode ser periódico. Cometas que fazem sua primeira passagem pelo Sol têm maior probabilidade estatística de se desintegrar, mas cada passagem subsequente ao periélio torna o núcleo do cometa mais robusto. Assim, o C/2023 P1 tem uma melhor chance de sobreviver às futuras passagens próximas ao Sol. 

Para encontrar o cometa no céu, aplicativos de observação de estrelas como Star Walk 2 e Sky Tonight, ou ainda programas como Stellarium e Cartes du Ciel podem ser úteis. 

O cometa C/2023 P1 (Nishimura) pode estar relacionado à chuva de meteoros Sigma Hydrids, que está ativa de 22 de novembro a 18 de janeiro (com pico por volta de 30 de novembro). 

Fonte: Cosmo Novas

sexta-feira, 28 de abril de 2023

Um asteroide possui cauda que não é constituída de poeira

Um asteroide estranho acaba de ficar um pouco mais estranho.

© NASA / JPL-Caltech (ilustração do asteroide Faetonte)

Há já algum tempo que sabemos que o asteroide 3200 Phaethon (Faetonte) atua como um cometa. Brilha e forma uma cauda quando se aproxima do Sol e é a fonte da chuva anual de meteoros das Gemínidas, apesar de os cometas serem responsáveis pela maioria das chuvas de meteoros. 

Os cientistas atribuíram o comportamento tipo-cometa de Faetonte à poeira que escapa do asteroide quando este é "queimado" pelo Sol. No entanto, um novo estudo utilizando dois observatórios solares da NASA revela que a cauda de Faetonte não é de todo poeirenta, mas sim constituída pelo gás sódio. 

Os asteroides, que são majoritariamente rochosos, não costumam formar caudas quando se aproximam do Sol. Os cometas, no entanto, são uma mistura de gelo e rocha, e normalmente formam caudas quando o Sol vaporiza o seu gelo, liberando material das suas superfícies e deixando um rasto ao longo das suas órbitas. Quando a Terra passa por um rasto de detritos, estes pedaços de cometas ardem na nossa atmosfera e produzem um enxame de estrelas cadentes, ou seja, uma chuva de meteoros. 

Depois de os astrônomos terem descoberto Faetonte em 1983, perceberam-se que a órbita do asteroide coincidia com a dos meteoros das Gemínidas. Este fato apontou para Faetonte como a fonte da chuva de meteoros anual, apesar de Faetonte ser um asteroide e não um cometa. 

Em 2009, a sonda STEREO (Solar Terrestrial Relations Observatory) da NASA detectou uma pequena cauda que se estendia de Faetonte quando o asteroide atingiu periélio, o ponto mais próximo do Sol, ao longo da sua órbita de 524 dias. Os telescópios normais não tinham visto a cauda antes, porque esta só se forma quando Faetonte está demasiado perto do Sol para ser observada, exceto pelos observatórios solares. A STEREO também viu a cauda de Faetonte desenvolver-se em aproximações solares posteriores, em 2012 e 2016. 

O aparecimento da cauda apoiou a ideia de que a poeira estava escapando da superfície do asteroide quando aquecido pelo Sol. No entanto, em 2018, outra missão solar captou imagens de parte do rasto de detritos das Gemínidas e encontrou uma surpresa. As observações da Parker Solar Probe da NASA mostraram que o rasto continha muito mais material do que aquele que Faetonte poderia ter liberado durante as suas aproximações ao Sol. 

Os cometas brilham frequentemente devido à emissão do sódio quando estão muito perto do Sol, por isso suspeitou-se que o sódio poderia também desempenhar um papel fundamental no brilho de Faetonte. Um estudo anterior, baseado em modelos e testes laboratoriais, sugeriu que o calor intenso do Sol durante as aproximações solares de Faetonte poderia vaporizar o sódio dentro do asteroide e conduzir a uma atividade semelhante à de um cometa. 

No último periélio de Faetonte, em 2022 foi utilizada a sonda SOHO (Solar and Heliospheric Observatory) que possui filtros de cor capazes de detectar sódio e poeira. A equipe também pesquisou imagens de arquivo da STEREO e da SOHO, encontrando a cauda durante 18 das aproximações solares de Faetonte entre 1997 e 2022. Nas observações da SOHO, a cauda do asteroide apareceu brilhante no filtro que detecta o sódio, mas não apareceu no filtro que detecta a poeira. Além disso, a forma da cauda e a maneira como brilhou quando Faetonte passou pelo Sol correspondem exatamente como se fosse feita de sódio, mas não se fosse constituída por poeira.

Será que alguns dos cometas descobertos pela SOHO e por cientistas cidadãos que estudam as imagens da SOHO no âmbito do projeto Sungrazer, nem serão cometas? Ainda assim, resta uma questão importante: se Faetonte não libera muita poeira, como é que o asteroide fornece o material para a chuva de meteoros das Gemínidas que vemos todos os anos em dezembro? 

Os astrônomos suspeitam que algum tipo de acontecimento perturbador ocorrido há alguns milhares de anos - talvez um pedaço do asteroide que se partiu sob o stress da rotação de Faetonte - fez com que ele ejetasse os bilhões de toneladas de material que se estima constituírem a corrente de detritos das Gemínidas. Mas exatamente que acontecimento foi este permanece um mistério. Mais respostas poderão vir de uma futura missão da JAXA (Japan Aerospace Exploration Agency) chamada DESTINY+ (Demonstration and Experiment of Space Technology for INterplanetary voYage with Phaethon fLyby and dUst Science). No final desta década, espera-se que a nave espacial DESTINY+ passe por Faetonte, capte imagens da sua superfície rochosa e estude qualquer poeira que possa existir à volta deste asteroide enigmático. 

Um artigo foi publicado no periódico The Planetary Science Journal

Fonte: ESA

sexta-feira, 24 de março de 2023

Uma explicação para a estranha órbita do cometa interestelar 'Oumuamua

Em 2017, um misterioso cometa chamado 'Oumuamua despertou a imaginação tanto dos cientistas como do público em geral.

© STScI (ilustração do cometa interestelar 'Oumuamua)

Foi o primeiro visitante conhecido de fora do nosso Sistema Solar, não tinha coma ou cauda de poeira brilhante, como a maioria dos cometas, e uma forma peculiar - algo entre um charuto e uma panqueca - e o seu pequeno tamanho era mais adequado a um asteroide do que a um cometa.

Mas o fato de estar se afastando cada vez mais depressa do Sol, evidenciou um comportamento estranho. Agora, a astroquímica Jennifer Bergner, da Universidade da Califórnia em Berkeley e o astrônomo Darryl Seligman, da Universidade de Cornell argumentam que o misterioso comportamento do cometa, ao invés de ter um percurso hiperbólico em torno do Sol, pode ser explicado por um mecanismo físico simples, provavelmente comum entre muitos cometas gelados: a liberação de hidrogênio à medida que o cometa aquecia à luz do Sol.

O que tornou 'Oumuamua diferente de todos os outros cometas bem estudados no nosso Sistema Solar foi o seu tamanho: era tão pequeno que a sua deflexão gravitacional em torno do Sol foi apenas ligeiramente alterada quando o hidrogênio gasoso foi liberado do gelo.

A maioria dos cometas são essencialmente bolas de neve sujas que periodicamente se aproximam do Sol a partir do Sistema Solar exterior. Quando aquecido pela luz solar, um cometa ejeta água e outras moléculas, produzindo um halo ou coma brilhante à sua volta e muitas vezes caudas de gás e poeira. Os gases ejetados atuam como uma espécie de propulsor de uma nave espacial para dar ao cometa um pequeno pontapé que altera a sua trajetória ligeiramente em relação às órbitas elípticas típicas de outros objetos do Sistema Solar, tais como asteroides e planetas. 

Quando foi descoberto, 'Oumuamua não tinha coma ou cauda, era demasiado pequeno e estava demasiado afastado do Sol para capturar energia suficiente para ejetar muita água, o que levou os astrônomos a especular intensamente acerca da sua composição e do que o estava empurrando para longe.

Um cometa que viaja através do meio interestelar está basicamente sendo "cozinhado" pela radiação cósmica, como resultado formando hidrogênio. O pensamento dos pesquisadores foi: se isto estivesse acontecendo, poderia realmente aprisioná-lo no corpo, de modo a que quando entrasse no Sistema Solar e fosse aquecido, o hidrogênio fosse libertado? Poderá isso produzir quantitativamente a força de que necessita para explicar a aceleração não-gravitacional?

Surpreendentemente, descobriu que investigações experimentais publicadas nas décadas de 1970, 1980 e 1990 demonstraram que quando o gelo é atingido por partículas altamente energéticas semelhantes aos raios cósmicos, é abundantemente produzido hidrogênio molecular (H2) e aprisionado no interior do gelo. Realmente, os raios cósmicos podem penetrar dezenas de metros no gelo, convertendo um-quarto ou mais da água em hidrogênio gasoso.

Para um cometa com vários quilômetros em diâmetro, a emissão de gases seria de uma concha realmente fina em relação à maior parte do objeto, portanto, em termos de composição como em termos de qualquer aceleração, não se esperaria necessariamente que isso fosse um efeito detectável. 

Pensa-se que o cometa, ligeiramente avermelhado, tinha cerca de 115 por 111 por 19 metros em tamanho. Embora as dimensões relativas fossem bastante precisas, os astrônomos não podiam ter a certeza do tamanho real porque era demasiado pequeno e estava demasiado distante para que os telescópios o resolvessem. O tamanho tinha de ser estimado a partir do brilho do cometa e da forma como o brilho mudava à medida que o cometa girava.

Até à data, todos os cometas observados no nosso Sistema Solar - os cometas de curto período, originários da cinturão de Kuiper e os cometas de longo período, da mais distante nuvem de Oort - variam entre cerca de 1 a muitos quilômetros. 

Os cometas são rochas geladas que sobraram da formação do Sistema Solar, há 4,5 bilhões de anos. Os cometas interestelares também podem fornecer pistas sobre as condições em torno de outras estrelas rodeadas por discos de formação planetária. Os cometas preservam um instantâneo de como o Sistema Solar era quando tinha o seu disco protoplanetário. O estudo destes astros é uma maneira de olhar para trás e de ver como o Sistema Solar era na fase inicial de formação. Os sistemas planetários distantes também parecem ter cometas e muitos são susceptíveis de serem ejetados devido a interações gravitacionais com outros objetos do sistema. Alguns destes cometas fugitivos podem, ocasionalmente, entrar no nosso Sistema Solar, proporcionando uma oportunidade de aprender mais sobre a formação exoplanetária. 

Os cometas e os asteroides do Sistema Solar ensinaram-nos, sem dúvida, mais sobre a formação planetária do que aprendemos com os próprios planetas. Os cometas interestelares poderiam indiscutivelmente dizer-nos mais sobre os exoplanetas. 

No dia 19 de outubro de 2017, na ilha de Maui, os astrônomos utilizando o telescópio Pan-STARRS1, operado pelo Instituto de Astronomia da Universidade do Havaí, repararam primeiro no que pensavam ser ou um cometa ou um asteroide. Quando perceberam que a sua órbita inclinada e alta velocidade - 87 km/s - implicava que vinha de fora do nosso Sistema Solar, deram-lhe o nome 1I/'Oumuamua, havaiano para "mensageiro de longe que chega primeiro". Foi o primeiro objeto interestelar, sem contar com os grãos de poeira, alguma vez visto no nosso Sistema Solar. Um segundo, 2I/Borisov, foi descoberto em 2019, embora parecesse e se comportasse mais como um cometa típico. 

Os astrónomos também notaram uma ligeira aceleração, para longe do Sol, maior do que a vista para os asteroides e mais característica dos cometas. Quando os cometas se aproximam do Sol, a água e os gases expelidos da superfície criam uma cabeleira brilhante e gasosa e liberam poeira no processo. Tipicamente, a poeira deixada no rastro do cometa torna-se visível como uma cauda, enquanto o vapor e a poeira empurrados pela leve pressão dos raios solares produzem uma segunda cauda que aponta para longe do Sol, mais um pequeno empurrão inercial para fora. Outros compostos também podem ser liberados, tais como materiais orgânicos presos e monóxido de carbono. 

A origem da aceleração de 'Oumuamua deverá encerrar o debate acerca do cometa. Desde 2017, foram identificados outros seis pequenos cometas sem coma observável, mas com pequenas acelerações não gravitacionais, sugerindo que tais cometas "escuros" são comuns. Embora o H2 não seja provavelmente responsável pelas acelerações dos cometas escuros, juntamente com 'Oumuamua eles revelam que há muito a aprender sobre a natureza dos corpos pequenos do Sistema Solar. Um destes cometas escuros, o 1998 KY26, é o próximo alvo da missão japonesa Hayabusa2, que recentemente recolheu amostras do asteroide Ryugu. O 1998 KY26 era considerado um asteroide até ser identificado como um cometa escuro em dezembro.

A água é o componente mais abundante dos cometas no Sistema Solar e provavelmente também em outros sistemas exosolares. E se houver um cometa rico em água na nuvem de Oort ou for ejetado para o meio interestelar, deverá ser obtido gelo amorfo com bolhas de H2. Dado que o H2 deve formar-se em qualquer corpo rico em gelo exposto à radiação energética, os pesquisadores suspeitam que o mesmo mecanismo estaria funcionando nos cometas que se aproximam do Sol a partir da nuvem de Oort, no Sistema Solar exterior, onde os cometas são irradiados pelos raios cósmicos, de modo idêntico a um cometa interestelar.

Observações futuras da liberação de hidrogênio em cometas de longo período podem ser utilizadas para testar o cenário de formação e aprisionamento de H2. O LSST (Legacy Survey of Space and Time) do Observatório Vera Rubin deverá descobrir muitos mais cometas interestelares e escuros, permitindo aos astrônomos determinar se a liberação de hidrogênio é comum nos cometas.

Um artigo foi publicado na revista Nature

Fonte: University of California

quarta-feira, 1 de fevereiro de 2023

Cometa ZTF torna-se visível do Brasil

Deslumbrante cometa verde!

© J. F. Hernández (cometa 2022 E3 ZTF)

Os cometas são objetos feitos principalmente de gases congelados, rocha e poeira. Eles se tornam ativos à medida que se aproximam do Sol, ocorrendo sublimação, ou seja, fazendo com que seu gelo se transforme em gás. Neste processo forma-se uma nuvem ao redor do cometa conhecida como “coma”. O cometa C/2022 E3 (ZTF) foi visto inicialmente com uma coma esverdeada brilhante. 

O cometa C/2022 E3 (ZTF) foi descoberto em 2 de março de 2022 pelo programa Zwicky Transient Facility (ZTF), que opera o telescópio Samuel-Oschin de 48 polegadas no Observatório Palomar da Caltech, na Califórnia. O cometa inicialmente foi relatado como um candidato a asteroide. Uma noite depois, as fotografias do objeto efetuadas pelo observador japonês Hirohisa Sato revelaram uma pequena coma, mudando seu status para um cometa. Outros observadores confirmaram o relatório de Sato. Na época, o cometa tinha magnitude 17 e estava a quase 5 UA (Unidades Astronômicas) da Terra, quase idêntica à distância média de Júpiter ao Sol. O cometa tem um diâmetro relativamente pequeno, com cerca de 1 km e foi detectado ao passar pela órbita de Júpiter. 

Este refugiado da Nuvem de Oort - uma grande região contendo inúmeros detritos gelados e envolvendo o Sistema Solar - já é visível com binóculos e uma bela vista em telescópios modestos. Observadores com céus escuros, sem poluição luminosa e sem Lua podem até avistar vagamente o cometa a olho nu. As estimativas atuais de magnitude visual colocam o cometa C/2022 E3 (ZTF) com magnitude 5,5. 

O astrônomo amador e administrador do grupo do Facebook Comet Asteroid Meteor Watch, Jose Pablo Navarro, examinou 2.509 observações visuais e CCD do cometa do banco de dados do Minor Planet Center. Sua análise indica uma desaceleração recente na taxa de brilho do cometa, com um pico de brilho próximo à magnitude 6,0. 

As fotografias mostram uma impressionante coma verde-azulada, uma característica frequentemente vista em cometas que viajam para o interior do Sistema Solar. A luz solar ultravioleta (UV) ao aquecer o núcleo decompõe grandes moléculas orgânicas que gera compostos mais simples, incluindo o carbono diatômico (C2) de brilho verde. Em alguns dias, esta mesma luz energética destrói a molécula antes que ela tenha tempo de sair da coma, impedindo-a de viajar para a cauda do cometa e tingi-la de verde. Às vezes, esta tonalidade esverdeada é sutilmente visível em binóculos, mas normalmente é necessário um telescópio de 6 polegadas ou maior. 

A órbita do cometa é inclinada cerca de 109º em relação à eclíptica - a projeção sobre a esfera celeste da trajetória aparente do Sol observada a partir da Terra - e seu deslocamento é retrógrada em relação aos planetas. O periélio, a distância mais próxima do Sol, ocorreu em 12 de janeiro a 1,11 UA (166 milhões de quilômetros). 

Em 17 de janeiro, fortes ventos solares de uma ejeção de massa coronal causaram um evento de desconexão na cauda de íons do cometa, fazendo-a parecer quebrada. Em 22 de janeiro, uma anticauda tornou-se visível. A cauda parece estar apontando para o Sol e para longe do material de íons e poeira; isto parece ser causado por partículas situadas em um disco do plano orbital do cometa e, quando a Terra se alinha com este plano, parece uma cauda invertida, conforme visto na imagem abaixo.

 

© Dan Barllett (cometa 2022 E3 ZTF)

O perigeu, a distância mais próxima da Terra, ocorre hoje (1/2/2023), quando o cometa passará a 0,28 UA (42 milhões de quilômetros) daqui, passando a ser visível no Hemisfério Sul, porém pouco acessível. No Brasil, ele será visível apenas para moradores das regiões Norte e Nordeste. Como o cometa está se deslocando para o Sul, a cada noite fica mais favorável sua observação. 

Embora seu período orbital é de longo período, devido a perturbações dos planetas, o cometa agora está totalmente fora do Sistema Solar. Com base em elementos orbitais conhecidos em dezembro de 2022, a órbita do cometa era elíptica muito antes de se aproximar do Sistema Solar interno com uma excentricidade aproximada de 0,99920 e um semi-eixo maior aproximado de 1.400 UA, seu período orbital de aproximadamente 52.000 anos. Devido à atração gravitacional dos planetas, em particular devido às passagens relativamente próximas de Saturno e Júpiter, sua excentricidade orbital aumentará em cerca de 0,00080 (ignorando forças não gravitacionais) e ficará muito próxima de 1. Se o cometa ainda estará em órbita fechada ou deixará o Sistema Solar em uma órbita hiperbólica, não pode ser dito devido à atual incerteza dos dados.

Com o passar dos dias, o cometa será visto mais alto no céu e com mais tempo de visibilidade. Na noite do dia 4 de fevereiro, o cometa estará muito perto de uma estrela brilhante azulada chamada Capela, apontando para o Norte. No dia 10 de fevereiro, ele estará muito próximo de Marte, quando o cometa cruza cerca de 1,5° a nordeste do planeta, localizado na constelação de Touro. Ele estará visível em todo o Brasil, tente observá-lo logo após o poente, entre às 19 e 21 horas. Entre 13 a 15 de fevereiro, passará em frente ao aglomerado aberto Híades.

Veja outras informações em Dois cometas promissores.

Esperamos que o cometa C/2022 E3 (ZTF), mesmo se não for tão espetacular, forneça belas imagens. 

Fonte: Sky & Telescope

quinta-feira, 9 de setembro de 2021

Um possível cometa binário extinto na região próxima à Terra

Pesquisadores do Observatório Nacional (ON) podem ter identificado o primeiro núcleo de cometa binário extinto da história na região dos Objetos Próximos da Terra (NEOs, na sigla em inglês).

© NASA/JPL-Caltech (ilustração do asteroide binário 2017 YE5)

Trata-se do objeto 2017 YE5, que fez um encontro próximo com a Terra em junho de 2018, atingindo uma distância de cerca de 0,04 UA (unidades astronômicas), ou 6 milhões de quilômetros (cerca de 16 vezes a distância da Terra à Lua). 

O objeto foi descoberto em dezembro de 2017, mas nenhum detalhe sobre suas propriedades físicas e binaridade foram conhecidas até junho de 2018. Na passagem de 2018, os observatórios de radar do Arecibo, Green Bank e Goldstone identificaram que se tratava de um sistema binário. Mais precisamente, eles relataram que o 2017 YE5 é composto por dois corpos de aproximadamente 900 metros de diâmetro que orbitam um ao outro em torno de um centro de massa comum entre eles. 

Sistemas binários formados por componentes de tamanhos semelhantes são relativamente raros na região dos NEOs. O 2017 YE5 é um dos apenas quatro sistemas deste tipo conhecidos. Os outros três são 69230 Hermes, (190166) 2005 UP156 e 1994 CJ1. 

Durante a aparição de 2018, uma equipe de pesquisadores liderados pelo astrônomo do ON Filipe Monteiro realizou observações fotométricas do binário 2017 YE5 no Observatório Astronômico do Sertão de Itaparica (OASI), no Observatório Astronómico Nacional de San Pedro Martír (OAN-SPM, México) e no Blue Mountain Observatory (BMO, Austrália). Com os dados obtidos nos diferentes observatórios, foi possível realizar uma caracterização completa deste sistema binário incluindo: período orbital do sistema e o período rotacional dos componentes; os índices de cor (relacionados à composição superficial dos asteroides); densidade média; albedo (quantidade de radiação solar refletida) e tipo taxonômico (sistema de classificação de asteroides baseado na forma do espectro de reflectância e no albedo).

Os pesquisadores determinaram que o período orbital do sistema binário em torno do centro de massa comum é de cerca de 24 horas. No entanto, ao analisar possíveis períodos adicionais no sistema, os astrônomos verificaram que um dos objetos pode estar girando com um período de rotação de cerca de 15 horas: “Geralmente, esses sistemas com corpos de tamanho semelhantes estão totalmente sincronizados, o que significa que o período orbital é igual ao período de rotação dos corpos. Mas nesse sistema, um dos corpos parece não ter atingido a sincronização ainda. Uma das possibilidades é a de que o sistema seja relativamente recente e ainda não conseguiu atingir a sincronização completa,” explicou Monteiro. 

Além disso, não se descarta que os componentes deste sistema possam ter composições diferentes, o que tornaria o processo de sincronização mais longo devido à diferença entre as massas dos corpos. O estudo indica que o objeto possui uma superfície muito avermelhada, consistente com os asteroides do tipo D, um tipo primitivo de asteroide, rico em material orgânico e volátil. A densidade média do objeto é de cerca de 1g/cm³, o que sugere a presença de voláteis (por exemplo, gelos) no interior dos componentes do sistema.

Os índices de cor obtidos para 2017 YE5 também são típicos de cometas da família de Júpiter, o que ocorre porque a maioria dos núcleos destes cometas exibem características superficiais semelhantes aos asteroides primitivos do tipo D. Por fim, dados no infravermelho disponibilizados pelo projeto MIT-Hawai near-Earth object survey permitiram derivar um albedo de cerca de 3% para o binário 2017 YE5, consistente com os resultados encontrados na literatura para núcleos cometários.

“Por se tratar de um objeto que possui uma órbita típica de cometas da família de Júpiter, estas características indicam que o sistema 2017 YE5 é um possível núcleo cometário binário, cujo material volátil foi perdido ao longo de sua história ou está guardado em seu interior”, explicou Monteiro. 

Embora o objeto pareça um cometa extinto, já que não foi observado sublimação de gelo, ele foi classificado como dormente, pois, como mencionado, os componentes voláteis podem estar abaixo de uma camada de rocha. A descoberta de um objeto como este na região próxima da Terra reforça a existência de cometas extintos e dormentes entre os NEOs, o que é bastante relevante, inclusive para entender como o material volátil (inclusive a água) chegou até a Terra.

“É importante mencionar que diversos estudos têm apontado os cometas (e asteroides primitivos) como os principais fornecedores de material orgânico e volátil para Terra primitiva, o que pode ter ajudado a criar um ambiente capaz de gerar as primeiras formas de vida,” ressaltou Monteiro. 

Por fim, os pesquisadores concluíram que o binário 2017 YE5 parece ser um alvo plausível para uma missão espacial, pois pode fornecer detalhes sobre o conteúdo volátil e orgânico na região próxima à Terra, bem como fornecer pistas sobre diferenças nos processos de formação de sistemas binários. Uma missão de retorno de amostra a um asteroide como este proporcionaria um grande progresso na compreensão da história inicial do Sistema Solar e na pesquisa da origem da vida na Terra. Ademais, por ser um possível cometa dormente, é um alvo interessante para entender os estados finais dos cometas, ou para estudar os processos dinâmicos que movem os asteroides de órbitas asteroidais típicas para órbitas cometárias.

As investigações resultaram em um artigo intitulado “Physical characterization of equal-mass binary near-Earth asteroid 2017 YE5: a possible dormant Jupiter-family comet”, publicado em agosto de 2021 no periódico Monthly Notices of the Royal Astronomical Society

Veja outras informações: Revelada a existência de raro asteroide duplo.

Fonte: Observatório Nacional

sábado, 5 de dezembro de 2020

Gás veloz fluindo para longe de cinturão de asteroides de jovem estrela

Os astrônomos detectaram o gás monóxido de carbono em movimento rápido fluindo de uma estrela jovem de baixa massa: um estágio único na evolução planetária que pode fornecer uma visão sobre como o nosso próprio Sistema Solar evoluiu e sugere que a maneira como os sistemas se desenvolvem pode ser mais complicada do que se pensava.

© U. Cambridge (ilustração do sistema No Lup)

Embora não esteja claro como o gás está sendo expelido tão depressa, uma equipe de pesquisadores, liderada pela Universidade de Cambridge, pensa que pode ser produzido a partir de cometas gelados sendo vaporizados no cinturão de asteroides da estrela. 

A detecção foi feita com o ALMA (Atacama Large Millimetre/submillimetre Array) no Chile, como parte de um levantamento de estrelas jovens de 'classe III', relatado num artigo científico anterior. Algumas destas estrelas de classe III estão rodeadas por discos de detritos, que se pensa serem formados por colisões contínuas de cometas, asteroides e outros objetos sólidos, conhecidos como planetesimais, nos confins de sistemas planetários recentemente formados. 

Os remanescentes de poeira e detritos destas colisões absorvem a luz das suas estrelas centrais e irradiam esta energia como um brilho fraco que pode ser estudado com o ALMA.

Nas regiões internas dos sistemas planetários, espera-se que os processos de formação planetária resultem na perda de toda a poeira mais quente, e as estrelas da classe III são aquelas que ficam com, no máximo, poeira tênue e fria. Estes tênues cinturões de poeira fria são semelhantes aos discos de detritos vistos em torno de outras estrelas, idênticos ao Cinturão de Kuiper do Sistema Solar, que é conhecido por hospedar asteroides muito maiores e cometas. 

No levantamento, descobriu-se que a estrela em questão, NO Lup, que tem cerca de 70% da massa do nosso Sol, tem um disco empoeirado de baixa massa, mas é a única estrela da classe III onde foi detectado o gás monóxido de carbono, a primeira vez para este tipo de estrela jovem com o ALMA. 

Embora se saiba que muitas estrelas jovens ainda hospedam os discos formadores de planetas ricos em gás a partir dos quais nascem, o de NO Lup é mais evoluído, e seria de esperar que tivesse perdido este gás primordial após a formação dos seus planetas. 

A detecção do gás monóxido de carbono é rara, tornando a observação única da escala e da velocidade do gás, o que levou a um estudo de acompanhamento para explorar o seu movimento e origens. 

Este modelo mostrou que o gás é totalmente consistente com um cenário em que está sendo lançado para fora a cerca de 22 km/s, muito mais rápido do que qualquer velocidade orbital estável. Uma análise posterior também mostrou que o gás pode ser produzido durante as colisões entre asteroides, ou durante períodos de sublimação na superfície dos cometas da estrela, que devem ser ricos em monóxido de carbono gelado. 

Foram recolhidas recentemente evidências do mesmo processo no Sistema Solar com a missão New Horizons da NASA, quando observou o objeto Ultima Thule (ou Arrokoth) em 2019, do Cinturão de Kuiper, e encontrou a evolução de sublimação à superfície do corpo gelado, que teve lugar há cerca de 4,5 bilhões de anos. O mesmo evento que vaporizou cometas no Sistema Solar há bilhões de anos pode ter sido captado pela primeira vez a mais de 400 anos-luz de distância, num processo que pode ser comum em torno de estrelas formadoras de planetas, e que pode ter implicações na evolução de todos os cometas, asteroides e planetas.

Embora foi visto gás produzido por planetesimais em sistemas mais antigos, o ritmo de liberação no qual o gás está sendo produzido neste sistema e a sua natureza de fluxo são bastante notáveis, e apontam para uma fase de evolução do sistema planetário que é visto aqui pela primeira vez.

Os resultados foram aceitos para publicação no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: University of Cambridge

quarta-feira, 15 de janeiro de 2020

Revelada linha interestelar de um dos blocos de construção da vida

O fósforo, presente no nosso DNA e nas membranas celulares, é um elemento essencial à vida tal como a conhecemos. No entanto, o modo como este elemento chegou à Terra primordial ainda é um mistério.


© ESA/ESO (moléculas que contêm fósforo na formação estelar e no cometa 67P)

Com o auxílio do poder combinado do ALMA e da sonda Rosetta, da Agência Espacial Europeia (ESA), os astrônomos traçaram agora a jornada do fósforo, das regiões de formação estelar até os cometas. Este trabalho de pesquisa mostra, pela primeira vez, onde as moléculas que contêm fósforo se formam, como esse elemento é transportado em cometas e como uma molécula em particular pode ter desempenhado um papel crucial no início da vida em nosso planeta.

Os novos resultados do Atacama Large Millimeter/submillimeter Array (ALMA), do qual o Observatório Europeu do Sul (ESO) é parceiro, e do instrumento ROSINA a bordo da sonda espacial Rosetta da ESA, mostram que o monóxido de fósforo é uma peça chave no quebra-cabeça da origem da vida.

Com o auxílio do ALMA, que permitiu uma análise detalhada da região de formação estelar AFGL 5142, os astrônomos conseguiram localizar onde moléculas com fósforo, como o monóxido de fósforo, se formam.

Novas estrelas e sistemas planetários surgem em regiões semelhantes a nuvens de gás e poeira entre as estrelas, tornando essas nuvens interestelares os locais ideais para iniciar a busca pelos elementos essenciais da vida.

As observações do ALMA mostraram que moléculas que contêm fósforo são criadas quando estrelas massivas se formam. Correntes de gás emitidas pelas jovens estrelas massivas abrem cavidades nas nuvens interestelares e moléculas que contêm fósforo se formam nas paredes destas cavidades, através da ação combinada de choques e radiação da estrela bebê. Os astrônomos também mostraram que o monóxido de fósforo é a molécula portadora de fósforo mais abundante nas paredes das cavidades.

Depois de procurar com o ALMA esta molécula nas regiões de formação estelar, a equipe europeia passou a se concentrar em um objeto do Sistema Solar: o famoso cometa 67P/Churyumov-Gerasimenko. A ideia era seguir a trilha destes compostos contendo fósforo. Se as paredes da cavidade colapsarem para formar uma estrela, particularmente uma menos massiva como o Sol, o monóxido de fósforo pode congelar e ficar preso nos grãos de poeira gelados que permanecem em torno da nova estrela. Mesmo antes da estrela estar totalmente formada, estes grãos de poeira se juntam para formar seixos, rochas e, eventualmente, cometas, que se tornam transportadores de monóxido de fósforo.

A ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) colectou dados do 67P durante os dois anos em que Rosetta orbitou este cometa. Os astrônomos já tinham descoberto anteriormente traços de fósforo nos dados de ROSINA, mas não sabiam que molécula é que o teria transportado até lá.

Esta primeira observação de monóxido de fósforo num cometa ajuda os astrônomos a estabelecerem uma ligação entre as regiões de formação estelar, onde a molécula é criada, e a Terra.

Como muito provavelmente os cometas transportaram enormes quantidades de compostos orgânicos para a Terra, o monóxido de fósforo encontrado no cometa 67P poderá fortalecer a ligação entre cometas e a vida na Terra.

Leonardo Testi, astrônomo do ESO e gerente de operações do ALMA na Europa, conclui: “Compreender as nossas origens cósmicas, incluindo o quão comuns são as condições químicas favoráveis ao aparecimento de vida, é um tópico principal da astrofísica moderna. Enquanto o ESO e o ALMA se concentram nas observações de moléculas em sistemas planetários jovens distantes, a exploração direta do inventário químico dentro do nosso Sistema Solar se torna possível graças a missões da ESA, como Rosetta. A sinergia entre as principais instalações terrestres e espaciais do mundo, através da colaboração entre o ESO e a ESA, é um ativo poderoso para pesquisadores europeus e permite descobertas verdadeiramente transformadoras como a relatada neste artigo.”

Esta pesquisa foi apresentada em um artigo publicado na revista Monthly Notices of the Royal Astronomical Society.

Fonte: ESO

sábado, 14 de setembro de 2019

Novo visitante interestelar?

No último dia 30 de agosto foi descoberto o objeto GB00234 pelo astrônomo amador ucraniano Gennady Borisov, do Instituto Astronômico de Sternberg.


© Gennady Borisov (C/2019 Q4)

É possível que o objeto tenha origem interestelar, sendo o segundo a ser flagrado em visita ao nosso Sistema Solar. O primeiro objeto interestelar a ser detectado numa visita a nosso Sistema Solar foi o 1I/2017 U1 (‘Oumuamua). Após duas semanas de acompanhamento, esta é no momento a principal hipótese para explicar a presença do objeto catalogado como C/2019 Q4 (Borisov).

O C/2019 Q4 foi localizado a 3 UA do Sol (UA: unidade astronômica, é a distância média Terra-Sol, cerca de 150 milhões de km). Ele parece ser um objeto bastante grande, talvez cerca de 10 km ou mais de diâmetro, dependendo da refletividade de sua superfície. Ele está trafegando com velocidade de 30 km/s.

Ele deve atingir o periélio (máxima aproximação do Sol) ao redor de 7 de dezembro e passará meses ao alcance dos telescópios. Trata-se também de um objeto bem maior que o ‘Oumuamua, o que facilitará sua observação. A apromimação máxima da Terra ocorrerá em torno do dia 29 de dezembro.

O que diferencia o C/2019 Q4 de quase todos os outros cometas é a excentricidade de sua órbita. A excentricidade mede o quanto uma órbita se desvia de um círculo perfeito, que tem uma excentricidade de 0. Órbitas elípticas, típicas de planetas, asteroides e cometas, têm excentricidades entre 0 e 1. As parábolas são iguais a 1 e uma excentricidade maior que 1 indica uma órbita hiperbólica.

Para confirmar que ele é mesmo interestelar sua trajetória provavelmente será hiperbólica, mas ainda há a possibilidade da órbita ser parabólica, ou seja, o objeto estaria ligado gravitacionalmente ao Sol, vindo da nuvem de Oort, a camada mais externa de detritos do Sistema Solar. Com base nas observações atuais, a excentricidade do C/2019 Q4 é de cerca de 3,2, definitivamente hiperbólica. Objetos em órbitas hiperbólicas não estão ligados em uma órbita ao redor do nosso Sol.

Mas, o Minor Planet Center da IAU (União Astronômica Internacional), catalogou o objeto como sendo um cometa.

Diferentemente do ‘Oumuamua, que tinha atividade cometária muito discreta ou nula, o C/2019 Q4 se comporta como um cometa, ejetando gases conforme se aproxima do Sol. Provavelmente não em taxa suficiente para justificar a hipótese parabólica da órbita, mas mais do que bastante para classificá-lo como cometa. Contudo, se a hipótese interestelar se confirmar, ele deve ganhar a designação I, e passará a ser denominado 2I/2019 Q4.

O objeto veio da direção da constelação de Cassiopeia, próximo da constelação Perseu, e passará próximo à órbita de Marte no periélio, antes sair fora do Sistema Solar.

O ritmo de descobertas deve aumentar ainda mais com futuros projetos de varredura de céu inteiro agora em planejamento, como o Large Synoptic Survey Telescope (LSST), que deve começar a funcionar em 2022, no Chile.

Este objeto em particular está muito perto do Sol, por isso a janela de observação é pequena. Está muito baixo no céu, o que dificulta ainda mais as observações. E tem uma magnitude 18, ou seja, é demasiado tênue para ser visto a olho nu e só pode ser observado por telescópios de tamanho considerável.

Fonte: Sky & Telescope

sábado, 9 de fevereiro de 2019

Detectadas moléculas orgânicas em torno de estrela jovem

Astrônomos usando o ALMA (Atacama Large Millimeter/submillimeter Array) detectaram várias moléculas orgânicas complexas em torno da jovem estrela V883 Ori.


© ESO/ALMA (V883 Ori)

Uma explosão repentina da estrela está liberando moléculas dos compostos gelados situados no disco de formação planetária. A composição química do disco é semelhante à dos cometas no Sistema Solar moderno. As observações sensíveis do ALMA permitiram com que os cientistas reconstruíssem a evolução de moléculas orgânicas desde o nascimento do Sistema Solar até aos objetos que vemos hoje.

A equipe de pesquisa, liderada por Jeong-Eun Lee (Universidade de Kyung Hee, Coreia), usou o ALMA para detectar moléculas orgânicas complexas, incluindo metanol (CH3OH), acetona (CH3COCH3), acetaldeído (CH3CHO), formiato de metila (CH3OCHO) e acetonitrilo (CH3CN). Esta é a primeira vez que a acetona foi detectada sem ambiguidade numa região de formação planetária ou disco protoplanetário.

Várias moléculas estão congeladas em torno de partículas de poeira de tamanho microscópico nos discos protoplanetários. O surto repentino da V883 Ori está aquecendo o disco e sublimando o gelo, que libera as moléculas sob a forma de gás. A região, num disco, onde a temperatura atinge o ponto de sublimação das moléculas, tem o nome "linha de neve". Os raios das linhas de neve têm algumas UAs (Unidades Astronômicas) em torno de estrelas jovens normais, mas são ampliadas quase 10 vezes em torno de estrelas explosivas.

"É difícil fotografar um disco à escala de algumas UAs com os telescópios atuais," comentou Lee. "No entanto, em torno de uma estrela com comportamentos explosivos, o gelo derrete numa área mais ampla do disco e é mais fácil ver a distribuição das moléculas. Estamos interessados na distribuição das moléculas orgânicas complexas como blocos de construção da vida."

O gelo, incluindo moléculas orgânicas congeladas, pode estar intimamente relacionado com a origem da vida nos planetas. No nosso Sistema Solar, os cometas são o foco da atenção por causa dos seus ricos elementos gelados. Por exemplo, a lendária exploradora cometária, a sonda Rosetta da ESA, descobriu uma valiosa química orgânica em torno do cometa Churyumov-Gerasimenko. Pensa-se que os cometas se tenham formado nas regiões mais frias e exteriores do Sistema Solar primordial, onde as moléculas estavam contidas no gelo. O estudo da composição química do gelo nos discos protoplanetários está diretamente relacionado com o estudo das moléculas orgânicas nos cometas e com a origem dos elementos básicos da vida.

Graças à visão detalhada do ALMA e à mais larga linha de neve provocada pelo surto estelar, os astrônomos obtiveram a distribuição espacial do metanol e do acetaldeído. A distribuição destas moléculas tem uma estrutura semelhante a um anel com um raio de 60 UA, o equivalente ao dobro do tamanho da órbita de Netuno. Os pesquisadores supõem que dentro deste anel as moléculas são invisíveis porque são obscurecidas por material espesso e empoeirado, e são invisíveis fora deste raio porque estão incorporadas no gelo.

"Dado que os planetas rochosos e gelados são feitos de material sólido, a composição química dos sólidos nos discos é de especial importância. Estes surtos explosivos são oportunidades únicas de analisar sublimados frescos e, portanto, a composição dos sólidos," explicou Yuri Aikawa da Universidade de Tóquio.

A V883 Ori é uma estrela jovem localizada a 1.300 anos-luz da Terra. Esta estrela está passando por uma fase explosiva do tipo FU Orionis, um aumento súbito de luminosidade devido a uma corrente de material que flui do disco para a estrela. Estes surtos duram apenas um século, de modo que as oportunidades para observação são bastante raras. No entanto, dado que estrelas jovens com uma ampla gama de idades sofrem surtos do tipo FU Orionis, os astrônomos esperam poder traçar a composição química do gelo ao longo da evolução de estrelas jovens.

Fonte: National Astronomical Observatory of Japan

terça-feira, 5 de fevereiro de 2019

Bombardeio de cometas em estrela

Uma chuva de cometas está caindo sobre uma jovem estrela distante, dando aos astrônomos uma nova visão de um processo que moldou nosso Sistema Solar bilhões de anos atrás.


© NASA/JPL-Caltech (ilustração de uma tempestade de cometas em torno de Eta Corvi)

Quando a Terra era um planeta jovem, detritos de cometas atingiam sua superfície, transportando material orgânico que pode ter ajudado o surgimento da vida em nosso mundo rochoso. Nos últimos anos, cientistas identificaram evidências indiretas de um processo semelhante em torno de Eta Corvi, uma estrela do tipo solar a cerca de 59 anos-luz de distância, que é um pouco maior e três vezes mais jovem do que o nosso próprio Sol. Agora, os lampejos de gás recentemente observados, os quais cientistas acreditam que emanam de cometas evaporando no calor da estrela, estão fornecendo evidências mais fortes tanto da existência de planetas ocultos quanto da ocorrência de impactos cataclísmicos.

Detectadas pelo astrônomo Barry Welsh, da Universidade da Califórnia em Berkeley, e por sua colega Sharon Montgomery, da Clarion University, na Pensilvânia, estas lufadas de gás podem ter uma conexão profunda, embora indireta, com nosso próprio lar cósmico. Quando nosso Sol tinha a mesma idade de Eta Corvi, as interações gravitacionais entre os planetas externos do nosso Sistema Solar varreram para a parte interna os remanescentes gelados de sua formação, ocasionando um bombardeio que devassou a Terra e outros planetas rochosos. Este "bombardeio cósmico tardio" (LHB, na sigla em inglês) pode ter sido crucial para a habitabilidade da Terra e para nossa própria existência, ao trazer, do armazenamento profundo nas regiões frias do Sistema Solar externo, os compostos orgânicos e água, elementos essenciais para a vida. E algo parecido com isso parece estar ocorrendo agora em torno de Eta Corvi.

Quando visto em conjunto com observações anteriores que também sugerem influxos de fragmentos de gelo e colisões que abalam o planeta em torno de Eta Corvi, o trabalho de Welsh e de Montgomery constitui o melhor caso para um bombardeio de cometas em curso em torno de outra estrela. O influxo em si fornece dicas sobre planetas envoltos em dois anéis massivos. Acredita-se que uma cadeia de planetas gigantes esteja jogando os cometas para dentro, enquanto pelo menos um corpo rochoso parece ter sido atingido pelos destroços gelados. "Temos uma boa imagem dos diferentes fenômenos que estão ocorrendo no sistema e agora temos uma maneira de conectá-los", diz Sebastian Marino, astrônomo da Universidade de Cambridge que utilizou o Atacama Large Millimeter/submillimeter Array (ALMA) no Chile para estudar Eta Corvi.

Com 1,5 bilhão de anos de idade, Eta Corvi e seu disco já passaram bastante da infância do planeta. Como o nosso próprio Sistema Solar, a estrela possui um par de discos de detritos, embora Eta Corvi esteja um pouco mais distante. Os discos interno e externo estão a 6 e 165 UA (unidades astronômicas, igual à distância entre a Terra e o Sol) da estrela, respectivamente. Em comparação, nosso Cinturão de Asteroides fica a 5 UA do Sol, enquanto o Cinturão de Kuiper, os restos de gelo que sobraram da formação do Sistema Solar, começa apenas com 40 UA. O fato de Eta Corvi brilhar mais e ser mais quente do que o nosso próprio Sol faz com que os cinturões sejam parecidos com os nossos.

A existência de cometas em torno de Eta Corvi não é inesperada. Em 2012, uma equipe de astrônomos liderada por Carey Lisse, no Laboratório de Física Aplicada da Universidade Johns Hopkins, descobriu material incomum no cinturão interno. Usando o telescópio espacial Spitzer da NASA, eles descobriram que nanolosangos microscópicos, juntamente com poeira rica em água e carbono, foram misturados ao cinturão interno. Os pesquisadores concluíram que algum material vindo de fora do cinturão mais externo havia entrado no sistema, provavelmente através de pelo menos um grande cometa, e que a pura força de sua colisão com um planeta rochoso invisível esmagou a rocha rica em carbono e transformou-a em pó de diamante, que então salpicava o cinturão interno.

Trabalhos posteriores de Marino sugeriram que uma cadeia de planetas de tamanho médio, maiores do que a Terra, mas menores do que Júpiter, poderiam arremessar material cometário para dentro da região do cinturão externo, numa espécie de  jogo celestial de batata quente. Neste cenário, a atração gravitacional do planeta mais externo retira o material do cinturão externo e o transporta até que a gravidade do próximo planeta o afaste. Os cometas congelados continuam se movendo, de um planeta para outro, até chegarem ao cinturão interno, onde a luz da estrela derrete suas camadas externas e cria suas “caudas” distintivas de poeira e gás.

Welsh e Montgomery usaram um telescópio de 2,1 metros na Universidade do Texas, no Observatório McDonald de Austin, para estudar Eta Corvi em quatro noites. Durante uma das sessões de uma hora da equipe, eles viram gás quente, que saía de um objeto grande, ou de um aglomerado de objetos menores, bloqueando a luz da estrela. Métodos semelhantes foram usados para identificar cometas em torno de outras estrelas.

As novas observações poderiam ajudar a melhorar nossa compreensão do que aconteceu em nosso próprio Sistema Solar quando o Sol tinha a mesma idade que Eta Corvi tem hoje. Há um grande debate sobre se este evento memorável na história do Sistema Solar ocorreu como um único grande pico ou, em vez disso, a Terra e os outros planetas terrestres experimentaram um ataque mais lento e gradual. Se Eta Corvi é verdadeiramente um análogo confiável para o Sistema Solar pode dirimir as incertezas sobre o tempo e a magnitude da LHB; o que, por sua vez, poderia melhorar a compreensão deste processo à medida que ele se desdobra em outras estrelas.

Até agora, nenhum planeta foi confirmado orbitando Eta Corvi, mas a evidência indireta de sua existência é forte. Enquanto os limites exatos do Cinturão de Kuiper do nosso Sistema Solar são um tanto nebulosos e difusos, o cinturão externo de Eta Corvi é estreito e melhor definido. De acordo com David Nesvorny, um teórico do Southwest Research Institute que modela o desenvolvimento inicial do nosso Sistema Solar, um estreito cinturão sugere fortemente a presença de pelo menos um gigante gasoso nos arredores da faixa.

Tampouco as cadeias de planetas são incomuns. A multiplicidade é a norma para os sistemas exoplanetários, e quase todo tipo de sistema multiplanetário deve prontamente lançar material para a região interna. Atualmente, a maioria das técnicas de detecção de exoplanetas funciona melhor para encontrar mundos próximos de suas estrelas, mas há possibilidade de cadeias de planetas se estenderem para os limites externos de sistemas planetários alienígenas. Os planetas exteriores do Sistema Solar criam esta corrente, embora a gravidade de Júpiter, na maioria das vezes, ejete material para o espaço interestelar, em vez de transportá-lo para mais perto do Sol.

Welsh e Montgomery planejam continuar observando Eta Corvi para fornecer mais uma confirmação do tentador sinal do cometa. Uma nova geração de grandes telescópios terrestres e espaciais programados para começar as operações na próxima década podem ser capazes de fazer imagens do anel interno para ver mais claramente o que está acontecendo lá, talvez até revelando os planetas ocultos da estrela. Enquanto isso, os pesquisadores usaram os telescópios espaciais da NASA Chandra e Spitzer para monitorar a estrela, descartando mundos supermassivos cinco a dez vezes maiores que Júpiter; outras observações estabeleceram um limite superior de seis massas de Júpiter em quaisquer planetas ao redor de Eta Corvi. Pode ser apenas uma questão de tempo até que os astrônomos realmente enxerguem a multiplicidade de mundos de tamanho médio que deve se esconder por ali, e obtenham deles um vislumbre mais profundo de um dos capítulos mais violentos da história do nosso Sistema Solar.

Fonte: Scientific American

sexta-feira, 29 de junho de 2018

O nômade interestelar ‘Oumuamua é um cometa?

‘Oumuamua, o primeiro objeto interestelar descoberto no Sistema Solar, está se afastando do Sol mais depressa do que o esperado.

ilustração do objeto interestelar ‘Oumuamua

© ESO/M. Kornmesser (ilustração do objeto interestelar ‘Oumuamua)

Este comportamento anômalo foi detectado por uma colaboração internacional astronômica que inclui o Very Large Telescope (VLT) do ESO, no Chile. Os novos resultados sugerem que ‘Oumuamua é muito provavelmente um cometa interestelar e não um asteroide.

‘Oumuamua tem sido sujeito a um intenso escrutínio desde a sua descoberta em Outubro de 2017. O ganho medido em velocidade é pequeno e ‘Oumuamua ainda está desacelerando devido à atração do Sol, mas não tão rapidamente como o previsto pela mecânica celeste.

A equipe liderada por Marco Micheli, da Agência Espacial Europeia (ESA), explorou diversos cenários para explicar a velocidade mais elevada que este visitante interestelar peculiar apresenta. Pensa-se que o mais provável é que ‘Oumuamua esteja perdendo material da sua superfície devido ao aquecimento solar, algo conhecido por desgaseificação, e que seja este empurrão dado pelo material ejetado que dá origem ao impulso, pequeno mas constante, que faz com que o ‘Oumuamua esteja se afastando do Sistema Solar mais depressa do que o esperado; no dia 1 de Junho de 2018 o objeto deslocava-se a uma velocidade de aproximadamente 114.000 quilômetros por hora.

Tal desgaseificação é um comportamento típico dos cometas, contradizendo por isso a classificação anterior do ‘Oumuamua de asteroide interestelar. “Pensamos que este objeto se trata afinal de um estranho cometa minúsculo,” comenta Marco Micheli. “Através dos dados vemos que o seu empurrão extra está ficando mais fraco à medida que o objeto se afasta do Sol, o que é típico dos cometas.”

Normalmente, quando os cometas são aquecidos pelo Sol, ejetam poeira e gases que formam uma nuvem de material, a chamada coma, em sua volta, além de uma cauda bastante caraterística. No entanto, a equipe de pesquisadores não conseguiu detectar nenhuma evidência visual de desgaseificação.

“Não observamos nem poeira, nem coma e nem cauda, o que é incomum. Pensamos que ‘Oumuamua possa estar liberando grãos de poeira anormalmente irregulares e grandes,” explica Karen Meech, da Universidade do Hawai, EUA. Meech liderou a equipe que fez a descoberta inicial, na caraterização de ‘Oumuamua em 2017.

A equipe especulou que talvez os pequenos grãos de poeira que se encontram geralmente na superfície da maioria dos cometas tenham sido erodidos durante a viagem de ‘Oumuamua pelo espaço interestelar, restando apenas os grãos maiores. Apesar de uma nuvem composta por estas partículas maiores não ser suficientemente brilhante para poder ser detectada, a sua presença poderia explicar a variação inesperada na velocidade de ‘Oumuamua.

Além do mistério da desgaseificação hipotética de ‘Oumuamua, temos ainda o mistério da sua origem interestelar. O intuito destas novas observações era determinar com exatidão o seu trajeto, o que teria provavelmente permitido obter o percurso do objeto até ao seu sistema estelar progenitor. Os novos resultados significam, no entanto, que será muito mais difícil obter esta informação.

“A verdadeira natureza deste nômade interestelar enigmático poderá permanecer um mistério,” concluiu o membro da equipe Olivier Hainaut, astrônomo no ESO. “O recentemente descoberto aumento de velocidade de ‘Oumuamua torna mais difícil descobrir qual o caminho que o objeto tomou desde da sua estrela progenitora até nós.”

A equipe testou várias hipóteses para explicar a inesperada alteração da velocidade de ‘Oumuamua. Foi analisado se a pressão de radiação solar, o efeito Yarkovsky, ou se efeitos de atrito poderiam explicar as observações. Foi também verificado se o ganho em velocidade poderia ser causado por um evento de impulso, como por exemplo uma colisão, ou ainda se viria de ‘Oumuamua ser um objeto binário ou até um objeto magnetizado. A teoria improvável de ‘Oumuamua ser uma nave espacial interestelar foi também rejeitada: o fato da variação em velocidade ser suave e contínua, não típica de propulsores, e do objeto estar girando em torno de três eixos é contrário à hipótese de se tratar de um objeto artificial.

A descoberta foi publicada na revista Nature.

Fonte: ESO

domingo, 5 de novembro de 2017

A visita de pequeno asteroide ou cometa ao Sistema Solar

Um pequeno asteroide recentemente descoberto, ou talvez um cometa, parece ter origens extrassolares. Se assim for, seria o primeiro "objeto interestelar" observado e confirmado.

animação mostra o percurso do asteroide A72017 U1

© NASA/JPL-Caltech (animação mostra o percurso do asteroide A72017 U1)

Este objeto incomum, designado A/2017 U1, tem menos de 400 metros em diâmetro e move-se incrivelmente depressa. Os astrônomos estão trabalhando urgentemente para apontar telescópios de todo o mundo e no espaço. Assim que estes dados sejam obtidos e combinados será possível saber mais sobre a origem e possivelmente sobre a composição do objeto.

O A/2017 U1 foi descoberto no dia 19 de outubro pelo telescópio Pan-STARRS 1 da Universidade do Havaí, em Haleakala, durante o curso da sua observação noturna por objetos próximos da Terra para a NASA. Rob Weryk, pesquisador de pós-doutorado do Instituto de Astronomia da Universidade do Havaí, foi o primeiro a identificar o objeto em movimento e a submetê-lo ao Minor Planet Center. Weryk subsequentemente vasculhou o arquivo de imagens Pan-STARRS e descobriu que também estava em imagens obtidas na noite anterior, mas não tinha sido inicialmente identificado pelo processamento de objeto em movimento.

O movimento do A/2017 U1 não podia ser explicado usando uma órbita de asteroide ou cometa normal do Sistema Solar. Este objeto veio de fora do nosso Sistema Solar.

A equipe do CNEOS traçou a atual trajetória do objeto e até analisou o seu futuro. O A/2017 U1 surgiu da direção da constelação de Lira, viajando através do espaço interestelar com velocidade de 25,5 km/s.

O objeto aproximou-se do nosso Sistema Solar quase diretamente "acima" da eclíptica, o plano aproximado no espaço onde os planetas e a maioria dos asteroides orbitam o Sol, de modo que não teve encontros próximos com os oito planetas principais durante o seu mergulho em direção ao Sol. No dia 2 de setembro, o pequeno corpo cruzou o plano da eclíptica apenas dentro da órbita de Mercúrio e fez a sua aproximação máxima ao Sol no dia 9 do mesmo mês. Puxado pela gravidade do Sol, o objeto fez uma curva apertada no Sistema Solar, passando por baixo da órbita da Terra no dia 14 de outubro a uma distância de aproximadamente 24 milhões de quilômetros, cerca de 60 vezes a distância à Lua. Atualmente, já passou novamente para cima do plano dos planetas e, viajando a 44 km/s em relação ao Sol, o objeto está acelerando na direção da constelação de Pégaso.

"Percebemos há muito que estes objetos deviam existir, porque durante o processo de formação planetária muitos materiais devem ser expelidos dos sistemas planetários. O que é mais surpreendente é que nunca tínhamos visto objetos interestelares passando por aqui," comenta Karen Mecch, astrônoma do Instituto de Astronomia da Universidade do Havaí, especialista em corpos pequenos e na sua relação com a formação do Sistema Solar.

"Há muito tempo que teorizamos acerca da existência destes objetos que movem entre as estrelas e ocasionalmente passam pelo nosso Sistema Solar, mas esta é a primeira destas detecções. Até agora, tudo indica que este é provavelmente um objeto interestelar, mas mais dados podem ajudar à sua confirmação," comenta Paul Chodas, gestor do CNEOS.

O pequeno objeto recebeu a designação temporária A/2017 U1 pelo Minor Planet Center em Cambridge, Massachusetts, EUA, onde todas as observações de pequenos corpos no nosso Sistema Solar são recolhidas.

Tendo em conta que este é o primeiro objeto encontrado do seu tipo, as regras de nomenclatura têm ainda que ser estabelecidas pela União Astronômica Internacional.

Fonte: University of Hawaii Institute for Astronomy