Mostrando postagens com marcador Anãs Vermelhas. Mostrar todas as postagens
Mostrando postagens com marcador Anãs Vermelhas. Mostrar todas as postagens

domingo, 23 de março de 2025

Uma super-Terra na zona habitável de uma anã vermelha próxima

Astrônomos detectaram uma super-Terra orbitando na zona habitável de GJ 3998, uma anã vermelha próxima situada a 59 anos-luz de distância.

© IAC (ilustração do exoplaneta GJ 3998 d e sua estrela hospedeira)

O novo planeta, chamado GJ 3998 d, é o terceiro encontrado no sistema. O planeta recentemente descoberto possui uma massa 6 vezes superior à da Terra e completa uma órbita a cada 41,8 dias. A esta distância, GJ 3998 d recebe apenas mais 20% de irradiação estelar do que a que a Terra recebe do Sol. GJ 3998 é significativamente menor e mais fria do que o Sol, o que faz com que a zona habitável se aproxime da estrela. Embora seja certamente diferente da Terra, se o planeta for rochoso, pode ser capaz de abrigar água líquida na sua superfície.

A proximidade deste sistema ao Sol faz de GJ 3998 d um candidato atrativo para a caracterização atmosférica. Deverá ser possível verificar a presença de uma atmosfera e sondar a presença de oxigênio usando o futuro espectrógrafo ANDES do ELT (Extremely Large Telescope) do ESO. O exoplaneta GJ 3998 d seria também um bom alvo para o futuro telescópio ELF (Exo Life Finder) de 50 metros, liderado pelo IAC (Instituto de Astrofísica de Canarias), que procurará bioassinaturas em atmosferas exoplanetárias.

A descoberta faz parte do programa HADES, um esforço internacional para explorar sistemas planetários em torno de anãs vermelhas através do TNG (Telescopio Nazionale Galileo) no Observatório Roque de los Muchachos, em La Palma.

As anãs vermelhas são estrelas menores e mais frias do que o Sol, e constituem quase três-quartos da população estelar da nossa Galáxia. As suas baixas massas e abundância tornam-nas alvos privilegiados na procura de planetas de baixa massa. A GJ 3998, uma dessas anãs vermelhas, tem sido atrativa para a comunidade devido à sua proximidade e à sua atividade estelar bastante moderada. Usando o espetrógrafo HARPS-N do TNG, foi possível detectar pequenas oscilações no movimento da estrela, causadas pela atração gravitacional de planetas em órbita.

Um estudo anterior, realizado em 2016, já tinha detectado dois planetas. A presença de um sinal adicional nos dados motivou a continuação das observações e a reanálise do conjunto de dados. Com três planetas conhecidos agora detectados no sistema, GJ 3998 destaca mais uma vez como os sistemas multiplanetários são comuns.

Um artigo foi publicado no periódico Astronomy & Astrophysics

Fonte: Instituto de Astrofísica de Canarias

domingo, 16 de março de 2025

Uma anã branca e uma companheira anã vermelha

Astrônomos demonstraram que uma anã branca e uma anã vermelha, que se orbitam uma à outra de duas em duas horas, emitem pulsos de rádio.

© D. Futselaar (pulsos de rádio emitidos por interação de duas estrelas)

Graças a observações efetuadas com vários telescópios, os pesquisadores puderam, pela primeira vez, determinar com certeza a origem destes sinais. Nos últimos anos, devido a melhores técnicas de análise, foram detectados pulsos de rádio que duram entre segundos e minutos e que parecem ser originários de estrelas da Via Láctea.

Existem muitas hipóteses acerca do que desencadeia estes pulsos, mas até agora não havia evidências concretas. Um estudo descobriu pulsos provenientes de uma fonte chamada ILTJ1101. Observações com o MMT (Multiple Mirror Telescope) de 6,5 m, no estado norte-americano do Arizona, e com o Telescópio Hobby-Eberly, no Texas, mostraram que não é uma estrela que pisca, mas duas estrelas que, em conjunto, são a causa do pulso.

As duas estrelas, uma anã vermelha e uma anã branca, orbitam um centro de gravidade comum a cada 125 minutos. Estão localizadas a cerca de 1.600 anos-luz de distância na direção da constelação da Ursa Maior.

Os astrônomos pensam que a emissão de rádio é provocada pela interação da anã vermelha com o campo magnético da anã branca. No futuro, são planejados estudos para analisar a emissão ultravioleta de ILTJ1101. Isto ajudará a determinar a temperatura da anã branca e a aprender mais sobre a história das anãs brancas e vermelhas.

Por intermédio desta descoberta, sabe-se agora que as estrelas de nêutrons não têm o monopólio dos pulsos brilhantes de rádio. Nos últimos anos, cerca de dez sistemas emissores de rádio, deste tipo, foram descobertos por outros grupos de pesquisa. No entanto, estes grupos ainda não conseguiram provar se estes pulsos provêm de uma anã branca ou de uma estrela de nêutrons. Os pesquisadores estão agora verificando todos os dados do LOFAR (Low-Frequency Array) para encontrar mais pulsos de longo período.

Um artigo foi publicado na revista Nature Astronomy.

Fonte: Leiden University

Encontrado sistema planetário de estrela individual mais próxima

Usando em parte o telescópio Gemini North, os astrônomos descobriram quatro exoplanetas subterrestres em órbita da Estrela de Barnard, o sistema mais próximo da Terra composto por apenas uma estrela.

© Gemini Observatory (ilustração dos exoplanetas em torno da Estrela de Barnard)

Um dos planetas é o menos massivo alguma vez descoberto usando a técnica da velocidade radial, indicando um novo ponto de referência para a descoberta de planetas menores em torno de estrelas próximas. 

Há já um século que os astrônomos estudam a Estrela de Barnard na esperança de encontrar planetas em órbita. Descoberta pela primeira vez por Edward Emerson Barnard no Observatório Yerkes em 1916, é o sistema, com apenas uma estrela, mais próximo da Terra (o sistema Alpha Centauri é o mais próximo, mas tem três estrelas). 

A Estrela de Barnard está classificada como uma anã vermelha, que são estrelas de baixa massa que frequentemente abrigam sistemas planetários íntimos, muitas vezes com múltiplos planetas rochosos. As anãs vermelhas são extremamente numerosas no Universo. 

A equipe liderada por Jacob Bean, da Universidade de Chicago, criou o instrumento MAROON-X, concebido especificamente para procurar planetas distantes em torno de estrelas anãs vermelhas. O MAROON-X está montado no telescópio Gemini North, metade do Observatório Internacional Gemini, que é operado pelo NOIRLab (National Optical-Infrared Astronomy Research Laboratory). O MAROON-X procura exoplanetas usando a técnica da velocidade radial, o que significa que detecta a sutil oscilação para a frente e para trás de uma estrela, à medida que os seus exoplanetas a puxam gravitacionalmente, o que faz com que a luz emitida pela estrela se desloque ligeiramente em termos de comprimento de onda. O potente instrumento mede estas pequenas oscilações da luz com tanta precisão que até consegue determinar o número e a massa dos planetas que devem estar orbitando a estrela para produzir o efeito observado. 

Depois de calibrar e analisar rigorosamente os dados recolhidos durante 112 noites ao longo de um período de três anos, a equipe encontrou evidências sólidas da existência de três exoplanetas em torno da Estrela de Barnard, dois dos quais já tinham sido classificados como candidatos. Foram combinados também dados do MAROON-X com dados de um estudo de 2024 feito com o instrumento ESPRESSO no VLT (Very Large Telescope) do ESO, no Chile, para confirmar a existência de um quarto planeta, elevando-o também de candidato a genuíno. 

Os planetas recém-descobertos são, muito provavelmente, planetas rochosos e não planetas gasosos como Júpiter. No entanto, será difícil determinar com certeza este aspecto, uma vez que, devido ao ângulo em que os observamos da Terra, os planetas não se cruzam em frente da sua estrela, que é o método habitual para determinar a composição de um planeta. Mas com informações de planetas semelhantes em torno de outras estrelas, será possível fazer melhores estimativas da sua composição. No entanto, conseguiram excluir, com um grau de certeza razoável, a existência de outros exoplanetas com massas comparáveis à da Terra na zona habitável da Estrela de Barnard.

Os quatro planetas, cada um com apenas cerca de 20 a 30% da massa da Terra, estão tão perto da sua estrela natal que completam uma órbita numa questão de dias. O quarto planeta é o planeta menos massivo descoberto até à data usando a técnica da velocidade radial. A maioria dos planetas rochosos encontrados até agora são muito maiores do que a Terra e parecem ser bastante semelhantes em toda a Galáxia. Mas há razões para pensar que os exoplanetas menores têm composições mais variadas. À medida que os cientistas forem encontrando mais deles, poderão começar a obter mais informações sobre o modo como estes exoplanetas se formam e o que os torna suscetíveis de terem condições habitáveis.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: Gemini Observatory

sábado, 25 de novembro de 2023

Medindo o tamanho do exoplaneta mais próximo em trânsito

O telescópio espacial Hubble mediu o tamanho do exoplaneta mais próximo da Terra que passa pela face de uma estrela vizinha.

© STScI (ilustração do exoplaneta LTT 1445Ac)

Este alinhamento, chamado trânsito, abre a porta a estudos posteriores para ver que tipo de atmosfera, se é que existe, o mundo rochoso poderá ter. O pequeno planeta, LTT 1445Ac, foi descoberto pela primeira vez pelo TESS (Transiting Exoplanet Survey Satellite) da NASA em 2022. Mas a geometria do plano orbital do planeta em relação à sua estrela, vista da Terra, era incerta porque o TESS não tem a resolução óptica necessária. Isto significa que a detecção pode ter sido o chamado trânsito rasante, em que um planeta apenas atravessa uma pequena porção do disco da estrela hospedeira. Isto daria origem a um limite inferior impreciso do diâmetro do planeta.

© STScI (dois cenários do exoplaneta em trânsito)

Este diagrama compara dois cenários de como um exoplaneta do tamanho da Terra passa em frente da sua estrela hospedeira. O percurso inferior mostra o planeta apenas roçando a estrela. Estudar a luz de um trânsito deste tipo pode levar a uma estimativa incorreta do tamanho do planeta, fazendo-o parecer menor do que realmente é. O percurso superior mostra a geometria ótima, em que o planeta transita por todo o disco da estrela. A precisão do telescópio espacial Hubble pode distinguir entre estes dois cenários, produzindo uma medição precisa do diâmetro do planeta.

As observações do Hubble mostram que o planeta faz um trânsito normal por todo o disco da estrela, o que lhe dá um tamanho real de apenas 1,07 vezes o diâmetro da Terra. Isto significa que o planeta é um mundo rochoso, como a Terra, com aproximadamente a mesma gravidade à superfície. Mas, com uma temperatura à superfície de cerca de 260º C, é demasiado quente para a vida tal como a conhecemos. 

O planeta orbita a estrela LTT 1445A, que faz parte de um sistema triplo de três estrelas anãs vermelhas, a 22 anos-luz de distância, na direção da constelação de Erídano. A estrela tem dois outros planetas maiores que LTT 1445Ac. Um par íntimo de duas outras estrelas anãs, LTT 1445B e C, encontra-se a cerca de 4,8 bilhões de quilômetros de distância da estrela LTT 1445A, também resolvido pelo Hubble. O alinhamento das três estrelas e a órbita do par BC, vista de lado, sugerem que tudo no sistema é coplanar, incluindo os planetas conhecidos.

Um artigo foi publicado no periódico The Astronomical Journal

Fonte: Harvard–Smithsonian Center for Astrophysics

quarta-feira, 28 de junho de 2023

Detectado novo composto de carbono num sistema estelar jovem

Uma equipe de cientistas internacionais usou o telescópio espacial James Webb para detectar um novo composto de carbono no espaço pela primeira vez.

© James Webb (aglomerado Trapezium na Nebulosa de Órion)

Conhecida como cátion metil (CH3+), a molécula é importante porque auxilia na formação de moléculas mais complexas baseadas em carbono. O cátion metil foi detectado em um sistema estelar jovem, com um disco protoplanetário, conhecido como d203-506, localizado a cerca de 1.350 anos-luz de distância na Nebulosa de Órion. 

Os compostos de carbono formam as bases de toda a vida conhecida e, como tal, são particularmente interessantes para os cientistas que trabalham para entender como a vida se desenvolveu na Terra e como ela poderia se desenvolver em outras partes do nosso Universo. 

O estudo da química interestelar orgânica, que Webb está abrindo de novas maneiras, é uma área de grande fascínio para muitos astrônomos. As capacidades únicas do Webb o tornaram um observatório ideal para procurar por essa molécula crucial. A excelente resolução espacial e espectral de Webb, bem como sua sensibilidade, contribuíram para o sucesso da equipe. Em particular, a detecção de uma série de linhas de emissão chave do CH3+ consolidou a descoberta. 

A estrela em d203-506 é uma pequena anã vermelha, o sistema é bombardeado por forte luz ultravioleta (UV) de estrelas quentes, jovens e massivas próximas. Os cientistas acreditam que a maioria dos discos de formação de planetas passa por um período de intensa radiação UV, uma vez que as estrelas tendem a se formar em grupos que geralmente incluem estrelas massivas produtoras de UV. Normalmente, espera-se que a radiação UV destrua moléculas orgânicas complexas, caso em que a descoberta de CH3+ pode parecer uma surpresa.

No entanto, a equipe prevê que a radiação UV pode realmente fornecer a fonte de energia necessária para a formação do CH3+. Uma vez formado, promove reações químicas adicionais para construir moléculas de carbono mais complexas. Em termos gerais, a equipe observa que as moléculas que eles veem em d203-506 são bem diferentes dos discos protoplanetários típicos. Em particular, eles não conseguiram detectar nenhum sinal de água.

Isso mostra claramente que a radiação ultravioleta pode mudar completamente a química de um disco protoplanetário. Na verdade, pode desempenhar um papel crítico nos primeiros estágios químicos das origens da vida. 

Essas descobertas, que são do programa Early Release Science, foram publicadas na revista Nature.

Fonte: Space Telescope Science Institute

domingo, 7 de maio de 2023

O vapor de água encontrado é de um planeta rochoso ou da sua estrela?

As anãs vermelhas são as estrelas mais comuns no Universo, o que significa que é mais provável encontrar exoplanetas rochosos em órbita de estrelas deste tipo.


© STScI (ilustração de estrela devorando seu planeta)

As estrelas anãs vermelhas são frias, pelo que um planeta deve possuir uma órbita apertada para se manter suficientemente quente para, potencialmente, abrigar água líquida (o que significa que se encontra na zona habitável). Estas estrelas são também ativas, particularmente quando são jovens, liberando radiação ultravioleta e raios X que podem destruir atmosferas planetárias. Consequentemente, uma questão importante em aberto na astronomia é saber se um planeta rochoso poderia manter, ou restabelecer, uma atmosfera num ambiente tão hostil. 

Para ajudar a responder a esta questão, os astrônomos utilizaram o telescópio espacial James Webb para estudar um exoplaneta rochoso conhecido como GJ 486 b. Está demasiado perto da sua estrela para estar dentro da zona habitável, com uma temperatura à superfície de cerca de 430 graus Celsius. E, no entanto, as suas observações usando o NIRSpec (Near-Infrared Spectrograph) do Webb mostram indícios de vapor de água.

Se o vapor de água estiver associado ao planeta, isso indicaria que este tem uma atmosfera, apesar da sua temperatura escaldante e da proximidade à estrela. O vapor de água já foi observado em exoplanetas gasosos, mas até à data não foi definitivamente detectada qualquer atmosfera em torno de um exoplaneta rochoso. No entanto, a equipe adverte que o vapor de água pode estar na própria estrela, especificamente, em manchas estelares frias, e não no planeta.

O vapor de água numa atmosfera de um planeta quente e rochoso representaria um grande avanço para a ciência exoplanetária. O GJ 486 b é cerca de 30% maior do que a Terra e três vezes mais massivo, o que significa que é um mundo rochoso com uma gravidade mais forte do que a do nosso planeta. Orbita uma estrela anã vermelha em pouco menos de 1,5 dias terrestres. Espera-se que sofra acoplamento de maré, com um lado diurno permanente e um lado noturno permanente. 

O GJ 486 b transita a sua estrela, passando à sua frente a partir do nosso ponto de vista. Se tiver uma atmosfera, quando transita, a luz estelar filtra-se através desses gases, imprimindo impressões digitais na luz que permitem aos astrônomos decodificar a sua composição através de uma técnica chamada espectroscopia de transmissão. A equipe observou dois trânsitos, cada um com a duração de cerca de uma hora. Depois utilizaram três métodos diferentes para analisar os dados resultantes. Os resultados dos três métodos são consistentes, na medida em que mostram um espectro praticamente plano, com um aumento intrigante nos comprimentos de onda infravermelhos mais curtos.

A equipe utilizou modelos computacionais considerando uma série de moléculas diferentes e concluiu que a fonte mais provável do sinal era o vapor de água. Embora o vapor de água possa indicar, potencialmente, a presença de uma atmosfera em GJ 486 b, uma explicação igualmente plausível é vapor de água na estrela. Surpreendentemente, mesmo no nosso próprio Sol, o vapor de água pode por vezes existir nas manchas solares, porque estas manchas solares são muito frias em comparação com a superfície estelar circundante.

A estrela progenitora de GJ 486 b é muito mais fria do que o Sol, pelo que ainda mais vapor de água se concentraria nas suas manchas estelares. Como resultado, poderia criar um sinal que imitasse uma atmosfera planetária. Não foi observado indícios de que o planeta tenha atravessado quaisquer manchas estelares durante os trânsitos. Mas isso não significa que não existam manchas estelares em outros locais na estrela. E esse é exatamente o cenário físico que imprimiria este sinal de água nos dados e poderia acabar por se assemelhar a uma atmosfera planetária. 

Seria de esperar que uma atmosfera de vapor de água sofresse uma erosão gradual devido ao aquecimento e irradiação. Consequentemente, existindo uma atmosfera, é provável que tenha de ser constantemente reabastecida por vulcões que ejetam vapor do interior do planeta. Se a água estiver na atmosfera do planeta, são necessárias observações adicionais para determinar a quantidade de água presente. 

Futuras observações com o telescópio espacial James Webb poderão fornecer informações sobre este sistema. Um programa vindouro irá usar o MIRI (Mid-Infrared Instrument) para observar o lado diurno do planeta. Se o planeta não tiver atmosfera, ou se tiver apenas uma fina atmosfera, então espera-se que a parte mais quente do lado diurno esteja diretamente debaixo da estrela. No entanto, se o ponto mais quente estiver deslocado, isso indicaria uma atmosfera que pode fazer circular o calor. E

Em última análise, serão necessárias observações em comprimentos de onda infravermelhos mais curtos por outro instrumento do Webb, o NIRISS (Near-Infrared Imager and Slitless Spectrograph), para diferenciar entre a atmosfera planetária e os cenários de manchas estelares. É a junção de vários instrumentos que vai realmente determinar se este planeta tem ou não uma atmosfera.

O estudo foi aceito para publicação no periódico The Astrphysical Journal Letters

Fonte: Space Telescope Science Institute

sábado, 1 de abril de 2023

Medindo a temperatura de um exoplaneta rochoso

Uma equipe internacional de pesquisadores utilizou o telescópio espacial James Webb para medir a temperatura do exoplaneta rochoso TRAPPIST-1 b.

© STScI (ilustração do exoplaneta TRAPPIST-1 b)

A medição baseia-se na emissão térmica do planeta: energia emitida sob a forma de luz infravermelha detectada pelo MIRI (Mid-Infrared Instrument) do Webb. O resultado indica que o lado diurno do planeta tem uma temperatura de aproximadamente 500 K (cerca de 227º C) e sugere que não tem uma atmosfera significativa. 

Esta é a primeira detecção de qualquer forma de luz emitida por um exoplaneta tão pequeno e frio como os planetas rochosos do nosso próprio Sistema Solar. O resultado marca um passo importante para determinar se os planetas que orbitam estrelas pequenas e ativas como TRAPPIST-1 podem sustentar atmosferas necessárias para suportar vida.

No início de 2017, os astrônomos relataram a descoberta de sete planetas rochosos em órbita de uma estrela anã vermelha ultrafria (ou anã M) a 40 anos-luz da Terra. O que é notável acerca dos planetas é a sua semelhança em tamanho e massa com os planetas rochosos interiores do nosso próprio Sistema Solar. Embora todos eles orbitem muito mais perto da sua estrela do que os nossos orbitam o Sol, todos cabiam confortavelmente dentro da órbita de Mercúrio, eles recebem quantidades comparáveis de energia da sua pequena estrela. 

O TRAPPIST-1 b, o planeta mais interior, tem uma distância orbital de cerca de um centésimo da da Terra e recebe cerca de quatro vezes a quantidade de energia que a Terra recebe do Sol. Embora não esteja dentro da zona habitável do sistema, as observações do planeta podem fornecer informações importantes sobre os seus planetas irmãos, bem como sobre outros sistemas em torno de anãs M. Há dez vezes mais estrelas como esta na Via Láctea do que estrelas como o Sol, e é duas vezes mais provável que tenham planetas rochosos do que estrelas como o Sol. Mas também são muito ativas, são muito brilhantes quando são jovens e emitem surtos e raios X que podem destruir a atmosfera.

Observações anteriores de TRAPPIST-1 b com o telescópio espacial Hubble, bem como com o telescópio espacial Spitzer da NASA, não encontraram evidências de uma atmosfera inchada, mas não foram capazes de descartar uma atmosfera densa. Uma forma de reduzir a incerteza é medir a temperatura do planeta. Este planeta sofre bloqueio de maré, com o mesmo lado sempre virado para a estrela e o outro em escuridão permanente. Se tiver uma atmosfera para circular e redistribuir o calor, o lado diurno será mais fresco do que se não houver atmosfera. 

A equipe utilizou uma técnica chamada fotometria de eclipse secundário, na qual o MIRI mediu a mudança no brilho do sistema à medida que o planeta se movia por detrás da estrela. Embora TRAPPIST-1 b não seja suficientemente quente para emitir a sua própria luz visível, brilha no infravermelho. Ao subtrair o brilho da estrela por si só do brilho combinado da estrela e do planeta, foram capazes de calcular com sucesso quanta luz infravermelha está sendo emitida pelo planeta. A detecção de um eclipse secundário pelo Webb é um marco importante. Sendo a estrela mais de 1.000 vezes mais brilhante do que o planeta, a mudança de brilho é inferior a 0,1%.

A análise dos dados de cinco observações separadas do eclipse secundário indica que TRAPPIST-1 b não tem uma atmosfera. Os resultados são quase perfeitamente consistentes com um corpo negro feito de rocha nua e sem atmosfera para fazer circular o calor. Também não foi observado quaisquer sinais de luz sendo absorvida pelo dióxido de carbono, o que seria aparente nestas medições.

Um artigo foi publicado na revista Nature

Fontes: ESA & Space Telescope Science Institute

sexta-feira, 24 de fevereiro de 2023

Planeta gigante gasoso em órbita de estrela anã vermelha

Uma equipe de astrônomos liderada por Shubham Kanodia do Instituto Carnegie descobriu um sistema planetário incomum no qual um planeta gigante de gás orbita uma pequena estrela anã vermelha chamada TOI-5205.

© Instituto Carnegie (ilustração de planeta gigante gasoso em órbita de anã vermelha)

As suas descobertas desafiam ideias há muito defendidas sobre a formação planetária. Mais frias e menores do que o nosso Sol, as anãs M são as estrelas mais comuns na Via Láctea.  Devido ao seu pequeno tamanho, estas estrelas tendem a ter cerca de metade da temperatura do Sol e a ser muito mais avermelhadas. Têm luminosidades muito baixas, mas vidas extremamente longas.

Embora as anãs vermelhas hospedem mais planetas, em média, do que outros tipos de estrelas mais massivas, as suas histórias de formação fazem delas candidatas improváveis na hospedagem de gigantes gasosos. O recém-descoberto planeta, TOI-5205b, foi identificado pela primeira vez como potencial candidato pelo TESS (Transiting Exoplanet Survey Satellite) da NASA. 

A equipe de Kanodia confirmou então a sua natureza planetária e caracterizou-o utilizando uma variedade de instrumentos e instalações terrestres. A estrela anfitriã, TOI-5205, tem apenas cerca de quatro vezes o tamanho de Júpiter, no entanto conseguiu de alguma forma formar um planeta do tamanho de Júpiter, o que é bastante surpreendente!

Já foram descobertos alguns planetas gigantes em órbita de estrelas anãs M mais velhas. Mas até agora não tinha sido encontrado nenhum num sistema planetário de uma anã M de baixa massa como TOI-5205. Para compreender a comparação de tamanho, um planeta semelhante a Júpiter orbitando uma estrela semelhante ao Sol pode ser comparado a uma ervilha em torno de uma laranja; para TOI-5205b, dado que a estrela hospedeira é muito menor, é mais semelhante a uma ervilha em torno de um limão. De fato, quando TOI-5205b atravessa em frente da sua hospedeira, bloqueia cerca de sete por cento da sua luz, um dos maiores trânsitos exoplanetários conhecidos. 

Os planetas nascem no disco giratório de gás e poeira que envolve as estrelas jovens. A teoria de formação de planetas gasosos mais frequentemente usada requer cerca de 10 massas terrestres deste material rochoso para acumular e formar um enorme núcleo, após o qual varre rapidamente grandes quantidades de gás das regiões vizinhas do disco para formar o planeta gigante que vemos hoje. O período de tempo em que isto acontece é crucial.

No início, se não houver material rochoso suficiente no disco para formar o núcleo inicia. E, no final, se o disco se evaporar antes da formação do núcleo massivo, então não se pode formar um planeta gigante gasoso. E ainda assim TOI-5205b formou-se apesar destas limitações. Com base na nossa compreensão atual da formação planetária, TOI-5205b não deveria existir. 

A equipe demonstrou que a grande profundidade do trânsito planetário o torna extremamente propício a futuras observações com o recentemente lançado telescópio espacial James Webb, que poderá fornecer informações sobre sua atmosfera e algumas pistas adicionais sobre o mistério da sua formação.

Um artigo foi publicado no periódico The Astronomical Journal

Fonte: Carnegie Science

sábado, 11 de fevereiro de 2023

Um exoplaneta que poderá abrigar vida

Foi recentemente descoberto um exoplaneta onde poderá valer a pena procurar sinais de vida.

© NASA / D. Rutter (exoplaneta rochoso em órbita de estrela anã vermelha)

Análises efetuadas por uma equipe liderada pela astrônoma Diana Kossakoski do Instituto Max Planck para Astronomia descrevem um planeta que orbita a sua estrela hospedeira, a anã vermelha Wolf 1069, na zona habitável.

Esta zona inclui distâncias em torno da estrela para as quais pode existir água líquida à superfície do planeta. Além disso, o planeta, chamado Wolf 1069 b, tem uma massa semelhante à da Terra. Muito provavelmente, este é um planeta rochoso que também pode ter uma atmosfera. Isto torna-o um dos poucos alvos promissores onde procurar sinais de condições favoráveis à vida e bioassinaturas.

Quando os astrônomos procuram planetas localizados além do nosso Sistema Solar, estão particularmente interessados em planetas semelhantes à Terra. Dos mais de 5.000 exoplanetas descobertos até agora, apenas cerca de uma dúzia têm uma massa semelhante à da Terra e habitam na zona habitável, num sistema planetário, onde a água pode manter a sua forma líquida à superfície do planeta. 

Com Wolf 1069 b, temos mais um candidato na lista de exoplanetas sobre os quais a vida poderá ter evoluído. A detecção de planetas com baixa massa continua sendo um grande desafio. 

Como parte do projeto Carmenes, foi desenvolvido um instrumento especificamente para a procura de mundos potencialmente habitáveis. A equipe Carmenes está utilizando este aparelho no Observatório de Calar Alto, na Espanha.

Analisando os dados da estrela Wolf 1069 foi descoberto um sinal claro e de baixa amplitude parecendo ser um planeta com aproximadamente a massa da Terra. Ele orbita a estrela em cerca de 15,6 dias a uma distância equivalente a quinze avos da separação entre a Terra e o Sol. 

De acordo com o estudo, a superfície da estrela anã é relativamente fria e, por isso, parece laranja-avermelhada. Como resultado, a chamada zona habitável desloca-se para mais perto. Apesar da sua pequena distância à estrela, o planeta Wolf 1069 b recebe, portanto, apenas cerca de 65% da energia que a Terra recebe do Sol. Estas condições especiais tornam os planetas em torno de anãs vermelhas como Wolf 1069 potencialmente amigáveis à vida. Além disso, todos eles podem partilhar uma propriedade especial: têm provavelmente bloqueio de marés, ou seja, o planeta tem sempre a mesma face voltada para a estrela. Portanto, há um dia eterno, enquanto do outro lado é sempre noite. Esta é também a razão pela qual vemos sempre o mesmo lado da Lua. 

Se se assumir que Wolf 1069 b é um planeta "nu" e rochoso, a temperatura média mesmo no lado virado para a estrela seria de apenas -23º C. Contudo, de acordo com os conhecimentos atuais, é bem possível que Wolf 1069 b tenha formado uma atmosfera. Sob esta hipótese, a sua temperatura pode subir para 13º C, como demonstram as simulações por computador com modelos climáticos. Nestas circunstâncias, a água continuaria líquida e as condições favoráveis à vida poderiam prevalecer, porque a vida como a conhecemos depende da água.

Uma atmosfera não é apenas uma condição prévia para o aparecimento da vida de um ponto de vista climático. Também protegeria Wolf 1069 b da radiação eletromagnética altamente energética e das partículas que destroem possíveis biomoléculas. A radiação e as partículas ou provêm do espaço interestelar ou da estrela central. Se a radiação da estrela for demasiado intensa, pode também despojar a atmosfera de um planeta, como aconteceu em Marte. Mas, como anã vermelha, Wolf 1069 emite apenas radiação relativamente fraca; assim, neste planeta recentemente descoberto pode ter sido preservada uma atmosfera. 

É até possível que o planeta tenha um campo magnético que o protege das partículas carregadas do vento estelar. Muitos planetas rochosos têm um núcleo líquido, o que gera um campo magnético através do efeito dínamo, semelhante ao do planeta Terra. Tem havido um enorme progresso na busca por exoplanetas desde que o primeiro deste tipo foi descoberto há 30 anos. 

As assinaturas que os astrônomos procuram a fim de detectar planetas com massas e diâmetros semelhantes à Terra são relativamente difíceis de extrair dos dados. A equipe Carmenes está à procura de pequenas mudanças periódicas no espectro estelar. Espera-se que estas mudanças surjam quando um companheiro "puxa" a estrela hospedeira, fazendo com que oscile. Como resultado, a frequência da luz medida a partir da Terra muda devido ao efeito Doppler. 

No caso de Wolf 1069 e do seu recém-descoberto planeta, estas flutuações são suficientemente grandes para serem medidas. Uma das razões é que a diferença de massa entre a estrela e o planeta é relativamente pequena, fazendo com que a estrela oscile em torno do centro de massa do sistema de forma mais pronunciada do que em outros casos. A partir do sinal periódico, a massa do planeta também pode ser estimada. 

A uma distância de 31 anos-luz, Wolf 1069 b é o sexto planeta, de massa terrestre e na zona habitável, mais próximo de nós. Pertence a um pequeno grupo de objetos, como Proxima Centauri b e TRAPPIST-1 e, que são candidatos a buscas por bioassinaturas. No entanto, tais observações estão atualmente para além das capacidades da investigação astronômica. O ELT (Extremely Large Telescope), atualmente em construção no Chile, poderá ser capaz de estudar a composição das atmosferas destes planetas e possivelmente até detectar evidências moleculares de vida. 

Um artigo foi publicado no periódico Astronomy & Astrophysics

Fonte: Max Planck Institute for Astronomy