Mostrando postagens com marcador Anãs Brancas. Mostrar todas as postagens
Mostrando postagens com marcador Anãs Brancas. Mostrar todas as postagens

sexta-feira, 22 de novembro de 2024

Anã branca e estrela da sequência principal em aglomerados abertos

Uma equipe de astrônomos descobriu a primeira população de candidatos a binários estelares compostos por uma anã branca e por uma estrela da sequência principal em aglomerados abertos.

© ALMA (sistema estelar HD 101584)

Esta descoberta ajudará a relacionar os estados inicial e final dos sistemas estelares binários, o que ajudará a informar os modelos de formação estelar, a evolução química da nossa Galáxia e até a maneira como a maioria dos elementos da tabela periódica foram criados. 

O estudo foi possível graças à utilização da aprendizagem de máquina para analisar dados provenientes de três fontes principais: a missão Gaia da ESA, um telescópio espacial que estudou mais de um bilhão de estrelas na Via Láctea, e observações dos levantamentos 2MASS e Pan-STARRS1. Este conjunto de dados, quando combinados, permitiu à equipe procurar novos binários em aglomerados com características semelhantes às dos pares conhecidos de anãs brancas e estrelas da sequência principal. 

A maioria das estrelas encontra-se agrupada em sistemas binários, ou seja, pares de estrelas que orbitam em torno de um centro de gravidade comum. De fato, quase metade de todas as estrelas semelhantes ao nosso Sol têm pelo menos uma estrela companheira. Estas estrelas emparelhadas diferem geralmente em tamanho, sendo uma estrela frequentemente mais massiva do que a outra. 

As estrelas mais massivas tendem a ter vidas mais curtas e a passar pelas fases de evolução estelar muito mais rapidamente do que as suas companheiras de menor massa. A fase principal da evolução de uma estrela é designada por fase da "sequência principal". É nesta fase que o hidrogênio está sendo fundido em hélio no núcleo da estrela. O nosso Sol é atualmente uma estrela da sequência principal, tal como cerca de 90 por cento das estrelas do Universo. Na fase em que uma estrela se aproxima do fim da sua vida, expande-se para centenas ou milhares de vezes o seu tamanho original durante a fase de gigante vermelha ou ramo assintótico das gigantes". 

Em sistemas binários íntimos, esta expansão é tão dramática que as camadas exteriores da estrela moribunda podem, por vezes, engolir completamente a sua companheira. Esta é a fase do "envelope comum", pois ambas as estrelas ficam envoltas no mesmo material. Esta fase de envelope comum e a forma como as estrelas espiralam juntas durante este período crítico continua sendo um dos maiores mistérios da astrofísica. Os cientistas ainda têm dificuldade em compreender como é que esta interação afeta a evolução subsequente das estrelas. 

Embora estes tipos de sistemas binários devessem ser muito comuns, têm sido difíceis de encontrar, com apenas dois candidatos confirmados em aglomerados antes desta investigação, que tem o potencial de aumentar este número para 52 binários em 38 aglomerados estelares. Uma vez que se pensa que as estrelas destes aglomerados se formaram todas ao mesmo tempo, encontrar estes binários em aglomerados abertos permite determinar a idade dos sistemas e traçar a sua evolução completa desde antes das condições de envelope comum até aos binários observados na sua fase pós-envelope comum.

Os binários que contêm objetos compactos são também os progenitores de um tipo de explosão estelar extrema chamada supernova de Tipo Ia e o tipo de fusão que cria ondas gravitacionais, ou seja, ondulações no espaço-tempo que podem ser detectadas por instrumentos como o LIGO (Laser Interferometer Gravitational-Wave Observatory). À medida que a equipe utiliza os dados dos telescópios Gemini, Keck e Magellan para confirmar e medir as propriedades destes binários, este catálogo acabará fornecendo detalhes dos muitos fenômenos transientes e elusivos do nosso Universo.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: University of Toronto

terça-feira, 25 de junho de 2024

Estrela veloz pode escapar da Via Láctea

Cientistas cidadãos e astrônomos profissionais uniram-se para detectar uma rara estrela de hipervelocidade a percorrer a nossa Galáxia, a Via Láctea.

© UC San Diego (ilustração do sistema binário com explosão de supernova)

Com sua velocidade e trajetória atuais, é possível que um dia ela escape da galáxia para sempre. A descoberta só foi possível graças às legiões de voluntários que dedicaram seu tempo ao projeto Backyard Worlds: Planet 9. Esses voluntários auxiliam os astrônomos examinando dados de mais de 14 anos da missão Wide-field Infrared Survey Explorer (WISE) da NASA, procurando objetos que se movem entre as imagens. Os astrônomos podem então acompanhar descobertas interessantes para aprender mais. 

Na recente 244ª reunião nacional da Sociedade Astronômica Americana em Madison, Wisconsin, Adam Burgasser (Universidade da Califórnia, San Diego) anunciou a descoberta de um objeto em movimento rápido conhecido como CWISE J124909+362116.0 (J1249+36 para abreviar), cerca de 400 anos-luz da Terra. Ele estima que esteja viajando pela Via Láctea a cerca de 450 km/s. 

Burgasser usou o W.M. Observatório Keck em Maunakea, Havaí, para obter o espectro de J1249+36 no infravermelho. O espectro correspondia aos modelos atmosféricos criados por Roman Gerasimov (Universidade da Califórnia, San Diego) de uma classe de estrelas de baixa massa conhecidas como subanãs L. Essas estrelas são algumas das mais raras e antigas do Universo. Em seguida, Burgasser combinou os dados recolhidos dos espectros com imagens de telescópios terrestres para medir a posição e velocidade da estrela.

Podemos saber para onde está indo, mas de onde essa estrela surgiu? Uma opção é que uma vez orbitou uma estrela anã branca, que posteriormente explodiu como uma supernova Tipo Ia. Nesse tipo de supernova, a anã branca é completamente destruída, por isso a sua companheira é liberada e voa à velocidade orbital em que se movia originalmente, além de um pequeno impulso da explosão da supernova. Se isso aconteceu, ocorreu há tanto tempo que não há mais remanescentes de supernova para caçar. A segunda possibilidade é que a estrela tenha começado nas profundezas de um denso grupo de estrelas conhecido como aglomerado globular. Em seguida, encontrou um par de buracos negros aninhados nas profundezas do aglomerado. 

Quando uma estrela encontra um buraco negro binário, a dinâmica complexa desta interação de três corpos pode expulsar essa estrela do aglomerado globular. Existe uma maneira de os astrônomos decidirem entre essas duas opções. Os astrônomos estão essencialmente à procura de uma impressão digital química que identifique de que sistema esta estrela provém. Mas isso exigiria um espectro mais detalhado de J1249+36. Tal espectro poderia mostrar que a subanã estava poluída com elementos expelidos pela supernova. Por outro lado, poderia mostrar uma correspondência estreita com a química das estrelas em aglomerados globulares; como os globulares são tão antigos, suas estrelas contêm muito poucos elementos além do hidrogênio e do hélio.

Fonte: Sky & Telescope

domingo, 12 de maio de 2024

Anãs brancas e a poluição metálica

As estrelas mortas, conhecidas como anãs brancas, têm uma massa parecida à do Sol, mas têm um tamanho semelhante ao da Terra.

© S. Burrows (órbitas de planetesimais ao redor de anã branca)

A ilustração mostra as órbitas de planetesimais em torno de uma anã branca. Inicialmente, cada planetesimal tem uma órbita circular e prógrada. No início forma um disco excêntrico de detritos com órbitas prógradas (azul) e retrógradas (laranja).

As anãs brancas são comuns na Via Láctea, uma vez que 97% das estrelas estão destinadas a tornar-se anãs brancas. Quando as estrelas chegam ao fim das suas vidas, os seus núcleos colapsam na densa bola de uma anã branca, fazendo com que a nossa Galáxia pareça um cemitério etéreo. 

Apesar da sua prevalência, a composição química destes remanescentes estelares tem permanecido um enigma para durante anos. A presença de elementos metálicos pesados, tais como: silício, magnésio e cálcio, na superfície de muitos destes objetos compactos é uma descoberta intrigante que desafia as nossas expectativas do comportamento estelar.

Sabemos que se estes metais pesados estiverem presentes na superfície da anã branca, esta é suficientemente densa para que estes metais pesados se colapsem rapidamente em direção ao núcleo. Embora as anãs brancas possam consumir vários objetos próximos, como cometas ou asteroides, as complexidades deste processo ainda não foram totalmente exploradas. No entanto, este comportamento pode ser a chave para desvendar o mistério da composição metálica de uma anã branca, levando potencialmente a revelações interessantes sobre a dinâmica das anãs brancas. 

Usando simulações em computador, os pesquisadores simularam a anã branca recebendo um "pontapé natal" durante a sua formação (o que já foi observado), causado por uma perda de massa assimétrica, alterando o seu movimento e a dinâmica de qualquer material circundante. Em 80% dos testes foram observados que a partir deste pontapé, as órbitas dos cometas e asteroides num raio de 30 a 240 UA da anã branca (correspondente à distância Sol-Netuno e mais além) se tornaram alongadas e alinhadas. Além disso, cerca de 40% dos planetesimais capturados subsequentemente provêm de órbitas retrógradas. 

Os pesquisadores também alargaram as suas simulações para examinar a dinâmica da anã branca após 100 milhões de anos. Descobriram que os planetesimais próximos da anã branca continuavam a ter órbitas alongadas e a mover-se como uma unidade coerente, um resultado nunca antes visto. 

Estes resultados explicam porque é que os metais pesados se encontram na superfície de uma anã branca, pois essa anã branca consome continuamente objetos menores no seu caminho. Uma vez que o grupo de de pesquisa se concentra na dinâmica gravitacional, olhar para a gravidade que rodeia as anãs brancas pareceu ser um foco natural de análise. Outros estudos sugeriram que os asteroides e os cometas, os corpos pequenos, podem não ser a única fonte de poluição metálica na superfície das anãs brancas. Por isso, as anãs brancas podem capturar algo maior, como um planeta. 

Estas novas descobertas revelam mais sobre a formação das anãs brancas, o que é importante para compreender como os sistemas solares mudam ao longo de milhões de anos. Ajudam também a esclarecer as origens e a evolução futura do nosso Sistema Solar, revelando mais sobre a química envolvida. A grande maioria dos planetas no Universo acabará por orbitar uma anã branca. É possível que 50% destes sistemas sejam englobados pela sua estrela, incluindo o nosso próprio Sistema Solar. 

Um artigo foi publicado no periódico The Astrophysical Journal Letters

Fonte: University of Colorado

sexta-feira, 18 de agosto de 2023

Encontrada uma anã marrom mais quente que o Sol

Esta estrela fracassada é irradiada por sua companheira, uma anã branca, e pode ser usada para estudar Júpiteres quentes.

© NASA (ilustração de uma anã marrom)

Um sistema binário a 1.400 anos-luz de distância está aumentando o calor e pode ajudar os especialistas a entender melhor a classe de exoplanetas conhecidos como Júpiteres ultraquentes, gigantes gasosos que estão muito próximos de suas massivas estrelas hospedeiras. 

O sistema único descrito em um novo estudo inclui uma anã marrom cuja temperatura atinge aproximadamente 7.700 °C. Isso o torna mais quente que o Sol, cuja superfície é de 5.500 °C. Mas, as temperaturas sufocantes da anã marrom não são geradas por nenhuma reação nuclear interna própria: em vez disso, ela orbita muito perto de sua companheira, uma anã branca chamada WD 0032-317, que a está explodindo com emissão de radiação. O lado noturno da anã marrom, ou seja, o lado voltado para longe da anã branca, é quase 6.000 °C mais frio. 

Este par de estrelas pode ajudar os cientistas a aprender mais sobre exoplanetas que orbitam muito perto de estrelas massivas e quentes. Os intensos surtos de radiação ultravioleta dessas estrelas podem fazer com que as atmosferas desses planetas evaporem e até vaporizem seu material planetário. Mas, esse processo é difícil de estudar. 

Um sistema anã branca e anã marrom pode servir como um análogo para um sistema de Júpiter ultraquente, que é muito mais fácil de observar. Análogos de Júpiter fornecem uma maneira indireta de estudar as atmosferas de planetas gigantes porque as anãs marrons devem ter atmosferas muito semelhantes às dos planetas gigantes gasosos.

O sistema WD 0032–317 foi observado pela primeira vez por astrônomos que realizaram um levantamento de centenas de anãs brancas no início dos anos 2000 com o Very Large Telescope (VLT) no Observatório Paranal, no Chile. 

Uma anã branca é uma estrela que atingiu a fase final de sua vida, depois de se expandir para uma gigante vermelha quando seu combustível acaba, ela explode suas camadas externas, tudo o que resta é o núcleo quente e inerte. 

O WD 0032–317 foi inicialmente sinalizado como um sistema binário de duas anãs brancas; mas, quando os astrônomos revisitaram os dados, eles viram sinais que eram mais reveladores de uma companheira anã marrom. 

As anãs marrons não são planetas nem estrelas, mas objetos intermediários: pelo menos 13 vezes mais massivas que Júpiter, mas não massivas o suficiente para gerar o calor e a pressão necessários para fundir o hidrogênio em hélio. Por esse motivo, às vezes são chamadas de estrelas fracassadas. 

A anã marrom também pode ser uma das maiores já encontradas, pesando de 75 a 88 vezes a massa de Júpiter. Em observações de acompanhamento, os pesquisadores viram uma emissão vindo do lado sempre voltado para a anã branca. Ele foi originalmente perdido há duas décadas porque as observações originais foram feitas quando o lado noturno da companheira estava voltado para o telescópio. Nos novos dados, o lado diurno da anã marrom está voltado para o telescópio. 

Os astrônomos conhecem apenas um outro exemplo deste fenômeno: KELT-9b, que é tão quente que espalha material por trás dele, imitando a cauda de um cometa. A dificuldade de encontrar Júpiteres ultraquentes se deve em parte ao brilho de suas grandes estrelas hospedeiras próximas. Para complicar ainda mais as coisas, essas estrelas giram rapidamente e são propensas a tempestades estelares. 

Os astrônomos geralmente medem a massa de um exoplaneta medindo o desvio para o vermelho e o desvio para o azul das linhas espectrais da estrela hospedeira conforme a estrela oscila devido à atração gravitacional do exoplaneta. Mas quando uma grande estrela está girando rapidamente e explodindo, o movimento rápido do material da estrela torna mais difícil para discernir a oscilação da estrela. 

Por essas razões, os astrônomos estão interessados em usar anãs marrons que orbitam anãs brancas como análogos de Júpiteres ultraquentes. Os tamanhos relativos desses objetos tornam a anã marrom mais fácil de observar: uma anã marrom tem aproximadamente o mesmo diâmetro de um Júpiter quente, mas as anãs brancas são muito menores do que a maioria das estrelas, aproximadamente do tamanho da Terra. No entanto, eles ainda podem liberar calor residual suficiente para queimar companheiros próximos: no caso de WD 0032–317, a quantidade de radiação ultravioleta extrema que a anã marrom recebe de sua anã branca é 5.600 vezes maior que a de KELT-9b. 

Além de ser um modelo para Júpiteres ultraquentes, o sistema WD 0032–317 também oferece aos cientistas uma visão da evolução das estrelas. Com base em modelos de evolução estelar, a anã marrom parece ter pelo menos alguns bilhões de anos. Mas a anã branca ainda é incrivelmente quente, indicando que faz apenas cerca de 1 milhão de anos desde que se tornou uma anã branca. Além do mais, a anã branca tem uma massa de cerca de 0,4 vezes a do Sol. 

De acordo com a teoria, uma anã branca tão pequena não pode existir por conta própria, levaria uma estrela de massa tão baixa por mais tempo do que a idade do Universo para atingir sua fase de anã branca. Suspeita-se que a anã marrom ajudou a colocar a anã branca no estado em que se encontra hoje porque, em certo momento, elas compartilharam um envelope comum. A evolução do envelope comum é uma fase na vida de uma estrela binária em que duas estrelas ou objetos orbitam dentro de um envelope compartilhado de gás. Nesse caso, o envelope comum se desenvolveu quando a estrela primária se expandiu para uma gigante vermelha, envolvendo a anã marrom. A anã marrom pode ter ajudado a estrela primária a perder parte de sua massa e se tornar uma anã branca antes do esperado para uma única estrela.

Fonte: Astronomy

quinta-feira, 27 de julho de 2023

Uma estrela com "duas faces"

Pela primeira vez, os astrônomos descobriram que pelo menos um membro das anãs brancas tem duas faces.

© Caltech / K. Miller (ilustração da anã branca Jano)

Um dos lados de uma anã branca é composto por hidrogênio, enquanto o outro é composto por hélio. A superfície da anã branca muda completamente de um lado para o outro. 

As anãs brancas são os remanescentes escaldantes de estrelas que já foram como o nosso Sol. À medida que as estrelas envelhecem, transformam-se em gigantes vermelhas; eventualmente, o seu material exterior é expelido e os seus núcleos contraem-se em anãs brancas densas e escaldantes. O nosso Sol evoluirá para uma anã branca dentro de cerca de 5 bilhões de anos. 

A recém-descoberta anã branca, apelidada de Jano em homenagem ao deus romano, com duas caras, das mudanças e transições (o nome científico da anã branca é ZTF J203349.8+322901.1), foi inicialmente descoberta pelo ZTF (Zwicky Transient Facility), um instrumento que varre o céu todas as noites a partir do Observatório Palomar do Caltech, perto de San Diego, EUA. 

Os astrônomos estavam procurando anãs brancas altamente magnetizadas, como o objeto conhecido como ZTF J1901+1458. Um dos objetos candidatos destacou-se pelas suas rápidas mudanças de brilho, que foi analisada mais a fundo com o instrumento CHIMERA, também em Palomar, e o HiPERCAM no GTC (Gran Telescopio Canarias), nas Ilhas Canárias, Espanha. 

Estes dados confirmaram que Jano completa uma rotação de 15 em 15 minutos. Observações subsequentes feitas com o Observatório W. M. Keck no topo de Maunakea, no Havaí, revelaram a dramática natureza de dupla face da anã branca. A equipe usou um instrumento chamado espetrômetro para espalhar a luz da anã branca num arco-íris de comprimentos de onda que contém impressões digitais químicas. Os dados revelaram a presença de hidrogênio quando um dos lados do objeto estava à vista (sem sinais de hélio), e apenas hélio quando o outro lado era visível. 

O que é que levaria uma anã branca, flutuando sozinha no espaço, a ter faces tão drasticamente diferentes? A equipe reconhece que está perplexa, mas avançou com algumas teorias possíveis. Uma delas é que podemos estar assistindo a Jano passando por uma fase rara da evolução de uma anã branca. Após a formação das anãs brancas, os elementos mais pesados afundam-se para o núcleo e os elementos mais leves, como o hidrogênio, flutuam para o topo. Mas com o tempo, à medida que as anãs brancas arrefecem, pensa-se que os materiais se misturem. Em alguns casos, o hidrogênio é misturado no interior e diluído de tal forma que o hélio se torna mais predominante. 

A estrela Janus pode estar realizando esta fase de transição, mas uma questão premente é: porque é que a transição está acontecendo de forma tão desarticulada, com um lado evoluindo antes do outro? A resposta pode estar nos campos magnéticos, que à volta dos corpos cósmicos tendem a ser assimétricos, ou seja, mais fortes num dos lados. Os campos magnéticos podem impedir a mistura de materiais. Assim, se o campo magnético for mais forte de um lado, ele terá menos mistura e, portanto, mais hidrogênio. Outra teoria proposta pela equipe para explicar as duas faces também depende dos campos magnéticos. Mas, neste cenário, pensa-se que os campos alterem a pressão e a densidade dos gases atmosféricos. Os campos magnéticos podem levar a pressões de gás mais baixas na atmosfera, o que pode permitir a formação de um "oceano" de hidrogênio onde os campos magnéticos são mais fortes. 

Para ajudar a resolver o mistério, a equipe espera encontrar mais anãs brancas do tipo Jano com o levantamento do céu do ZTF. Futuras explorações, como as que serão efetuadas pelo Observatório Vera C. Rubin, no Chile, deverão facilitar ainda mais a descoberta de anãs brancas variáveis. 

Um artigo foi publicado na revista Nature

Fonte: W. M. Keck Observatory

sexta-feira, 7 de julho de 2023

Um planeta que desafia a morte

Quando o nosso Sol chegar ao fim da sua vida, se expandirá até 100 vezes o seu tamanho atual, envolvendo a Terra.

© A. Makarenko (ilustração do sistema Baekdu)

Este é possível cenário em que Baedku que era originalmente um sistema binário composto por uma estrela gigante vermelha em órbita de uma estrela anã branca. A proximidade do par estelar permitiu a transferência de material entre as duas estrelas, levando à sua eventual fusão. O planeta Halla está em primeiro plano, orbitando perigosamente perto, mas suficientemente longe para sobreviver ao impacto da colisão explosiva do par estelar.

Muitos planetas em outros sistemas solares enfrentam um destino semelhante à medida que as suas estrelas hospedeiras envelhecem. Mas nem toda a esperança está perdida: astrônomos do IfA (Institute for Astronomy) da Universidade do Havaí fizeram a notável descoberta da sobrevivência de um planeta após o que deveria ter sido a morte certa devido a sua estrela. 

O planeta semelhante a Júpiter, 8 UMi b, oficialmente chamado Halla, orbita a estrela gigante vermelha Baekdu (8 UMi) a apenas metade da distância que separa a Terra do Sol. Utilizando dois observatórios na ilha do Havaí, o Observatório W. M. Keck e o CFHT (Canada-France-Hawaii Telescope), uma equipe de astrônomos descobriu que Halla persiste apesar da evolução normalmente perigosa de Baekdu. 

Utilizando observações das oscilações estelares de Baekdu feitas pelo TESS (Transiting Exoplanet Survey Satellite) da NASA, descobriram que a estrela está queimando hélio no seu núcleo, o que indica que já se tinha expandido enormemente até se tornar uma estrela gigante vermelha. A estrela teria inchado até 1,5 vezes a distância orbital do planeta, engolindo-o no processo, antes de encolher para o seu tamanho atual a apenas um-décimo desta distância.

O planeta Halla foi descoberto em 2015 por astrônomos da Coreia do Sul utilizando o método da velocidade radial, que mede o movimento periódico de uma estrela devido à força gravitacional do planeta que a orbita. Após a descoberta de que a estrela deve ter sido, em tempos, maior do que a órbita do planeta, a equipe do IfA realizou observações adicionais entre 2021 e 2022 usando o HIRES (High Resolution Echelle Spectrometer) do Observatório Keck e o instrumento ESPaDOnS (Echelle SpectroPolarimetric Device for the Observation of Stars) do CFHT. 

Estes novos dados confirmaram que a órbita quase circular de 93 dias do planeta permaneceu estável durante mais de uma década e que o movimento para trás e para a frente deve ser devido a um planeta. A uma distância de 0,46 UA (unidades astronômicas, igual a distância Terra-Sol) da sua estrela, o planeta Halla assemelha-se a planetas  "quentes", parecidos a Júpiter, que se pensa terem começado em órbitas maiores antes de migrarem para o interior, perto das suas estrelas. No entanto, face a uma estrela hospedeira em rápida evolução, tal origem torna-se uma via de sobrevivência extremamente improvável para o planeta Halla. 

Outra teoria para a sobrevivência do planeta é o fato de nunca ter enfrentado o perigo de ser engolido. Tal como o famoso planeta Tatooine da saga "Guerra das Estrelas", que orbita dois sóis, a estrela hospedeira Baekdu pode ter sido originalmente duas estrelas, segundo a equipe. A fusão destas duas estrelas pode ter impedido qualquer uma delas de se expandir o suficiente para engolir o planeta. Uma terceira possibilidade é que Halla seja um relativo recém-nascido, que a colisão violenta entre as duas estrelas tenha produzido uma nuvem de gás a partir da qual o planeta se formou. O planeta Halla pode ser um planeta de "segunda geração" nascido recentemente.

Um artigo foi publicado na revista Nature

Fonte: W. M. Keck Observatory

quarta-feira, 21 de junho de 2023

Descoberta de pulsar de anã branca pode esclarecer a evolução estelar

A descoberta de um tipo raro de sistema estelar, com uma anã branca, permitiu uma nova compreensão da evolução estelar.

© ESO / M. Garlick (ilustração de um pulsar de anã branca)

As anãs brancas são estrelas pequenas e densas, tipicamente do tamanho de um planeta. Formam-se quando uma estrela de baixa massa queima todo o seu combustível, perdendo as suas camadas exteriores. Por vezes referidas como "fósseis estelares", fornecem uma visão sobre diferentes aspetos da formação e evolução das estrelas. 

Um tipo raro de pulsar de anã branca foi descoberto apenas pela segunda vez, numa pesquisa liderada pela Universidade de Warwick. Os pulsares de anãs brancas incluem um remanescente estelar em rápida rotação, de nome anã branca, que atinge a sua vizinha - uma anã vermelha - com poderosos feixes de partículas elétricas e radiação, fazendo com que todo o sistema dramaticamente aumente e diminua de brilho em intervalos regulares. Isto deve-se aos fortes campos magnéticos, mas os cientistas não sabem ao certo o que os provoca. 

Uma teoria chave que explica os fortes campos magnéticos é o "modelo do dínamo", que as anãs brancas têm dínamos (geradores elétricos) no seu núcleo, tal como a Terra, mas muito mais potentes. Mas para que esta teoria pudesse ser testada, os cientistas precisavam de procurar outros pulsares de anãs brancas para ver se as suas previsões se confirmavam.

O pulsar de anã branca recém-detectado, J191213.72-441045.1 (J1912-4410 para abreviar) é apenas o segundo sistema estelar deste gênero que é encontrado, após a descoberta de AR Scorpii (Ar Sco) em 2016. A 773 anos-luz da Terra e girando 300 vezes mais depressa do que o nosso planeta, o pulsar de anã branca tem um tamanho semelhante ao da Terra, mas uma massa pelo menos tão grande quanto o Sol. Isto significa que uma colher de chá de material de uma anã branca pesaria cerca de 15 toneladas. 

As anãs brancas começam as suas vidas com temperaturas extremamente quentes antes de arrefecerem ao longo de bilhões de anos, e a baixa temperatura de J1912-4410 aponta para uma idade avançada. 

A origem dos campos magnéticos é uma grande questão em aberto em muitos domínios da Astronomia, e isto é particularmente verdade para as anãs brancas. Os campos magnéticos das anãs brancas podem ser mais de um milhão de vezes mais fortes do que o campo magnético do Sol e o modelo do dínamo ajuda a explicar porquê. A descoberta de J1912-4410 constituiu um avanço fundamental nesta área. 

Devido à sua idade avançada, as anãs brancas no sistema de pulsares devem ser frias. As suas companheiras devem estar suficientemente próximas para que a atração gravitacional da anã branca tenha sido, no passado, suficientemente forte para capturar massa da companheira, o que faz com que girem rapidamente. Todas estas previsões se aplicam ao novo pulsar encontrado: a temperatura da anã branca é inferior a 13.000 K, gira sobre o seu eixo uma vez a cada cinco minutos e a atração gravitacional da anã branca tem um forte efeito na companheira. 

O objeto foi encontrado no levantamento de raios X de todo o céu realizado com o SRG/eROSITA. A investigação de acompanhamento com o satélite XMM-Newton da ESA revelou as pulsações no regime de raios X altamente energéticos, confirmando assim a natureza incomum do novo objeto e estabelecendo firmemente os pulsares de anãs brancas como uma nova classe.

Um artigo foi publicado na revista Nature Astronomy. Um outro artigo complementar foi publicado no periódico Astronomy & Astrophysics

Fonte: Leibniz Institute for Astrophysics Potsdam

sexta-feira, 24 de fevereiro de 2023

Jones-Emberson 1

A nebulosa planetária Jones-Emberson 1 é a mortalha da morte de uma estrela moribunda parecida com o Sol.

© Observatoire de la Côte d’Azur (Jones-Emberson 1)

Encontra-se a cerca de 1.600 anos-luz da Terra em direção à constelação de olhos aguçados Lynx. Com cerca de 4 anos-luz de diâmetro, o remanescente em expansão da atmosfera da estrela moribunda foi levado para o espaço interestelar, já que o suprimento central da estrela de hidrogênio e hélio para fusão foi finalmente esgotado depois de bilhões de anos. 

Visível perto do centro da nebulosa planetária está o que resta do núcleo estelar, uma anã branca azulada. Também conhecida como PK 164 +31.1, a nebulosa é fraca e muito difícil de vislumbrar na ocular de um telescópio. Mas esta imagem de banda larga profunda que combina 22 horas de tempo de exposição mostra isso com detalhes excepcionais.

Estrelas dentro de nossa própria galáxia, a Via Láctea, bem como galáxias de fundo em todo o Universo, estão espalhadas pelo nítido campo de visão. Efêmero no palco cósmico, Jones-Emberson 1 desaparecerá nos próximos milhares de anos. Sua quente estrela anã branca central levará bilhões de anos para esfriar. 

Fonte: NASA

sábado, 21 de janeiro de 2023

O resquício de 850 anos de idade de colisão estelar

Uma explosão de supernova que observadores do céu no Extremo Oriente observaram há quase 850 anos produziu o remanescente mais incomum que os astrônomos já encontraram.

© R. Fensen (Pa 30)

O astrônomo Robert Fesen, do Dartmouth College, que fotografou o estranho objeto no final de outubro de 2022 com o telescópio Hiltner de 2,4 metros em Kitt Peak, apresentou seus resultados no 241º encontro da American Astronomical Society (AAS) em Seattle; um artigo foi submetido ao periódico Astrophysical Journal Letters. Em outro trabalho apresentado na reunião da AAS e submetido ao periódico Monthly Notices of the Royal Astronomical Society e seu co-autor Bradley Schaefer, da Louisiana State University argumenta que a supernova resultou quando duas estrelas anãs brancas colidiram, deixando um “zumbi” estelar extremamente energético atrás. 

A astrônoma amadora Dana Patchick descobriu a nebulosa Pa 30 em agosto de 2013 em imagens arquivadas do Widefield Infrared Survey Explorer (WISE) da NASA. Porém, as imagens infravermelhas não mostraram muitos detalhes. Originalmente, Patchick acreditava ter encontrado uma nebulosa planetária – sua 30ª descoberta, daí o nome Pa 30 – mas observações espectroscópicas posteriores revelaram que é mais provável que seja um remanescente de supernova. 

No entanto, a nebulosa não produz muitas ondas de rádio ou raios X e não há estrela de nêutrons ou buraco negro em seu centro. Em vez disso, a estrela central (às vezes conhecida como Estrela de Parker, em homenagem ao astrônomo da Universidade de Hong Kong, Quentin Parker, que primeiro estudou seu espectro) acaba sendo uma anã branca peculiar. 

Ainda assim, os astrônomos agora estão confiantes sobre sua relação com SN1181, uma supernova de magnitude zero que apareceu no norte de Cassiopeia em 6 de agosto de 1181 DC. Observadores chineses e japoneses registraram esta “estrela convidada” desaparecendo lentamente ao longo de um período de seis meses. Na década de 1970, os astrônomos especularam que o remanescente de supernova 3C58 e o pulsar associado PSR J0205+6449 eram os restos mais prováveis da explosão do século XII. Mas, pesquisas posteriores mostraram que 3C58 é muito antigo. Além disso, a posição do céu não corresponde às observações chinesas. 

O Pa 30 se encaixa em todas as contas, de acordo com um estudo de 2021 de Andreas Ritter, da Universidade de Hong Kong, Parker e seus colegas. Em particular, a velocidade de expansão medida da nebulosa, cerca de 1.100 quilômetros por segundo, coloca sua idade em 850 anos. A temperatura de sua superfície é de cerca de 200.000 kelvin; ela brilha com 130 vezes a luminosidade do Sol e está desaparecendo rapidamente, em 1,7 magnitudes no século passado. O mais notável é que produz um vento estelar veloz e sem precedentes que se propaga a 16.000 quilômetros por segundo, ou 5% da velocidade da luz!

Mesmo estrelas gigantes e luminosas de Wolf-Rayet têm ventos de abaixo disto. Então, que tipo peculiar de supernova pode explicar tudo isso? As novas observações de Fesen de Pa 30, obtidas à luz de enxofre ionizado e revelando muito mais detalhes do que imagens infravermelhas ou de banda larga de luz visível, contêm a última peça do quebra-cabeça do SN1181. 

Apesar da distância da nebulosa de quase 8.000 anos-luz, a imagem mostra intrigantes filamentos radiais, presumivelmente produzidos quando o forte vento estelar erode pequenos aglomerados de gás de baixa velocidade ejetados pela explosão. O SN1181 era uma supernova de baixa luminosidade do raro tipo Iax. Enquanto as supernovas “normais” do Tipo Ia resultam da detonação catastrófica de uma estrela anã branca, nas supernovas menos luminosas do Tipo Iax, a explosão da estrela sobrevive de alguma forma. 

Os teóricos criaram vários cenários para explicar as explosões de Iax. Alguns deles preveem a existência de uma estrela companheira doadora de matéria; no entanto, no caso da Estrela de Parker, observações detalhadas do observatório TESS da NASA indicam que ela é única. Um modelo apenas corresponde às observações de Pa 30 e sua estrela central “esquisita”: a colisão de duas anãs brancas, uma das quais consiste principalmente de carbono e oxigênio e a outra de oxigênio e neônio. 

Fonte: Sky & Telescope

quarta-feira, 12 de outubro de 2022

Encontrado um par de estrelas com a órbita mais curta

Quase metade das estrelas na nossa Galáxia são solitárias como o Sol. A outra metade vive aos pares, ou em sistemas múltiplos, com órbitas tão íntimas que alguns destes sistemas podiam caber entre a Terra e a Lua.

© CfA / M. Weiss (ilustração de uma estrela orbitando uma anã branca)

Astrônomos do MIT (Massachusetts Institute of Technology) e de outros centros de pesquisa descobriram agora um binário estelar com uma órbita extremamente curta, parecendo orbitar-se uma à outra cada 51 minutos.

O sistema parece pertencer a uma classe binária rara conhecida como "variável cataclísmica", na qual uma estrela semelhante ao nosso Sol orbita intimamente uma anã branca. Uma variável cataclísmica ocorre quando as duas estrelas se aproximam, ao longo de bilhões de anos, fazendo com que a anã branca comece a acretar material da sua estrela parceira. Este processo pode emitir enormes flashes variáveis de luz que, há séculos atrás, os astrônomos assumiram ser o resultado de algum cataclismo desconhecido.

O sistema recentemente descoberto, identificado como ZTF J1813+4251, é uma variável cataclísmica com a órbita mais curta detectada até o momento. Ao contrário de outros sistemas semelhantes observados no passado, os astrônomos captaram esta variável cataclísmica à medida que as estrelas se eclipsavam uma à outra várias vezes, permitindo à equipe medir com precisão as propriedades de cada estrela. Com estas medições, os pesquisadores correram simulações do que o sistema está provavelmente fazendo hoje e de como deverá evoluir ao longo das próximas centenas de milhões de anos. Concluem que as estrelas estão atualmente em transição e que a estrela semelhante ao Sol está orbitando e  "doando" grande parte da sua atmosfera de hidrogênio à voraz anã branca.

A estrela semelhante ao Sol acabará por ser despojada até um núcleo majoritariamente denso e rico em hélio. Setenta milhões de anos depois, as estrelas migrarão ainda para mais perto uma da outra, com uma órbita ultracurta de apenas 18 minutos, antes de começarem a expandir e a afastar-se. 

Há décadas atrás, os pesquisadores do MIT e de outros locais previram que tais variáveis cataclísmicas deveriam transitar para órbitas ultracurtas. Esta é a primeira vez que um sistema de transição deste tipo é observado diretamente.

Os astrônomos descobriram o novo sistema dentro de um vasto catálogo de estrelas observadas pelo ZTF (Zwicky Transient Facility), um levantamento que usa uma câmara ligada a um telescópio no Observatório Palomar, no estado norte-americano da Califórnia, para tirar fotografias de alta resolução de largas áreas do céu. O levantamento já obteve mais de 1.000 imagens de cada uma das mais de um bilhão de estrelas no céu, registando a luminosidade variável de cada estrela ao longo de dias, meses e anos. O catálogo foi vasculhado em busca de sinais de sistemas com órbitas ultracurtas, cuja dinâmica pode ser tão extrema que devem emitir dramáticas explosões de luz e emitir ondas gravitacionais.

Para este novo estudo, foi procurado nos dados ZTF, estrelas que pareciam piscar repetidamente, com um período de menos de uma hora, caracterizando uma frequência que normalmente sinaliza um sistema de pelo menos dois objetos em órbita íntima, com um atravessando o outro e bloqueando brevemente a sua luz. Foi utilizado um algoritmo para examinar mais de um bilhão de estrelas, cada uma das quais foi registada em mais de 1.000 imagens. O algoritmo filtrou cerca de um milhão de estrelas que pareciam piscar mais ou menos a cada hora. A pesquisa conduziu a ZTF J1813+4251, um sistema que reside a cerca de 3.000 anos-luz da Terra, na direção da constelação de Hércules

O sistema foi analisado com o Observatório W. M. Keck no Havaí e o GTC (Gran Telescopio Canarias) na Espanha. Foi medido com precisão a massa e o raio de cada objeto, bem como o seu período orbital. Foi descoberto que o primeiro objeto era provavelmente uma anã branca, com 1/100 do tamanho do Sol e cerca de metade da sua massa. O segundo objeto era uma estrela semelhante ao Sol perto do fim da sua vida, com um-décimo do tamanho e massa do Sol (cerca do tamanho de Júpiter). As estrelas também pareciam orbitar-se uma à outra a cada 51 minutos. 

No entanto, algo não está correto. Esta estrela parecia o Sol, mas o Sol não pode caber numa órbita inferior a oito horas. Há quase 30 anos atrás, pesquisadores haviam previsto que os sistemas com órbitas ultracurtas deveriam existir como variáveis cataclísmicas. À medida que a anã branca orbita a estrela parecida com o Sol e absorve o seu hidrogênio leve, a estrela parecida com o Sol deverá constituir um núcleo de hélio, que manterá a estrela morta numa órbita íntima e ultracurta. 

Então, ZTF J1813+4251 era provavelmente uma variável cataclísmica no ato de transição de um corpo rico em hidrogênio para um corpo rico em hélio. A descoberta confirma as previsões feitas por astrônomos no passado.

Um artigo foi publicado na revista Nature

Fonte: Massachusetts Institute of Technology

segunda-feira, 20 de junho de 2022

Uma estranha anã branca com um passado caótico

O que é mais estranho do que pedras caindo sobre uma estrela anã branca quente? Adicionando pedaços de gelo à mistura.

© STScI/Joseph Olmsted (anã branca acumulando detritos de objetos)

A G238-44, uma pequena anã branca situada a 86 anos-luz de distância, está acumulando dois tipos muito diferentes de objetos simultaneamente.

As anãs brancas são os restos compactos de estrelas de baixa massa que primeiro se transformam em gigantes vermelhas, um destino que aguarda nosso próprio Sol daqui a cerca de 5 bilhões de anos. A fase gigante vermelha causa estragos em sistemas planetários ordenados. Os planetas próximos podem ser devorados, enquanto as órbitas de mundos mais distantes ficam caóticas. Depois que a estrela gigante explode suas camadas externas em uma nebulosa planetária, uma anã branca do tamanho da Terra (mas ainda com massa solar) permanece.

Observações de muitas anãs brancas mostram sinais de “poluição” atmosférica: quantidades inesperadas de elementos mais pesados ​​que o hélio. Sua existência indica que quando colisões interrompem as órbitas de corpos semelhantes a asteroides no sistema de anãs brancas, seus detritos rochosos chovem sobre a estrela. 

Então, o que há de tão estranho na G238-44? 

É a composição química da poluição em sua superfície, medida pelo Far Ultraviolet Spectroscopic Explorer (FUSE) da NASA, o Keck Telescope no Havaí e o telescópio espacial Hubble. 

As abundâncias relativas de 10 elementos pesados ​​(carbono, nitrogênio, oxigênio, magnésio, alumínio, silício, fósforo, enxofre, cálcio e ferro) não correspondem à composição de nenhum objeto conhecido do Sistema Solar. O material que cai sobre a anã branca é melhor descrito como quase duas partes de detritos semelhantes a Mercúrio, ou seja, material rochoso típico, e uma parte de material semelhante aos objetos gelados do Cinturão de Kuiper nos arredores do Sistema Solar. 

As descobertas sugerem que o sistema planetário da estrela experimentou uma enorme quantidade de caos orbital, o que teria lançado corpos gelados remotos para dentro. Esta é a única maneira de estudar a composição interior de pequenos corpos em outros sistemas solares. No entanto, as observações possam ser explicadas por um objeto desintegrado, contendo metal, rocha e gelo, como o planeta anão Ceres.

O objeto poderia ter sido uma super-Terra rica em água ou um mini-Netuno gasoso? Estes dois tipos de planetas estão ausentes em nosso próprio Sistema Solar, mas abundantes em outras partes do Universo.

Os astrônomos afirmam que não há como acabar com as quantidades relativas observadas de ferro, oxigênio, carbono e nitrogênio em um único corpo. Além disso, a quantidade de poluição é muito pequena para vir da ruptura de um planeta. A massa total de elementos pesados ​​medidos é muito menor que a massa da Terra, e a falta de um excesso de radiação infravermelha ao redor da anã branca indica que não há uma grande quantidade de material circunstelar. 

Com apenas uma anã branca mostrando “abundâncias estranhas”, é difícil tirar conclusões definitivas. Observações futuras podem render casos adicionais.

Fonte: Sky & Telescope