Mostrando postagens com marcador Anãs Brancas. Mostrar todas as postagens
Mostrando postagens com marcador Anãs Brancas. Mostrar todas as postagens

domingo, 16 de março de 2025

Uma anã branca e uma companheira anã vermelha

Astrônomos demonstraram que uma anã branca e uma anã vermelha, que se orbitam uma à outra de duas em duas horas, emitem pulsos de rádio.

© D. Futselaar (pulsos de rádio emitidos por interação de duas estrelas)

Graças a observações efetuadas com vários telescópios, os pesquisadores puderam, pela primeira vez, determinar com certeza a origem destes sinais. Nos últimos anos, devido a melhores técnicas de análise, foram detectados pulsos de rádio que duram entre segundos e minutos e que parecem ser originários de estrelas da Via Láctea.

Existem muitas hipóteses acerca do que desencadeia estes pulsos, mas até agora não havia evidências concretas. Um estudo descobriu pulsos provenientes de uma fonte chamada ILTJ1101. Observações com o MMT (Multiple Mirror Telescope) de 6,5 m, no estado norte-americano do Arizona, e com o Telescópio Hobby-Eberly, no Texas, mostraram que não é uma estrela que pisca, mas duas estrelas que, em conjunto, são a causa do pulso.

As duas estrelas, uma anã vermelha e uma anã branca, orbitam um centro de gravidade comum a cada 125 minutos. Estão localizadas a cerca de 1.600 anos-luz de distância na direção da constelação da Ursa Maior.

Os astrônomos pensam que a emissão de rádio é provocada pela interação da anã vermelha com o campo magnético da anã branca. No futuro, são planejados estudos para analisar a emissão ultravioleta de ILTJ1101. Isto ajudará a determinar a temperatura da anã branca e a aprender mais sobre a história das anãs brancas e vermelhas.

Por intermédio desta descoberta, sabe-se agora que as estrelas de nêutrons não têm o monopólio dos pulsos brilhantes de rádio. Nos últimos anos, cerca de dez sistemas emissores de rádio, deste tipo, foram descobertos por outros grupos de pesquisa. No entanto, estes grupos ainda não conseguiram provar se estes pulsos provêm de uma anã branca ou de uma estrela de nêutrons. Os pesquisadores estão agora verificando todos os dados do LOFAR (Low-Frequency Array) para encontrar mais pulsos de longo período.

Um artigo foi publicado na revista Nature Astronomy.

Fonte: Leiden University

sexta-feira, 7 de março de 2025

Sinal de raios X aponta para um planeta destruído

Um planeta pode ter sido destruído por uma anã branca no centro de uma nebulosa planetária, a primeira vez que tal fato ocorre.

© Chandra / Hubble / VISTA / GALEX (Nebulosa da Hélice)

Esta composição da Nebulosa da Hélice contém dados de raios X do Chandra (magenta), no visível pelo Hubble (laranja, azul claro), no infravermelho pelo ESO (dourado, azul escuro) e no ultravioleta pelo GALEX (roxo). Os dados do Chandra indicam que esta anã branca destruiu um planeta em órbita muito íntima. O ponto roxo no centro da nebulosa é a anã branca WD 2226-210.

Isto explicaria um misterioso sinal de raios X que os astrônomos já detectam na Nebulosa da Hélice há mais de 40 anos. A Nebulosa da Hélice é uma nebulosa planetária, uma estrela como o nosso Sol, mas numa fase mais avançada, que liberou as suas camadas exteriores, deixando no seu centro uma pequena estrela tênue chamada anã branca.

Eventualmente, os detritos do planeta formaram um disco ao redor da anã branca e caíram na superfície da estrela, criando o misterioso sinal em raios X que tem sido detectado durante décadas. Desde 1980, missões de raios X, como o observatório Einstein e o telescópio ROSAT, observaram uma leitura incomum no centro da Nebulosa da Hélice. Detectaram raios X altamente energéticos provenientes da anã branca WD 2226-210 no centro da nebulosa, localizada a apenas 650 anos-luz da Terra.

As anãs brancas como WD 2226-210 não emitem normalmente raios X muito intensos. Um novo estudo com dados do Chandra e do XMM-Newton pode ter finalmente resolvido a questão do que está causando estes raios X da WD 2226-210: este sinal de raios X pode ser os detritos de um planeta destruído sendo puxados para a anã branca. Se confirmado, este seria o primeiro caso de um planeta visto sendo destruído pela estrela central numa nebulosa planetária.

Observações efetuadas pelo ROSAT, Chandra e XMM-Newton entre 1992 e 2002 mostram que o sinal de raios X da anã branca permaneceu aproximadamente constante em termos de brilho durante esse tempo. Os dados, no entanto, sugerem que pode haver uma mudança sutil e regular no sinal de raios X a cada 2,9 horas, fornecendo evidências da existência de um planeta excepcionalmente próximo da anã branca.

Anteriormente, os cientistas determinaram que um planeta do tamanho de Netuno está numa órbita muito próxima da anã branca, completando uma órbita em menos de três dias. Os pesquisadores deste último estudo concluem que poderia ter existido um planeta como Júpiter ainda mais próximo da estrela. O planeta dizimado poderia ter estado inicialmente a uma distância considerável da anã branca, mas depois migrou para o interior, interagindo com a gravidade de outros planetas do sistema. Assim que se aproximou o suficiente da anã branca, a gravidade da estrela teria parcial ou completamente despedaçado o planeta.

A WD 2226-210 tem algumas semelhanças, no que se refere ao seu comportamento em raios X, com duas outras anãs brancas que não estão no interior de nebulosas planetárias. Uma delas está possivelmente retirando material de um planeta companheiro, mas de uma forma mais calma, sem que o planeta seja rapidamente destruído. A outra anã branca está provavelmente arrastando material dos vestígios de um planeta para a sua superfície. Estas três anãs brancas podem constituir uma nova classe de objetos variáveis, ou em mudança.

O artigo científico que descreve estes resultados foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Harvard-Smithsonian Center for Astrophysics

segunda-feira, 30 de dezembro de 2024

Um pálido ponto azul

Esta imagem do telescópio espacial Hubble apresenta a galáxia LEDA 22057, que está localizada a cerca de 650 milhões de anos-luz de distância na constelação de Gêmeos.

© Hubble (galáxia LEDA 22057)

A galáxia LEDA 22057 é o local de uma explosão de supernova. Esta supernova em particular, chamada SN 2024PI, foi descoberta por uma pesquisa automatizada em janeiro de 2024. A exploração cobre toda a metade norte do céu noturno a cada dois dias e catalogou mais de 10.000 supernovas. 

A supernova é visível nesta imagem: localizada logo abaixo e à direita do núcleo galáctico, o ponto azul claro da SN 2024PI se destaca contra os braços espirais fantasmagóricos da galáxia. Esta imagem foi tirada cerca de um mês e meio após a descoberta da supernova, então ela é vista aqui muitas vezes mais fraca do que seu brilho máximo. 

A SN 2024PI é classificada como uma supernova Tipo Ia. Este tipo de supernova requer um objeto notável chamado anã branca, o núcleo cristalizado de uma estrela com uma massa menor que cerca de oito vezes a massa do Sol. Quando uma estrela deste tamanho usa o suprimento de hidrogênio em seu núcleo, ela incha em uma gigante vermelha, tornando-se fria, inchada e luminosa.

Com o tempo, pulsações e ventos estelares fazem com que a estrela perca suas camadas externas, deixando para trás uma anã branca e uma nebulosa planetária colorida. Anãs brancas podem ter temperaturas de superfície maiores que 100.000 graus e são extremamente densas, acumulando aproximadamente a massa do Sol em uma esfera do tamanho da Terra.

Embora quase todas as estrelas na Via Láctea um dia evoluam para anãs brancas, este é o destino que aguarda o Sol cerca de cinco bilhões de anos no futuro, nem todas explodirão como supernovas do Tipo Ia. Para que isso aconteça, a anã branca deve ser um membro de um sistema estelar binário. Quando uma anã branca absorve material de um parceiro estelar, a anã branca pode se tornar muito massiva para se sustentar. A explosão resultante de fusão nuclear descontrolada destrói a anã branca em uma explosão de supernova que pode ser vista em muitas galáxias distantes.

Fonte: ESA

sexta-feira, 22 de novembro de 2024

Anã branca e estrela da sequência principal em aglomerados abertos

Uma equipe de astrônomos descobriu a primeira população de candidatos a binários estelares compostos por uma anã branca e por uma estrela da sequência principal em aglomerados abertos.

© ALMA (sistema estelar HD 101584)

Esta descoberta ajudará a relacionar os estados inicial e final dos sistemas estelares binários, o que ajudará a informar os modelos de formação estelar, a evolução química da nossa Galáxia e até a maneira como a maioria dos elementos da tabela periódica foram criados. 

O estudo foi possível graças à utilização da aprendizagem de máquina para analisar dados provenientes de três fontes principais: a missão Gaia da ESA, um telescópio espacial que estudou mais de um bilhão de estrelas na Via Láctea, e observações dos levantamentos 2MASS e Pan-STARRS1. Este conjunto de dados, quando combinados, permitiu à equipe procurar novos binários em aglomerados com características semelhantes às dos pares conhecidos de anãs brancas e estrelas da sequência principal. 

A maioria das estrelas encontra-se agrupada em sistemas binários, ou seja, pares de estrelas que orbitam em torno de um centro de gravidade comum. De fato, quase metade de todas as estrelas semelhantes ao nosso Sol têm pelo menos uma estrela companheira. Estas estrelas emparelhadas diferem geralmente em tamanho, sendo uma estrela frequentemente mais massiva do que a outra. 

As estrelas mais massivas tendem a ter vidas mais curtas e a passar pelas fases de evolução estelar muito mais rapidamente do que as suas companheiras de menor massa. A fase principal da evolução de uma estrela é designada por fase da "sequência principal". É nesta fase que o hidrogênio está sendo fundido em hélio no núcleo da estrela. O nosso Sol é atualmente uma estrela da sequência principal, tal como cerca de 90 por cento das estrelas do Universo. Na fase em que uma estrela se aproxima do fim da sua vida, expande-se para centenas ou milhares de vezes o seu tamanho original durante a fase de gigante vermelha ou ramo assintótico das gigantes". 

Em sistemas binários íntimos, esta expansão é tão dramática que as camadas exteriores da estrela moribunda podem, por vezes, engolir completamente a sua companheira. Esta é a fase do "envelope comum", pois ambas as estrelas ficam envoltas no mesmo material. Esta fase de envelope comum e a forma como as estrelas espiralam juntas durante este período crítico continua sendo um dos maiores mistérios da astrofísica. Os cientistas ainda têm dificuldade em compreender como é que esta interação afeta a evolução subsequente das estrelas. 

Embora estes tipos de sistemas binários devessem ser muito comuns, têm sido difíceis de encontrar, com apenas dois candidatos confirmados em aglomerados antes desta investigação, que tem o potencial de aumentar este número para 52 binários em 38 aglomerados estelares. Uma vez que se pensa que as estrelas destes aglomerados se formaram todas ao mesmo tempo, encontrar estes binários em aglomerados abertos permite determinar a idade dos sistemas e traçar a sua evolução completa desde antes das condições de envelope comum até aos binários observados na sua fase pós-envelope comum.

Os binários que contêm objetos compactos são também os progenitores de um tipo de explosão estelar extrema chamada supernova de Tipo Ia e o tipo de fusão que cria ondas gravitacionais, ou seja, ondulações no espaço-tempo que podem ser detectadas por instrumentos como o LIGO (Laser Interferometer Gravitational-Wave Observatory). À medida que a equipe utiliza os dados dos telescópios Gemini, Keck e Magellan para confirmar e medir as propriedades destes binários, este catálogo acabará fornecendo detalhes dos muitos fenômenos transientes e elusivos do nosso Universo.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: University of Toronto

terça-feira, 25 de junho de 2024

Estrela veloz pode escapar da Via Láctea

Cientistas cidadãos e astrônomos profissionais uniram-se para detectar uma rara estrela de hipervelocidade a percorrer a nossa Galáxia, a Via Láctea.

© UC San Diego (ilustração do sistema binário com explosão de supernova)

Com sua velocidade e trajetória atuais, é possível que um dia ela escape da galáxia para sempre. A descoberta só foi possível graças às legiões de voluntários que dedicaram seu tempo ao projeto Backyard Worlds: Planet 9. Esses voluntários auxiliam os astrônomos examinando dados de mais de 14 anos da missão Wide-field Infrared Survey Explorer (WISE) da NASA, procurando objetos que se movem entre as imagens. Os astrônomos podem então acompanhar descobertas interessantes para aprender mais. 

Na recente 244ª reunião nacional da Sociedade Astronômica Americana em Madison, Wisconsin, Adam Burgasser (Universidade da Califórnia, San Diego) anunciou a descoberta de um objeto em movimento rápido conhecido como CWISE J124909+362116.0 (J1249+36 para abreviar), cerca de 400 anos-luz da Terra. Ele estima que esteja viajando pela Via Láctea a cerca de 450 km/s. 

Burgasser usou o W.M. Observatório Keck em Maunakea, Havaí, para obter o espectro de J1249+36 no infravermelho. O espectro correspondia aos modelos atmosféricos criados por Roman Gerasimov (Universidade da Califórnia, San Diego) de uma classe de estrelas de baixa massa conhecidas como subanãs L. Essas estrelas são algumas das mais raras e antigas do Universo. Em seguida, Burgasser combinou os dados recolhidos dos espectros com imagens de telescópios terrestres para medir a posição e velocidade da estrela.

Podemos saber para onde está indo, mas de onde essa estrela surgiu? Uma opção é que uma vez orbitou uma estrela anã branca, que posteriormente explodiu como uma supernova Tipo Ia. Nesse tipo de supernova, a anã branca é completamente destruída, por isso a sua companheira é liberada e voa à velocidade orbital em que se movia originalmente, além de um pequeno impulso da explosão da supernova. Se isso aconteceu, ocorreu há tanto tempo que não há mais remanescentes de supernova para caçar. A segunda possibilidade é que a estrela tenha começado nas profundezas de um denso grupo de estrelas conhecido como aglomerado globular. Em seguida, encontrou um par de buracos negros aninhados nas profundezas do aglomerado. 

Quando uma estrela encontra um buraco negro binário, a dinâmica complexa desta interação de três corpos pode expulsar essa estrela do aglomerado globular. Existe uma maneira de os astrônomos decidirem entre essas duas opções. Os astrônomos estão essencialmente à procura de uma impressão digital química que identifique de que sistema esta estrela provém. Mas isso exigiria um espectro mais detalhado de J1249+36. Tal espectro poderia mostrar que a subanã estava poluída com elementos expelidos pela supernova. Por outro lado, poderia mostrar uma correspondência estreita com a química das estrelas em aglomerados globulares; como os globulares são tão antigos, suas estrelas contêm muito poucos elementos além do hidrogênio e do hélio.

Fonte: Sky & Telescope

domingo, 12 de maio de 2024

Anãs brancas e a poluição metálica

As estrelas mortas, conhecidas como anãs brancas, têm uma massa parecida à do Sol, mas têm um tamanho semelhante ao da Terra.

© S. Burrows (órbitas de planetesimais ao redor de anã branca)

A ilustração mostra as órbitas de planetesimais em torno de uma anã branca. Inicialmente, cada planetesimal tem uma órbita circular e prógrada. No início forma um disco excêntrico de detritos com órbitas prógradas (azul) e retrógradas (laranja).

As anãs brancas são comuns na Via Láctea, uma vez que 97% das estrelas estão destinadas a tornar-se anãs brancas. Quando as estrelas chegam ao fim das suas vidas, os seus núcleos colapsam na densa bola de uma anã branca, fazendo com que a nossa Galáxia pareça um cemitério etéreo. 

Apesar da sua prevalência, a composição química destes remanescentes estelares tem permanecido um enigma para durante anos. A presença de elementos metálicos pesados, tais como: silício, magnésio e cálcio, na superfície de muitos destes objetos compactos é uma descoberta intrigante que desafia as nossas expectativas do comportamento estelar.

Sabemos que se estes metais pesados estiverem presentes na superfície da anã branca, esta é suficientemente densa para que estes metais pesados se colapsem rapidamente em direção ao núcleo. Embora as anãs brancas possam consumir vários objetos próximos, como cometas ou asteroides, as complexidades deste processo ainda não foram totalmente exploradas. No entanto, este comportamento pode ser a chave para desvendar o mistério da composição metálica de uma anã branca, levando potencialmente a revelações interessantes sobre a dinâmica das anãs brancas. 

Usando simulações em computador, os pesquisadores simularam a anã branca recebendo um "pontapé natal" durante a sua formação (o que já foi observado), causado por uma perda de massa assimétrica, alterando o seu movimento e a dinâmica de qualquer material circundante. Em 80% dos testes foram observados que a partir deste pontapé, as órbitas dos cometas e asteroides num raio de 30 a 240 UA da anã branca (correspondente à distância Sol-Netuno e mais além) se tornaram alongadas e alinhadas. Além disso, cerca de 40% dos planetesimais capturados subsequentemente provêm de órbitas retrógradas. 

Os pesquisadores também alargaram as suas simulações para examinar a dinâmica da anã branca após 100 milhões de anos. Descobriram que os planetesimais próximos da anã branca continuavam a ter órbitas alongadas e a mover-se como uma unidade coerente, um resultado nunca antes visto. 

Estes resultados explicam porque é que os metais pesados se encontram na superfície de uma anã branca, pois essa anã branca consome continuamente objetos menores no seu caminho. Uma vez que o grupo de de pesquisa se concentra na dinâmica gravitacional, olhar para a gravidade que rodeia as anãs brancas pareceu ser um foco natural de análise. Outros estudos sugeriram que os asteroides e os cometas, os corpos pequenos, podem não ser a única fonte de poluição metálica na superfície das anãs brancas. Por isso, as anãs brancas podem capturar algo maior, como um planeta. 

Estas novas descobertas revelam mais sobre a formação das anãs brancas, o que é importante para compreender como os sistemas solares mudam ao longo de milhões de anos. Ajudam também a esclarecer as origens e a evolução futura do nosso Sistema Solar, revelando mais sobre a química envolvida. A grande maioria dos planetas no Universo acabará por orbitar uma anã branca. É possível que 50% destes sistemas sejam englobados pela sua estrela, incluindo o nosso próprio Sistema Solar. 

Um artigo foi publicado no periódico The Astrophysical Journal Letters

Fonte: University of Colorado

sexta-feira, 18 de agosto de 2023

Encontrada uma anã marrom mais quente que o Sol

Esta estrela fracassada é irradiada por sua companheira, uma anã branca, e pode ser usada para estudar Júpiteres quentes.

© NASA (ilustração de uma anã marrom)

Um sistema binário a 1.400 anos-luz de distância está aumentando o calor e pode ajudar os especialistas a entender melhor a classe de exoplanetas conhecidos como Júpiteres ultraquentes, gigantes gasosos que estão muito próximos de suas massivas estrelas hospedeiras. 

O sistema único descrito em um novo estudo inclui uma anã marrom cuja temperatura atinge aproximadamente 7.700 °C. Isso o torna mais quente que o Sol, cuja superfície é de 5.500 °C. Mas, as temperaturas sufocantes da anã marrom não são geradas por nenhuma reação nuclear interna própria: em vez disso, ela orbita muito perto de sua companheira, uma anã branca chamada WD 0032-317, que a está explodindo com emissão de radiação. O lado noturno da anã marrom, ou seja, o lado voltado para longe da anã branca, é quase 6.000 °C mais frio. 

Este par de estrelas pode ajudar os cientistas a aprender mais sobre exoplanetas que orbitam muito perto de estrelas massivas e quentes. Os intensos surtos de radiação ultravioleta dessas estrelas podem fazer com que as atmosferas desses planetas evaporem e até vaporizem seu material planetário. Mas, esse processo é difícil de estudar. 

Um sistema anã branca e anã marrom pode servir como um análogo para um sistema de Júpiter ultraquente, que é muito mais fácil de observar. Análogos de Júpiter fornecem uma maneira indireta de estudar as atmosferas de planetas gigantes porque as anãs marrons devem ter atmosferas muito semelhantes às dos planetas gigantes gasosos.

O sistema WD 0032–317 foi observado pela primeira vez por astrônomos que realizaram um levantamento de centenas de anãs brancas no início dos anos 2000 com o Very Large Telescope (VLT) no Observatório Paranal, no Chile. 

Uma anã branca é uma estrela que atingiu a fase final de sua vida, depois de se expandir para uma gigante vermelha quando seu combustível acaba, ela explode suas camadas externas, tudo o que resta é o núcleo quente e inerte. 

O WD 0032–317 foi inicialmente sinalizado como um sistema binário de duas anãs brancas; mas, quando os astrônomos revisitaram os dados, eles viram sinais que eram mais reveladores de uma companheira anã marrom. 

As anãs marrons não são planetas nem estrelas, mas objetos intermediários: pelo menos 13 vezes mais massivas que Júpiter, mas não massivas o suficiente para gerar o calor e a pressão necessários para fundir o hidrogênio em hélio. Por esse motivo, às vezes são chamadas de estrelas fracassadas. 

A anã marrom também pode ser uma das maiores já encontradas, pesando de 75 a 88 vezes a massa de Júpiter. Em observações de acompanhamento, os pesquisadores viram uma emissão vindo do lado sempre voltado para a anã branca. Ele foi originalmente perdido há duas décadas porque as observações originais foram feitas quando o lado noturno da companheira estava voltado para o telescópio. Nos novos dados, o lado diurno da anã marrom está voltado para o telescópio. 

Os astrônomos conhecem apenas um outro exemplo deste fenômeno: KELT-9b, que é tão quente que espalha material por trás dele, imitando a cauda de um cometa. A dificuldade de encontrar Júpiteres ultraquentes se deve em parte ao brilho de suas grandes estrelas hospedeiras próximas. Para complicar ainda mais as coisas, essas estrelas giram rapidamente e são propensas a tempestades estelares. 

Os astrônomos geralmente medem a massa de um exoplaneta medindo o desvio para o vermelho e o desvio para o azul das linhas espectrais da estrela hospedeira conforme a estrela oscila devido à atração gravitacional do exoplaneta. Mas quando uma grande estrela está girando rapidamente e explodindo, o movimento rápido do material da estrela torna mais difícil para discernir a oscilação da estrela. 

Por essas razões, os astrônomos estão interessados em usar anãs marrons que orbitam anãs brancas como análogos de Júpiteres ultraquentes. Os tamanhos relativos desses objetos tornam a anã marrom mais fácil de observar: uma anã marrom tem aproximadamente o mesmo diâmetro de um Júpiter quente, mas as anãs brancas são muito menores do que a maioria das estrelas, aproximadamente do tamanho da Terra. No entanto, eles ainda podem liberar calor residual suficiente para queimar companheiros próximos: no caso de WD 0032–317, a quantidade de radiação ultravioleta extrema que a anã marrom recebe de sua anã branca é 5.600 vezes maior que a de KELT-9b. 

Além de ser um modelo para Júpiteres ultraquentes, o sistema WD 0032–317 também oferece aos cientistas uma visão da evolução das estrelas. Com base em modelos de evolução estelar, a anã marrom parece ter pelo menos alguns bilhões de anos. Mas a anã branca ainda é incrivelmente quente, indicando que faz apenas cerca de 1 milhão de anos desde que se tornou uma anã branca. Além do mais, a anã branca tem uma massa de cerca de 0,4 vezes a do Sol. 

De acordo com a teoria, uma anã branca tão pequena não pode existir por conta própria, levaria uma estrela de massa tão baixa por mais tempo do que a idade do Universo para atingir sua fase de anã branca. Suspeita-se que a anã marrom ajudou a colocar a anã branca no estado em que se encontra hoje porque, em certo momento, elas compartilharam um envelope comum. A evolução do envelope comum é uma fase na vida de uma estrela binária em que duas estrelas ou objetos orbitam dentro de um envelope compartilhado de gás. Nesse caso, o envelope comum se desenvolveu quando a estrela primária se expandiu para uma gigante vermelha, envolvendo a anã marrom. A anã marrom pode ter ajudado a estrela primária a perder parte de sua massa e se tornar uma anã branca antes do esperado para uma única estrela.

Fonte: Astronomy

quinta-feira, 27 de julho de 2023

Uma estrela com "duas faces"

Pela primeira vez, os astrônomos descobriram que pelo menos um membro das anãs brancas tem duas faces.

© Caltech / K. Miller (ilustração da anã branca Jano)

Um dos lados de uma anã branca é composto por hidrogênio, enquanto o outro é composto por hélio. A superfície da anã branca muda completamente de um lado para o outro. 

As anãs brancas são os remanescentes escaldantes de estrelas que já foram como o nosso Sol. À medida que as estrelas envelhecem, transformam-se em gigantes vermelhas; eventualmente, o seu material exterior é expelido e os seus núcleos contraem-se em anãs brancas densas e escaldantes. O nosso Sol evoluirá para uma anã branca dentro de cerca de 5 bilhões de anos. 

A recém-descoberta anã branca, apelidada de Jano em homenagem ao deus romano, com duas caras, das mudanças e transições (o nome científico da anã branca é ZTF J203349.8+322901.1), foi inicialmente descoberta pelo ZTF (Zwicky Transient Facility), um instrumento que varre o céu todas as noites a partir do Observatório Palomar do Caltech, perto de San Diego, EUA. 

Os astrônomos estavam procurando anãs brancas altamente magnetizadas, como o objeto conhecido como ZTF J1901+1458. Um dos objetos candidatos destacou-se pelas suas rápidas mudanças de brilho, que foi analisada mais a fundo com o instrumento CHIMERA, também em Palomar, e o HiPERCAM no GTC (Gran Telescopio Canarias), nas Ilhas Canárias, Espanha. 

Estes dados confirmaram que Jano completa uma rotação de 15 em 15 minutos. Observações subsequentes feitas com o Observatório W. M. Keck no topo de Maunakea, no Havaí, revelaram a dramática natureza de dupla face da anã branca. A equipe usou um instrumento chamado espetrômetro para espalhar a luz da anã branca num arco-íris de comprimentos de onda que contém impressões digitais químicas. Os dados revelaram a presença de hidrogênio quando um dos lados do objeto estava à vista (sem sinais de hélio), e apenas hélio quando o outro lado era visível. 

O que é que levaria uma anã branca, flutuando sozinha no espaço, a ter faces tão drasticamente diferentes? A equipe reconhece que está perplexa, mas avançou com algumas teorias possíveis. Uma delas é que podemos estar assistindo a Jano passando por uma fase rara da evolução de uma anã branca. Após a formação das anãs brancas, os elementos mais pesados afundam-se para o núcleo e os elementos mais leves, como o hidrogênio, flutuam para o topo. Mas com o tempo, à medida que as anãs brancas arrefecem, pensa-se que os materiais se misturem. Em alguns casos, o hidrogênio é misturado no interior e diluído de tal forma que o hélio se torna mais predominante. 

A estrela Janus pode estar realizando esta fase de transição, mas uma questão premente é: porque é que a transição está acontecendo de forma tão desarticulada, com um lado evoluindo antes do outro? A resposta pode estar nos campos magnéticos, que à volta dos corpos cósmicos tendem a ser assimétricos, ou seja, mais fortes num dos lados. Os campos magnéticos podem impedir a mistura de materiais. Assim, se o campo magnético for mais forte de um lado, ele terá menos mistura e, portanto, mais hidrogênio. Outra teoria proposta pela equipe para explicar as duas faces também depende dos campos magnéticos. Mas, neste cenário, pensa-se que os campos alterem a pressão e a densidade dos gases atmosféricos. Os campos magnéticos podem levar a pressões de gás mais baixas na atmosfera, o que pode permitir a formação de um "oceano" de hidrogênio onde os campos magnéticos são mais fortes. 

Para ajudar a resolver o mistério, a equipe espera encontrar mais anãs brancas do tipo Jano com o levantamento do céu do ZTF. Futuras explorações, como as que serão efetuadas pelo Observatório Vera C. Rubin, no Chile, deverão facilitar ainda mais a descoberta de anãs brancas variáveis. 

Um artigo foi publicado na revista Nature

Fonte: W. M. Keck Observatory

sexta-feira, 7 de julho de 2023

Um planeta que desafia a morte

Quando o nosso Sol chegar ao fim da sua vida, se expandirá até 100 vezes o seu tamanho atual, envolvendo a Terra.

© A. Makarenko (ilustração do sistema Baekdu)

Este é possível cenário em que Baedku que era originalmente um sistema binário composto por uma estrela gigante vermelha em órbita de uma estrela anã branca. A proximidade do par estelar permitiu a transferência de material entre as duas estrelas, levando à sua eventual fusão. O planeta Halla está em primeiro plano, orbitando perigosamente perto, mas suficientemente longe para sobreviver ao impacto da colisão explosiva do par estelar.

Muitos planetas em outros sistemas solares enfrentam um destino semelhante à medida que as suas estrelas hospedeiras envelhecem. Mas nem toda a esperança está perdida: astrônomos do IfA (Institute for Astronomy) da Universidade do Havaí fizeram a notável descoberta da sobrevivência de um planeta após o que deveria ter sido a morte certa devido a sua estrela. 

O planeta semelhante a Júpiter, 8 UMi b, oficialmente chamado Halla, orbita a estrela gigante vermelha Baekdu (8 UMi) a apenas metade da distância que separa a Terra do Sol. Utilizando dois observatórios na ilha do Havaí, o Observatório W. M. Keck e o CFHT (Canada-France-Hawaii Telescope), uma equipe de astrônomos descobriu que Halla persiste apesar da evolução normalmente perigosa de Baekdu. 

Utilizando observações das oscilações estelares de Baekdu feitas pelo TESS (Transiting Exoplanet Survey Satellite) da NASA, descobriram que a estrela está queimando hélio no seu núcleo, o que indica que já se tinha expandido enormemente até se tornar uma estrela gigante vermelha. A estrela teria inchado até 1,5 vezes a distância orbital do planeta, engolindo-o no processo, antes de encolher para o seu tamanho atual a apenas um-décimo desta distância.

O planeta Halla foi descoberto em 2015 por astrônomos da Coreia do Sul utilizando o método da velocidade radial, que mede o movimento periódico de uma estrela devido à força gravitacional do planeta que a orbita. Após a descoberta de que a estrela deve ter sido, em tempos, maior do que a órbita do planeta, a equipe do IfA realizou observações adicionais entre 2021 e 2022 usando o HIRES (High Resolution Echelle Spectrometer) do Observatório Keck e o instrumento ESPaDOnS (Echelle SpectroPolarimetric Device for the Observation of Stars) do CFHT. 

Estes novos dados confirmaram que a órbita quase circular de 93 dias do planeta permaneceu estável durante mais de uma década e que o movimento para trás e para a frente deve ser devido a um planeta. A uma distância de 0,46 UA (unidades astronômicas, igual a distância Terra-Sol) da sua estrela, o planeta Halla assemelha-se a planetas  "quentes", parecidos a Júpiter, que se pensa terem começado em órbitas maiores antes de migrarem para o interior, perto das suas estrelas. No entanto, face a uma estrela hospedeira em rápida evolução, tal origem torna-se uma via de sobrevivência extremamente improvável para o planeta Halla. 

Outra teoria para a sobrevivência do planeta é o fato de nunca ter enfrentado o perigo de ser engolido. Tal como o famoso planeta Tatooine da saga "Guerra das Estrelas", que orbita dois sóis, a estrela hospedeira Baekdu pode ter sido originalmente duas estrelas, segundo a equipe. A fusão destas duas estrelas pode ter impedido qualquer uma delas de se expandir o suficiente para engolir o planeta. Uma terceira possibilidade é que Halla seja um relativo recém-nascido, que a colisão violenta entre as duas estrelas tenha produzido uma nuvem de gás a partir da qual o planeta se formou. O planeta Halla pode ser um planeta de "segunda geração" nascido recentemente.

Um artigo foi publicado na revista Nature

Fonte: W. M. Keck Observatory