Mostrando postagens com marcador Sol. Mostrar todas as postagens
Mostrando postagens com marcador Sol. Mostrar todas as postagens

segunda-feira, 23 de junho de 2025

A nossa água é mais velha do que o Sol?

Uma equipe liderada por astrônomos da Universidade de Leiden, nos Países Baixos, e do NRAO (National Radio Astronomy Observatory), na Virgínia (EUA), detectou, pela primeira vez, água gelada semipesada em torno de uma jovem estrela semelhante ao Sol.

© STScI / Webb (sistema protoestelar L1527 IRS)

Os pesquisadores utilizaram o telescópio espacial James Webb, cujos resultados reforçam a hipótese de que parte da água no nosso Sistema Solar se formou antes do Sol e dos planetas.

Uma das formas de os astrônomos descobrirem a origem da água é através da medição da taxa de deuteração. Esta é a fração de água que contém um átomo de deutério em vez de um dos hidrogênios. Assim, em vez de H2O, é HDO, que também é chamada água semipesada. Uma fração elevada de água semipesada é um sinal de que a água se formou num local muito frio, como as nuvens escuras primitivas de poeira, gelo e gás de onde nascem as estrelas.

Nos nossos oceanos, nos cometas e nas luas geladas, uma em cada dois milhares de moléculas de água é constituída por água semipesada. Este valor é cerca de dez vezes superior ao esperado com base na composição do nosso Sol. Por isso, foi colocada a hipótese de parte da água do nosso Sistema Solar ter tido origem como gelo em nuvens escuras, centenas de milhares de anos antes do nascimento do Sol.

Para confirmar esta hipótese, é necessário medir a taxa de deuteração da água gelada nestas regiões de formação estelar. Astrônomos detectaram agora uma proporção muito elevada de água gelada semipesada num invólucro protoestelar. Esta é a nuvem de material que rodeia uma estrela na sua fase embrionária. Antes, a taxa de deuteração da água em regiões de formação estelar só podia ser medida de forma confiável na fase gasosa, onde pode ser quimicamente alterada. Agora, com a sensibilidade sem precedentes do Webb, foi observada uma assinatura muito clara de água gelada semipesada na direção da protoestrela L1527 IRS, localizada na constelação de Touro, a cerca de 460 anos-luz da Terra.

A taxa de deuteração da água em L1527 IRS é muito semelhante à taxa de alguns cometas, bem como ao do disco protoplanetário de uma estrela jovem mais evoluída, o que sugere origens químicas antigas e frias semelhantes para a água encontrada em todos estes objetos.

Esta descoberta vem juntar-se às evidências crescentes de que a maior parte da água gelada faz a sua viagem praticamente inalterada desde as primeiras até às últimas fases da formação estelar. No entanto, a taxa de deuteração da água gelada medido em L1527 IRS é ligeiramente superior às taxas medidas em alguns cometas do nosso Sistema Solar e à taxa de água na Terra.

Uma variedade de fatores pode causar esta diferença. Por exemplo, alguma da água nestes cometas e na Terra pode ter sido quimicamente alterada no disco. Ou a nuvem escura que formou o nosso Sol pode ser diferente da nuvem escura onde L1527 IRS se formou. Estão planejadas mais observações de água gelada semipesada para investigar possíveis razões para estas diferenças em 30 novas protoestrelas e nuvens escuras primitivas.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: Leiden University

Um eclipse solar artificial

A missão Proba-3 da ESA revelou as suas primeiras imagens da atmosfera exterior do Sol, a coroa solar.

© ESA (coroa interna do Sol)

Esta imagem, captada no espectro da luz visível, mostra a coroa solar de forma semelhante à que um olho humano veria durante um eclipse através de um filtro verde. As estruturas semelhantes a cabelos foram reveladas utilizando um algoritmo especializado de processamento de imagem.

Os dois satélites da missão, capazes de voar como uma única nave espacial graças a um conjunto de tecnologias de posicionamento a bordo, conseguiram criar o seu primeiro "eclipse solar total artificial" em órbita.

As imagens coronais resultantes demonstram o potencial das tecnologias de voo em formação, ao mesmo tempo que fornecem dados científicos de valor incalculável que irão melhorar a nossa compreensão do Sol e da sua enigmática atmosfera.

No passado mês de março, a missão Proba-3 conseguiu o que nenhuma outra tinha conseguido antes, um feito extraordinário possibilitado por um conjunto de tecnologias inovadoras de navegação e posicionamento. As suas duas naves espaciais, a 'Coronagraph' e a 'Occulter', voaram a 150 metros de distância em formação perfeita durante várias horas sem qualquer controle a partir do solo. Enquanto estiveram alinhadas, as duas naves mantiveram a sua posição relativa até um único milímetro.  Demonstrando o grau de precisão alcançado, as duas naves espaciais utilizam o seu tempo de voo em formação para criar eclipses solares totais artificiais em órbita, alinham-se com o Sol de modo a que o disco de 1,4 m de diâmetro transportado pela nave 'Occulter' cubra o disco brilhante do Sol para a nave 'Coronagraph', projetando uma sombra de 8 cm de diâmetro sobre o seu instrumento óptico, o ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun). Quando a abertura de 5 cm está coberta pela sombra, o instrumento capta imagens da coroa solar sem ser interrompido pela luz brilhante do Sol.

A observação da coroa é crucial para revelar o vento solar, o fluxo contínuo de matéria do Sol para o espaço exterior. É também necessária para compreender o funcionamento das ejeções de massa coronal, explosões de partículas enviadas pelo Sol quase todos os dias, especialmente durante períodos de grande atividade. Estes eventos podem criar auroras espantosas no céu noturno, mas também representam sérias ameaças à tecnologia moderna. Podem perturbar significativamente as comunicações, a distribuição energética e os sistemas de navegação na Terra, como aconteceu em maio de 2024.

As imagens coronais resultantes das primeiras observações do ASPIICS fornecem um vislumbre dos dados valiosos que podemos esperar desta missão produtora de eclipses. A ardente coroa do Sol atinge temperaturas superiores a um milhão de graus Celsius, muito mais quente do que a superfície por baixo dela. O ASPIICS da Proba-3 está resolvendo este mistério estudando a coroa muito perto da superfície do Sol. Também consegue ver mais pormenores, detectando características mais tênues do que os coronógrafos tradicionais, graças a uma redução drástica da quantidade de luz "dispersa" que chega ao detector.

Juntamente com as medições efetuadas por outro instrumento a bordo, o DARA (Digital Absolute Radiometer), o ASPIICS contribuirá para desvendar questões de longa data sobre o Sol. O DARA medirá a irradiância solar total, exatamente a quantidade de energia que o Sol emite em cada momento. Um terceiro instrumento científico da missão Proba-3, o 3DEES (3D Energetic Electron Spectrometer), irá detectar elétrons nos cinturões de radiação da Terra, medindo a sua direção de origem e níveis de energia.

As imagens do eclipse artificial são comparáveis às obtidas durante um eclipse natural. A diferença é que é possível criar o eclipse uma vez em cada órbita de 19,6 horas, enquanto os eclipses solares totais só ocorrem naturalmente uma vez, muito raramente duas vezes por ano. Para além disso, os eclipses totais naturais duram apenas alguns minutos, enquanto a Proba-3 pode manter o seu eclipse artificial até 6 horas.

Fonte: ESA

sábado, 21 de setembro de 2024

Sombras distorcidas da superfície da Lua

Numa imagem obtida em 14 de outubro de 2023, são vistas sombras distorcidas da superfície da Lua criadas por um eclipse anular do Sol.

© Ryan Imperio (sombras distorcidas da superfície da Lua durante um eclipse anular do Sol)

Esta é uma sequência de imagens captadas continuamente mostrando a progressão das contas de Baily no terceiro contato, ou seja, durante o fim da anularidade, o momento em que a borda oeste da Lua revela o disco do Sol durante o eclipse anular. 

As contas de Baily são formadas quando a luz do Sol brilha através dos vales e crateras da superfície da Lua, quebrando o conhecido padrão de anéis do eclipse, e só são visíveis quando a Lua entra ou sai de um eclipse. Elas são um desafio para captar devido à sua brevidade e ao tempo preciso necessário. 

A imagem foi tirada pelo astrofotógrafo Ryan Imperio, que foi o vencedor geral do concurso Astronomy Photographer of the Year concedido pelo Royal Museums Greewich. 

Fonte: Royal Observatory

sábado, 11 de maio de 2024

Tempestades solares intensas

O Solar Dynamics Observatory (SDO) da NASA registrou duas intensas tempestades geomagnéticas nesta sexta-feira (10) às 22h23 (BRT) e neste sábado às 8h44. As explosões solares continuarão acontecendo até este domingo (12).

© SDO (explosões solares classe X)

As erupções são classificadas como erupções das classes X5.8 e X1.5, respectivamente. A imagem mostra um subconjunto de luz ultravioleta extrema que destaca o material extremamente quente em explosões criadas a partir de uma mistura dos canais AIA 193, 171 e 131 do SDO. Durante os últimos dias, a mancha solar gigante AR3664 disparou várias erupções que produziram ejeções de massa coronal.

Os fenômenos de classe X demonstram explosões mais intensas e o número classifica sua força. Dependendo de como impacta a Terra, essas tempestades podem interromper as comunicações, a energia elétrica, a navegação e as operações de rádio e satélite. Este fenômeno acontece quando há explosões no Sol com influência do campo magnético que expele plasma, ejetando massa coronal para o espaço. 

Elas causam tempestades geomagnéticas quando são direcionadas à Terra, gerando auroras na atmosfera terrestre, que neste incidente foram vistas em vários locais no hemisfério Norte (aurora boreal) e hemisfério Sul (aurora austral).

© AFP (aurora boreal)

A fotografia mostra a aurora boreal registrada em Fusch an der Großglocknerstraße na Áustria.

A maior tempestade solar registrada foi o "evento de Carrington", de 1859, que destruiu a rede telegráfica nos Estados Unidos, provocou descargas elétricas e a aurora boreal foi visível em latitudes inéditas, até a América Central.

As tempestades solares podem impactar algumas tecnologias usadas na superfície do planeta. Embora nem todas as tempestades solares causem grandes impactos, aquelas consideradas intensas podem afetar as operações de comunicação. 

As tempestades solares podem afetar os satélites e outras naves espaciais em órbita, alterando sua orientação ou potencialmente desativando seus componentes eletrônicos. As interações com a ionosfera podem bloquear ou degradar as transmissões de rádio. O clima espacial severo pode comprometer as redes elétricas, causando interferência no controle de tensão e sistemas de proteção.

Fonte: NASA

sábado, 6 de abril de 2024

Sol emitiu excesso de raios gama no último pico de atividade

Por sua proximidade e importância para a manutenção da vida na Terra, o Sol é a estrela mais pesquisada pelos astrofísicos.

© NASA (linhas do complexo campo magnético na superfície do Sol)

Esta situação de objeto de estudo preferencial não significa que há pouco a se descobrir sobre o astro. Ao contrário, alguns tipos de pesquisa, como as de longo prazo, só podem ser realizados porque nosso planeta está, sempre, nas vizinhanças do Sol. Assim, é possível observá-lo de forma contínua e perceber detalhes que não podem ser conferidos em estrelas mais distantes. Foi justamente essa particularidade que permitiu um achado recente. 

O estudo realizado pelo brasileiro Bruno Arsioli e a italiana Elena Orlando relata que o Sol emitiu um excesso inesperado de raios gama de alta energia em seus polos. A maior concentração de radiação ocorreu durante seu último período mais ativo, o chamado máximo solar, em junho de 2014. 

Como a Terra, o Sol gira em torno de um eixo, cujas extremidades definem os polos. A rotação gera o campo magnético, de forma que os polos magnéticos coincidem com as pontas do eixo de rotação. Segundo os autores do trabalho, o esperado era que, quando houvesse variações no nível das emissões de raios gama, tais flutuações se manifestassem com a mesma intensidade em todas as áreas do Sol, de forma mais ou menos homogênea, em vez de se concentrarem exageradamente nas zonas de alta latitude. Essa maior concentração de emissões de raios gama foi observada no momento em que ocorreu a inversão dos polos magnéticos do Sol. Por isso, suspeita-se que a reconfiguração magnética esteja relacionada com a produção excessiva de radiação gama nos polos. A troca faz com que o polo magnético do sul migre para o norte do disco solar e vice-versa. Tal inversão ocorre em média a cada onze anos, durante o máximo solar. 

Atualmente, Bruno Arsioli é pesquisador no Instituto de Astrofísica e Ciências Espaciais da Universidade de Lisboa, em Portugal. Elena Orlando é pesquisadora da Universidade de Trieste, Itália. Arsioli iniciou o estudo com dados do Fermi em 2021, quando passou um ano associado ao grupo da italiana na Universidade de Trieste. 

Inédito, o resultado foi obtido a partir da análise de dados referentes a 13 anos e meio de observação do Sol, entre agosto de 2008 e janeiro de 2022, pelo telescópio espacial Fermi, que é dedicado a registrar emissões em frequências da radiação gama, a porção mais energética do espectro eletromagnético. Recentemente foi usado também para estudar uma misteriosa explosão de raios gama, a segunda mais intensa que se observou no espaço, ocasionada provavelmente pela rara fusão de duas estrelas de nêutrons. 

O trabalho de análise das emissões do Sol foi feito em etapas. Primeiramente, Arsioli e Orlando dividiram os dados coletados, que abrangeram um ciclo solar inteiro, em intervalos menores, de 400 a 700 dias. Em seguida, com o emprego de ferramentas de análise de dados por eles desenvolvidas, compararam as emissões de raios gama com energia acima de 5 gigaelétron-volt (GeV) de cada subperíodo em todas as regiões do disco solar. Dessa forma, notaram a concentração de produção de emissões de altas energias nas zonas polares durante o máximo solar. A constatação é amparada por testes estatísticos, descritos no trabalho, que indicam a relevância dos sinais observados. 

Considerado um astro comum entre as mais de 100 bilhões de estrelas da Via Láctea, o Sol se formou há cerca de 4,5 bilhões de anos. Diferente da Terra e da Lua, ele não é um corpo sólido. É uma bola de plasma quente (matéria ionizada, com partículas carregadas eletricamente), constituída pelos gases hidrogênio e hélio. O nível de atividade solar (produção de energia) varia ao longo do tempo de forma mais ou menos regular, em ciclos. 

A duração média de um ciclo solar é de 11 anos, mas pode variar entre 9 e 14 anos. A formação de manchas solares, pontos pretos associadas a áreas mais frias na superfície, é um termômetro da atividade solar. Ocasionalmente, as maiores manchas são visíveis da Terra sem a necessidade de recorrer a telescópios. Mais manchas sinalizam que o astro está funcionando em ritmo acelerado. A dinâmica energética do Sol também está associada a outros fenômenos, como a ocorrência de flares (erupções) e ejeções de massa coronal. 

Entre o momento de maior e o de menor atividade, a diferença de brilho, ou seja, de produção de energia, do Sol é muito pequena, de no máximo 0,1%. Por isso, os climatologistas descartam que variações na atividade solar possam influir de forma significativa no aumento do aquecimento global. Segundo cálculos da NASA, ao longo dos dois últimos séculos, o peso acumulado das emissões de gases de efeito estufa provenientes de atividades humanas sobre a temperatura média da Terra é pelo menos 270 vezes maior do que a possível influência de qualquer alteração de luminosidade do Sol. 

Ainda assim, as alterações em seu regime de funcionamento produzem impactos evidentes na aparência e no comportamento da estrela. Além de gerar conhecimento básico sobre a física estelar, os estudos sobre a atividade solar são úteis para entender os impactos reais que o astro pode ter sobre diferentes aspectos da vida cotidiana na Terra. Ao emitir mais radiação e matéria na direção do Sistema Solar, a estrela pode afetar os sistemas de navegação terrestre, como o GPS, e as telecomunicações no planeta. Para o astrofísico Rodrigo Nemmen, do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo (IAG-USP), que não participou do artigo, os dados do trabalho de Arsioli e Orlando são importantes para melhorar o entendimento sobre o funcionamento da superfície do Sol. 

Um dos desafios de Arsioli e Orlando é tentar observar novamente o pico de emissão de raios gama nas regiões polares do Sol durante o próximo máximo solar, que deve ocorrer em 2025. Se a estrela se comportar novamente como em junho de 2014, a ideia de que a produção excessiva de raios gama decorre da inversão periódica dos polos magnéticos se torna mais robusta.

Um artigo foi publicado no periódico The Astrophysical Journal

Fonte: Revista FAPESP

sexta-feira, 18 de agosto de 2023

Encontrada uma anã marrom mais quente que o Sol

Esta estrela fracassada é irradiada por sua companheira, uma anã branca, e pode ser usada para estudar Júpiteres quentes.

© NASA (ilustração de uma anã marrom)

Um sistema binário a 1.400 anos-luz de distância está aumentando o calor e pode ajudar os especialistas a entender melhor a classe de exoplanetas conhecidos como Júpiteres ultraquentes, gigantes gasosos que estão muito próximos de suas massivas estrelas hospedeiras. 

O sistema único descrito em um novo estudo inclui uma anã marrom cuja temperatura atinge aproximadamente 7.700 °C. Isso o torna mais quente que o Sol, cuja superfície é de 5.500 °C. Mas, as temperaturas sufocantes da anã marrom não são geradas por nenhuma reação nuclear interna própria: em vez disso, ela orbita muito perto de sua companheira, uma anã branca chamada WD 0032-317, que a está explodindo com emissão de radiação. O lado noturno da anã marrom, ou seja, o lado voltado para longe da anã branca, é quase 6.000 °C mais frio. 

Este par de estrelas pode ajudar os cientistas a aprender mais sobre exoplanetas que orbitam muito perto de estrelas massivas e quentes. Os intensos surtos de radiação ultravioleta dessas estrelas podem fazer com que as atmosferas desses planetas evaporem e até vaporizem seu material planetário. Mas, esse processo é difícil de estudar. 

Um sistema anã branca e anã marrom pode servir como um análogo para um sistema de Júpiter ultraquente, que é muito mais fácil de observar. Análogos de Júpiter fornecem uma maneira indireta de estudar as atmosferas de planetas gigantes porque as anãs marrons devem ter atmosferas muito semelhantes às dos planetas gigantes gasosos.

O sistema WD 0032–317 foi observado pela primeira vez por astrônomos que realizaram um levantamento de centenas de anãs brancas no início dos anos 2000 com o Very Large Telescope (VLT) no Observatório Paranal, no Chile. 

Uma anã branca é uma estrela que atingiu a fase final de sua vida, depois de se expandir para uma gigante vermelha quando seu combustível acaba, ela explode suas camadas externas, tudo o que resta é o núcleo quente e inerte. 

O WD 0032–317 foi inicialmente sinalizado como um sistema binário de duas anãs brancas; mas, quando os astrônomos revisitaram os dados, eles viram sinais que eram mais reveladores de uma companheira anã marrom. 

As anãs marrons não são planetas nem estrelas, mas objetos intermediários: pelo menos 13 vezes mais massivas que Júpiter, mas não massivas o suficiente para gerar o calor e a pressão necessários para fundir o hidrogênio em hélio. Por esse motivo, às vezes são chamadas de estrelas fracassadas. 

A anã marrom também pode ser uma das maiores já encontradas, pesando de 75 a 88 vezes a massa de Júpiter. Em observações de acompanhamento, os pesquisadores viram uma emissão vindo do lado sempre voltado para a anã branca. Ele foi originalmente perdido há duas décadas porque as observações originais foram feitas quando o lado noturno da companheira estava voltado para o telescópio. Nos novos dados, o lado diurno da anã marrom está voltado para o telescópio. 

Os astrônomos conhecem apenas um outro exemplo deste fenômeno: KELT-9b, que é tão quente que espalha material por trás dele, imitando a cauda de um cometa. A dificuldade de encontrar Júpiteres ultraquentes se deve em parte ao brilho de suas grandes estrelas hospedeiras próximas. Para complicar ainda mais as coisas, essas estrelas giram rapidamente e são propensas a tempestades estelares. 

Os astrônomos geralmente medem a massa de um exoplaneta medindo o desvio para o vermelho e o desvio para o azul das linhas espectrais da estrela hospedeira conforme a estrela oscila devido à atração gravitacional do exoplaneta. Mas quando uma grande estrela está girando rapidamente e explodindo, o movimento rápido do material da estrela torna mais difícil para discernir a oscilação da estrela. 

Por essas razões, os astrônomos estão interessados em usar anãs marrons que orbitam anãs brancas como análogos de Júpiteres ultraquentes. Os tamanhos relativos desses objetos tornam a anã marrom mais fácil de observar: uma anã marrom tem aproximadamente o mesmo diâmetro de um Júpiter quente, mas as anãs brancas são muito menores do que a maioria das estrelas, aproximadamente do tamanho da Terra. No entanto, eles ainda podem liberar calor residual suficiente para queimar companheiros próximos: no caso de WD 0032–317, a quantidade de radiação ultravioleta extrema que a anã marrom recebe de sua anã branca é 5.600 vezes maior que a de KELT-9b. 

Além de ser um modelo para Júpiteres ultraquentes, o sistema WD 0032–317 também oferece aos cientistas uma visão da evolução das estrelas. Com base em modelos de evolução estelar, a anã marrom parece ter pelo menos alguns bilhões de anos. Mas a anã branca ainda é incrivelmente quente, indicando que faz apenas cerca de 1 milhão de anos desde que se tornou uma anã branca. Além do mais, a anã branca tem uma massa de cerca de 0,4 vezes a do Sol. 

De acordo com a teoria, uma anã branca tão pequena não pode existir por conta própria, levaria uma estrela de massa tão baixa por mais tempo do que a idade do Universo para atingir sua fase de anã branca. Suspeita-se que a anã marrom ajudou a colocar a anã branca no estado em que se encontra hoje porque, em certo momento, elas compartilharam um envelope comum. A evolução do envelope comum é uma fase na vida de uma estrela binária em que duas estrelas ou objetos orbitam dentro de um envelope compartilhado de gás. Nesse caso, o envelope comum se desenvolveu quando a estrela primária se expandiu para uma gigante vermelha, envolvendo a anã marrom. A anã marrom pode ter ajudado a estrela primária a perder parte de sua massa e se tornar uma anã branca antes do esperado para uma única estrela.

Fonte: Astronomy

sexta-feira, 14 de julho de 2023

Manchas solares em um Sol ativo

Por que nosso Sol está tão ativo agora?

© NASA / SDO (manchas solares)

Esperava-se um aumento na atividade da superfície porque nosso Sol está se aproximando do máximo solar em 2025. 

No entanto, no mês passado, nosso Sol gerou mais manchas solares do que em qualquer mês durante todo o ciclo solar anterior de 11 anos, e até mesmo datando de 2002. 

A imagem em destaque é uma composição de imagens tiradas todos os dias de janeiro a junho pelo Solar Dynamic Observatory (SDO) da NASA. Mostrando uma grande abundância de manchas solares, grandes manchas individuais podem ser rastreadas ao longo do disco solar, da esquerda para a direita, durante cerca de duas semanas. 

À medida que o ciclo solar continua, as manchas solares geralmente aparecem mais perto do equador. As manchas solares são apenas uma maneira de nosso Sol exibir atividade de superfície, outra são as erupções e ejeções de massa coronal (CMEs) que expelem partículas para o Sistema Solar. 

Estas partículas podem afetar os meios de comunicações e estações elétricas. Por outro lado, a atividade solar na atmosfera da Terra, pode apresentar um aspecto estético quando desencadeiam auroras. 

Fonte: NASA

quinta-feira, 22 de junho de 2023

A compreensão da física envolvendo superexplosões estelares

A relação entre as manchas solares e as explosões solares tem sido bastante investigada nos estudos sobre o Sol.

© NASA (estrela com grande cobertura de manchas e superflares)

Até porque essas erupções associadas a ejeções de massa coronal, em que grandes quantidades de energia são liberadas, impactam diretamente nosso planeta, causando maior ocorrência de auroras boreais; blecautes nas comunicações por rádio; incremento do efeito de cintilação nos sinais de GPS; redução nas velocidades e altitudes dos satélites artificiais. 

Para entender a física por trás desses eventos estelares, uma nova pesquisa enfocou um fenômeno ainda mais intenso, denominado superexplosão (superflare, em inglês), com energia de 1.000 a 10.000 vezes maior do que as maiores explosões vistas no Sol. E buscou esse tipo de evento em duas estrelas do tipo K: a Kepler-411 e a Kepler-210. 

Descobriu que, a despeito de essas estrelas serem semelhantes em todos os aspectos, desde as massas até os períodos de rotação e os sistemas planetários, e de ambas exibirem em torno de 100 manchas, a primeira produziu 65 supererupções, enquanto a segunda não produziu nenhuma. “A área das manchas estelares parece não ser a principal responsável pelo desencadeamento das superexplosões. Talvez a explicação deva ser buscada na complexidade magnética das regiões ativas”, diz Alexandre Araújo, pós-doutorando na Escola de Engenharia Mackenzie. Com apoio da FAPESP, o estudo foi conduzido por ele e sua ex-orientadora de doutorado, atual supervisora de pós-doutorado, Adriana Valio, pesquisadora do Centro de Radioastronomia e Astrofísica Mackenzie (CRAAM), da Universidade Presbiteriana Mackenzie.

As manchas de ambas as estrelas foram caracterizadas com a técnica de mapeamento por trânsito planetário, que fornece a intensidade, temperatura, posição (latitude e longitude) e raio. “Pelo conhecimento que se tinha da literatura, as estrelas com manchas maiores teriam mais chance de produzir superflares, mas não foi isso que observamos. As manchas estelares da Kepler-411 são muito menores do que as da Kepler-210. Teoricamente, seria esta que deveria ter superexplosões, mas isso não acontece. Nossa explicação para a inexistência de superflares na Kepler-210, mesmo com grandes manchas na sua superfície, está na complexidade magnética, na evolução e no tempo de vida das manchas”, afirma Araújo. 

Além de buscar um avanço no conhecimento das atividades estelares, o presente estudo teve uma motivação adicional. A partir da descoberta das primeiras superexplosões em estrelas de tipo solar, a comunidade científica passou a olhar com atenção para tais fenômenos, principalmente para investigar quais seriam as possibilidades de o Sol apresentar uma explosão dessa proporção. Se as erupções de muito menor intensidade já impactam tão fortemente nossa sociedade tecnológica, o que esperar de fenômenos energéticos de tal magnitude? “Certamente os planetas que orbitam estrelas com uma frequência de superflares podem chegar a perder sua atmosfera e, por isso, não desenvolver a vida, pelo menos a vida como a conhecemos”, responde Araújo. 

A estrutura das estrelas de tipo solar 

Para entender tudo isso, é preciso abrir um largo parêntese e recapitular alguns conhecimentos básicos sobre a estrutura das estrelas, obtidos principalmente a partir dos estudos sobre o Sol. Para efeito didático, essa estrutura é dividida em camadas. “O núcleo é a fonte principal da energia da estrela. No Sol, essa região é uma esfera cujo raio corresponde à quinta parte do raio solar, mas com densidade extremamente alta. Nele, a conversão de hidrogênio em hélio, por meio de reações termonucleares, produz temperatura da ordem de 13,6 milhões de kelvin (K)”, informa Valio. 

Em torno do núcleo, fica a zona radiativa, onde a energia é transportada pelos fótons em todas as direções. Os fótons, como se sabe, são as partículas associadas à radiação eletromagnética. E sua velocidade de propagação no vácuo é a maior do universo material. Porém, como a zona radiativa é composta por partículas (prótons, elétrons etc.), a absorção e posterior emissão por estes componentes obstruem enormemente o trânsito dos fótons. De modo que eles levam cerca de 1 milhão de anos para atravessar essa camada e chegar à seguinte, a zona convectiva. “Na zona convectiva, a energia é transportada por meio de correntes de convecção. O material mais quente sobe para a superfície da estrela, enquanto o material mais frio e denso afunda de volta para a camada convectiva. Esse movimento cria células gigantes, que transportam energia e material através da estrela. Na superfície do Sol, elas são conhecidas como os grânulos solares”, explica Valio.

A superfície do Sol é chamada de fotosfera. É nela que aparecem as manchas solares, os grânulos e as erupções, que se estendem por toda a atmosfera solar, composta pela cromosfera e pela coroa. A temperatura média da fotosfera é pouco maior do que 5.700 K, o que faz com que seja relativamente fria em comparação com as camadas internas do Sol ou com as camadas superiores da atmosfera solar. É da fotosfera que sai a maior parte da luz e do calor emitidos por essa estrela. 

“As manchas que aparecem na fotosfera são causadas por campos magnéticos intensos e podem durar de alguns dias a várias semanas antes de desaparecerem. Sua formação começa com um campo magnético gerado pelo movimento de partículas eletricamente carregadas na tacoclina, fina camada compreendida entre as regiões radiativa e convectiva do interior solar. Ao emergirem na superfície do Sol, os tubos de fluxo magnético criam regiões de campo intenso, que bloqueiam a transferência de calor do interior para a superfície. As manchas são escuras porque sua temperatura é 1.000 a 1.500 graus menor do que a temperatura do resto da superfície”, descreve Valio. 

As manchas geralmente têm formatos e tamanhos diferentes, sendo sua complexidade magnética um fator crucial para a produção das maiores explosões solares. Estas são observadas em todo o espectro eletromagnético: rádio, infravermelho, luz visível, ultravioleta, raios X e raios gama. Tais fenômenos transientes acontecem na atmosfera solar, nas regiões de altas concentrações de campo magnético, onde grandes quantidades de energia são liberadas por reconexão magnética. A potência gerada nas maiores explosões solares é de aproximadamente 1.017 a 1.022 quilowatts. 

O método de trânsitos planetários 

O grande desafio para os pesquisadores de superflares é desvendar os mecanismos que originam tais fenômenos. É consensual que essas grandes explosões estejam relacionadas com as manchas estelares. Mas de que forma? “O método de trânsitos planetários é excelente para investigar manchas na superfície de estrelas do tipo solar. Tal método é atualmente o mais robusto para esse tipo de pesquisa. Mas sua aplicação é bastante complicada, principalmente devido à dificuldade de obter estrelas que se encaixem nos critérios de investigação”, comenta Araújo. 

Ele e Valio trabalharam com dados do telescópio Kepler, procurando estrelas que se encaixassem no perfil do estudo. O telescópio espacial Kepler foi projetado pela NASA, a agência espacial norte-americana, com o objetivo de descobrir planetas de tipo terrestre fora do Sistema Solar. Nos quatro anos de sua primeira fase de operação, que se estendeu de 2009 a 2013, ele observou mais de 150 mil estrelas. E, para extrair informações sobre esses objetos, foi utilizado o método de trânsitos planetários, que se baseia na diminuta alteração produzida no brilho da estrela quando um planeta passa na sua frente. Mas encontrar, nessa gigantesca base de dados, os objetos que se adequassem aos seus propósitos foi igual a procurar uma agulha no palheiro. 

“Em primeiro lugar, a estrela devia ter um ou mais planetas. Para que esses exoplanetas pudessem ser detectados, seu ângulo de inclinação em relação à estrela tinha que estar no ângulo de visada do telescópio. Além disso, a estrela precisava apresentar manchas na sua superfície. E o exoplaneta devia transitar nas regiões das manchas. O período orbital do exoplaneta tinha que ser de poucos dias. E seu raio devia ser bem maior do que o da Terra, para que a queda de brilho causada nas curvas de luz da estrela fosse bastante significativa. Finalmente, a estrela precisava apresentar superflares”, disse Araújo. 

O pesquisador afirma que, felizmente, foi possível identificar uma estrela, a Kepler-411, com excelente qualidade de observação. E o melhor: ela possuía um sistema planetário com quatro exoplanetas. Mas, para entender o papel das manchas estelares, era preciso encontrar uma segunda estrela em tudo semelhante, exceto por um aspecto: ela não podia apresentar superflares. “Foi, de certa forma, uma ousadia nossa acreditar que essa segunda estrela existia. E nos sentimos recompensados quando encontramos a Kepler-210, com os parâmetros estelares muito próximos da Kepler-411”, diz Araújo. 

Acredita-se que a detecção de supererupções esteja diretamente ligada à cobertura temporal das manchas na superfície das estrelas. E que, quanto maior a área das manchas estelares, maior o armazenamento de energia magnética para produzir a explosão. “Nossos resultados trouxeram uma perspectiva um pouco diferente. Como já foi dito, na Kepler-411, detectamos 65 superflares, com energias de até 1.035 ergs [1.035 ×107 quilojoules]. Enquanto a Kepler-210 não apresentou nenhuma supererupção, mesmo com o dobro de cobertura temporal, o que nos deu maior probabilidade de observação. E o que mais nos surpreendeu foi o fato de os raios das manchas estelares da Kepler-411 serem muito menores do que os da Kepler-210”, enfatiza Araújo. 

A explicação pode estar no fato de que, embora sejam maiores em área, as manchas da Kepler-210 apresentam uma configuração magnética mais simples. “No Sol, as manchas são classificadas de acordo com o comportamento do campo magnético na área. E classificadas como alfa (α), beta (β), gama (γ) e delta (δ), ou por meio de uma combinação dessas configurações. As manchas deltas são as que apresentam intensa atividade de flares solares. Acreditamos que as manchas da Kepler-210 apresentem uma configuração magnética mais simples, do tipo alfa ou beta. Infelizmente, a confirmação exata dessa hipótese só seria possível por meio de magnetogramas, que são imagens capazes de detectar a localização e a intensidade dos campos magnéticos. Atualmente, só conseguimos observar isso no Sol. Ainda não temos tecnologia para obter magnetogramas de estrelas distantes. De qualquer forma, nosso estudo já nos permite dizer que, em vez de fechar o foco na área das manchas estelares, talvez seja mais produtivo considerar a complexidade magnética das regiões ativas”, conclui Valio. 

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society Letters

Fonte: Agência FAPESP

sexta-feira, 27 de maio de 2022

O Sol pode contribuir para as tempestades de poeira de Marte

Uma equipe de pesquisadores relatou que um desequilíbrio sazonal na quantidade de energia solar absorvida e liberada pelo planeta Marte é uma causa provável das tempestades de poeira que há muito intrigam os observadores.

© NASA/JPL (tempestade em Marte)

À esquerda, Marte em condições limpas; à direita, Marte envolvido por uma tempestade de poeira sazonal.

O desequilíbrio extremo de Marte referente ao balanço energético foi documentado pelos pesquisadores da Universidade de Houston. Uma das descobertas mais interessantes é que o excesso de energia, ou seja, mais energia sendo absorvida do que emitida, poderia ser um dos mecanismos geradores das tempestades de poeira de Marte. Compreender como isto funciona em Marte pode fornecer pistas sobre a função do balanço energético da Terra no desenvolvimento de tempestades severas. 

Uma fina atmosfera e uma órbita muito elíptica tornam Marte especialmente susceptível a grandes diferenças de temperatura. Absorve quantidades extremas de calor solar quando está mais perto do Sol nas suas estações perielionares (primavera e verão para o hemisfério sul de Marte), que é a mesma parte extrema da órbita em que aparecem as suas tempestades de poeira. À medida que a sua órbita afasta Marte do Sol, é absorvida menos energia solar pelo planeta. 

Na Terra, os desequilíbrios energéticos podem ser medidos de acordo com a estação e o ano e desempenham um papel crítico no aquecimento global e nas alterações climáticas. 

Marte não é um planeta que tenha qualquer tipo de mecanismos reais de armazenamento de energia, como ocorre aqui na Terra. Os grandes oceanos, por exemplo, ajudam a equilibrar o sistema climático. Ainda assim, Marte contém sinais de que oceanos, lagos e rios foram outrora abundantes. Então, o que aconteceu? 

Os fatos são incertos quanto aos motivos ou quando o planeta se tornou neste globo quente e poeirento com uma abundância de óxido de ferro, cuja cor sépia inspirou observadores de há séculos atrás a chamar-lhe o Planeta Vermelho. Marte já teve, no passado, oceanos e lagos, mas mais tarde sofreu aquecimento global e alterações climáticas. De alguma forma, Marte perdeu os seus oceanos e lagos. Sabemos que estão a acontecer alterações climáticas agora na Terra. 

Para os entusiastas planetários, muitos dos dados podem ser acessados gratuitamente a partir do website PDS (Planetary Data Systems) da NASA, embora alguma informação esteja disponível apenas para os pesquisadores. Colaboraram também com cientistas da NASA, a Mars Global Surveyor e duas missões, Curiosity e InSight, que ainda estão operando no solo marciano.

Um artigo foi publicado no periódico Proceedings of the National Academy of Sciences

Fonte: University of Houston