Mostrando postagens com marcador Quasar. Mostrar todas as postagens
Mostrando postagens com marcador Quasar. Mostrar todas as postagens

sábado, 13 de julho de 2024

Um anel adornado com joias

Esta nova imagem obtida pelo telescópio espacial James Webb mostra as lentes gravitacionais do quasar conhecido como RX J1131-1231, localizado a cerca de seis bilhões de anos-luz da Terra, na constelação da Crater, a Taça.

© JWST (quasar RX J1131-1231)

É considerado um dos quasares com melhor lente gravitacional descobertos até hoje, já que a galáxia em primeiro plano mancha a imagem do quasar de fundo num arco brilhante e cria quatro imagens do objeto. 

As lentes gravitacionais, previstas pela primeira vez por Albert Einstein, oferecem uma rara oportunidade de estudar regiões próximas do buraco negro em quasares distantes, atuando como um telescópio natural e ampliando a luz destas fontes. Toda a matéria no Universo deforma o espaço à sua volta, com massas maiores produzindo um efeito mais forte. Em torno de objetos muito massivos, como galáxias, a luz que passa por perto segue este espaço distorcido, parecendo desviar-se do seu caminho original numa quantidade claramente visível. Uma das consequências das lentes gravitacionais é que podem ampliar objetos astronômicos distantes, permitindo o estudo de objetos que, de outra forma, seriam demasiado tênues. 

As medições da emissão de raios X dos quasares podem fornecer uma indicação da rapidez com que o buraco negro central gira e isto fornece aos astrônomos pistas importantes sobre como os buracos negros crescem ao longo do tempo. Por exemplo, se um buraco negro cresce principalmente a partir de colisões e fusões entre galáxias, deverá acumular material num disco estável, e o fornecimento constante de novo material a partir do disco deverá conduzir a um buraco negro com rotação rápida. Por outro lado, se o buraco negro crescesse através de muitos pequenos episódios de acreção, acumularia material em direções aleatórias. 

As observações indicaram que o buraco negro neste quasar em particular gira a mais de metade da velocidade da luz, o que sugere que este buraco negro cresceu através de fusões, em vez de puxar material de diferentes direções. 

Esta imagem foi captada com o MIRI (Mid-Infrared Instrument) do Webb como parte de um programa de observação para estudar a matéria escura. A matéria escura é uma forma invisível de matéria que representa a maior parte da massa do Universo. As observações de quasares pelo Webb estão permitindo aos astrônomos explorar a natureza da matéria escura em escalas menores do que nunca.

Fonte: ESA

Uma espantosa fusão entre quasar e galáxia no Universo distante

Um grupo internacional de pesquisa liderado pelo INAF (Istituto Nazionale di Astrofisica), na Itália, e composto por 34 institutos e universidades de todo o mundo, utilizou o instrumento NIRSpec (Near-Infrared Spectrograph) a bordo do telescópio espacial James Webb (JWST) para testemunhar a interação dramática entre um quasar no interior do sistema PJ308-21 e duas massivas galáxias satélites no Universo distante.

© INAF (mapa das linhas de emissão no sistema PJ308-21)

Mapa das linhas de emissão do hidrogênio (em vermelho e azul) e oxigênio (em verde) no sistema PJ308-21, visto depois de ocultar artificialmente a luz do quasar central. As diferentes cores da galáxia hospedeira do quasar e das galáxias companheiras neste mapa revelam as propriedades físicas do gás no seu interior. A descrição 5 kpc é 5 x 10³ parsec (1 pc = 3.086 × 10¹³ km).

As observações, realizadas em setembro de 2022, revelaram detalhes sem precedentes e inspiradores, fornecendo novos conhecimentos sobre o crescimento das galáxias no início do Universo. 

Os resultados foram apresentados durante a reunião da Sociedade Astronômica Europeia (EAS) em Pádua (Itália). As observações deste quasar (já descrito pelos mesmos autores num outro estudo publicado em maio passado), um dos primeiros estudados com o NIRSpec quando o Universo tinha menos de um bilhão de anos (desvio para o vermelho z=6,2342), revelaram dados de qualidade sensacional: o instrumento captou o espectro do quasar com uma incerteza inferior a 1% por pixel. 

A galáxia hospedeira de PJ308-21 apresenta uma elevada metalicidade (que se refere à abundância de elementos químicos mais pesados do que o hidrogênio e o hélio) e condições de fotoionização típicas de um núcleo galáctico ativo (NGA), enquanto uma das galáxias satélite apresenta uma baixa metalicidade e fotoionização induzida pela formação estelar; uma metalicidade mais elevada caracteriza a segunda galáxia satélite, que é parcialmente fotoionizada pelo quasar. 

A descoberta permitiu a determinação da massa do buraco negro supermassivo no centro do sistema (cerca de 2 bilhões de massas solares). Também confirmou que tanto o quasar como as galáxias circundantes são altamente evoluídos em termos de massa e enriquecimento de metais, e estão em constante crescimento. Este fato tem implicações profundas para a nossa compreensão da história cósmica e da evolução química das galáxias, realçando o impacto transformador desta prospecção. 

As observações foram efetuadas no modo de espectroscopia de campo integral: para cada pixel de imagem, pode ser observado o espectro de toda a banda óptica, desviado para o infravermelho devido à expansão do Universo. Isto permite o estudo de vários rastreadores de gás (linhas de emissão) utilizando uma abordagem 3D. Por intermédio desta técnica foram detectadas emissões espacialmente alargadas de diferentes elementos, que foram utilizadas para estudar as propriedades do meio interestelar ionizado, incluindo a fonte e a intensidade do campo de radiação fotoionizante, a metalicidade, o obscurecimento da poeira, a densidade e a temperatura dos elétrons e o ritmo de formação estelar. Além disso, os pesquisadores detectaram marginalmente a emissão de luz estelar associada a fontes companheiras.

Um artigo foi publicado no periódico Astronomy & Astrophysics

Fonte: Istituto Nazionale di Astrofisica

sábado, 6 de julho de 2024

Simulação cósmica revela como os buracos negros crescem e evoluem

Uma equipe de astrofísicos liderada pelo Caltech (Instituto de Tecnologia da Califórnia) conseguiu, pela primeira vez, simular a viagem do gás primordial que data do início do Universo até à fase em que é arrastado para um disco de material que alimenta um único buraco negro supermassivo.

© Caltech (simulação mostra um buraco negro supermassivo)

A nova simulação de computador põe em causa as ideias que os astrônomos tinham sobre esses discos desde a década de 1970 e abre caminho a novas descobertas sobre a forma como os buracos negros e as galáxias crescem e evoluem.

A nova simulação marca o culminar de vários anos de trabalho de duas grandes colaborações iniciadas no Caltech. A primeira colaboração, designada por FIRE (Feedback in Realistic Environments), centrou-se nas maiores escalas do Universo, estudando questões como a formação das galáxias e o que acontece quando estas colidem. A outra, denominada STARFORGE, foi concebida para examinar escalas muito menores, incluindo a maneira como as estrelas se formam em nuvens de gás individuais.

Mas havia uma grande lacuna entre as duas. Para analisar esta diferença, os pesquisadores construíram uma simulação com uma resolução mais de 1.000 vezes superior à melhor neste campo. A simulação revelou que os campos magnéticos desempenham um papel muito mais importante do que se pensava na formação e definição dos enormes discos de material que giram em torno e alimentam os buracos negros supermassivos.

À medida que o gás e a poeira são puxados pela enorme gravidade destes buracos negros, não são imediatamente sugados. Em vez disso, o material forma primeiro um disco que gira rapidamente, chamado disco de acreção. E quando o material está prestes a cair, irradia uma enorme quantidade de energia, brilhando com uma luminosidade extrema no Universo. Mas ainda não se sabe muito sobre estes buracos negros supermassivos ativos, chamados quasares, e como se formam e comportam os discos que os alimentam. Embora os discos em torno de buracos negros supermassivos já tenham sido fotografados anteriormente, o EHT (Event Horizon Telescope) fotografou discos em torno de buracos negros no coração da Via Láctea em 2022 e em Messier 87 em 2019; estes discos estão muito mais próximos e são mais calmos do que os existentes em torno dos quasares. 

Para visualizar o que acontece em volta destes buracos negros mais ativos e distantes, os astrofísicos recorrem a simulações em supercomputadores. Alimentam milhares de processadores que trabalham em paralelo com informações sobre a física que atua nestes cenários galácticos; desde as equações básicas que regem a gravidade até à forma de tratar a matéria escura e as estrelas. Afinal, as estrelas afetam o que as rodeia. Emitem radiação que pode aquecer ou empurrar o gás circundante. Sopram ventos como o vento solar criado pelo nosso próprio Sol, que pode varrer material. Explodem como supernovas, por vezes lançando material para fora das galáxias ou alterando a química do seu ambiente. Assim, os computadores têm de conhecer todos os meandros da evolução estelar, uma vez que regula o número de estrelas que uma galáxia pode efetivamente formar. 

A equipa liderada pelo Caltech utilizou um código a que chamaram GIZMO para os projetos de simulação em grande e pequena escala. O mais importante é que construíram o projeto FIRE de modo a que toda a física que lhe adicionassem pudesse funcionar com o projeto STARFORGE e vice-versa. Isto permitiu aos cientistas simular um buraco negro com uma massa cerca de 10 milhões de vezes superior à do nosso Sol, começando no início do Universo. A simulação aproxima-se desse buraco negro no momento em que um fluxo gigante de material é arrancado de uma nuvem de gás com formação estelar e começa a girar em torno do buraco negro supermassivo. A simulação pode continuar se aproximando, resolvendo uma área mais fina em cada passo, à medida que segue o gás no seu caminho em direção ao buraco negro. 

Em dois influentes artigos científicos da década de 1970, que descreviam os discos de acreção que alimentam os buracos negros supermassivos, os cientistas assumiram que a pressão térmica, a alteração da pressão causada pela mudança de temperatura do gás nos discos, desempenhava o papel dominante na prevenção do colapso desses discos sob a enorme gravidade que sofrem perto do buraco negro. Reconheceram que os campos magnéticos podem ter um papel menor em ajudar a sustentar os discos. Em contrapartida, a nova simulação revelou que a pressão dos campos magnéticos desses discos era 10.000 vezes superior à pressão do calor do gás. Assim, os discos são quase completamente controlados pelos campos magnéticos. 

Os campos magnéticos têm muitas funções, uma das quais é sustentar os discos e tornar o material fofo. Esta constatação altera uma série de previsões que os cientistas podem fazer sobre esses discos de acreção, tais como a sua massa, a densidade e espessura que devem ter, a rapidez com que o material deve ser capaz de se deslocar deles para um buraco negro e até a sua geometria (por exemplo, se os discos podem ter deformações). 

Para o futuro, espera-se que esta nova capacidade de colmatar a lacuna entre as escalas das simulações cosmológicas abra muitas novas vias de investigação. Por exemplo, o que acontece em pormenor quando duas galáxias se fundem? Que tipos de estrelas se formam nas regiões densas das galáxias, onde as condições são diferentes das da vizinhança do nosso Sol? Qual terá sido o aspecto da primeira geração de estrelas no Universo?

Um artigo foi publicado no The Open Journal of Astrophysics.

Fonte: California Institute of Technology

quinta-feira, 4 de julho de 2024

Um buraco negro de massa inexplicável

Ao perscrutar os primórdios do Universo com 13,8 bilhões de anos, o telescópio espacial James Webb detectou uma galáxia tal como existia apenas 700 milhões de anos após o Big Bang.

© T. Müller (ilustração de região brilhante em torno de um quasar)

É surpreendente como é que o buraco negro no seu centro podia já ter bilhões de vezes a massa do Sol quando o Universo estava ainda na sua infância. As observações do James Webb foram concebidas para analisar mais de perto o mecanismo de alimentação, mas não encontraram nada de extraordinário. 

Aparentemente, os buracos negros já estavam crescendo de uma forma semelhante à atual. Mas o resultado é ainda mais significativo: pode mostrar que os astrônomos sabem menos sobre a formação das galáxias do que pensavam. E, no entanto, as medições não são de modo algum decepcionantes. Pelo contrário. Os primeiros bilhões de anos da história cósmica constituem um desafio: os primeiros buracos negros conhecidos nos centros das galáxias têm massas surpreendentemente grandes. Como é que se tornaram tão massivos, tão rapidamente? As novas observações aqui descritas fornecem fortes evidências contra algumas explicações propostas, nomeadamente contra um "modo de alimentação ultraeficaz" para os primeiros buracos negros. 

As estrelas e as galáxias mudaram enormemente ao longo dos últimos 13,8 bilhões de anos, o tempo de vida do Universo. As galáxias tornaram-se maiores e adquiriram mais massa, quer consumindo o gás circundante, quer ocasionalmente fundindo-se umas com as outras. Durante muito tempo, foi assumido que os buracos negros supermassivos nos centros das galáxias teriam crescido gradualmente juntamente com as próprias galáxias. Mas o crescimento dos buracos negros não pode ser arbitrariamente rápido. A matéria que cai sobre um buraco negro forma um disco de acreção rodopiante, quente e brilhante. Quando isto acontece em torno de um buraco negro supermassivo, o resultado é um núcleo galáctico ativo. Os objetos mais brilhantes, conhecidos como quasares, estão entre os objetos astronômicos mais brilhantes de todo o cosmos. Mas esse brilho limita a quantidade de matéria que pode cair sobre o buraco negro: a luz exerce uma pressão que pode impedir a entrada de matéria adicional.

Foi por isso que os astrônomos ficaram surpreendidos quando, nos últimos vinte anos, as observações de quasares distantes revelaram buracos negros muito jovens que, no entanto, tinham atingido massas tão elevadas como 10 bilhões de massas solares. A luz leva tempo para viajar de um objeto distante até nós, pelo que olhar para objetos distantes significa olhar para um passado longínquo. Vemos os quasares mais distantes conhecidos tal como eram numa época conhecida como "amanhecer cósmico", menos de um bilhão de anos após o Big Bang, quando se formaram as primeiras estrelas e galáxias. 

Explicar estes primeiros buracos negros massivos é um desafio considerável para os atuais modelos de evolução das galáxias. Será que os primeiros buracos negros eram muito mais eficientes acretando gás do que os seus homólogos atuais? Ou poderá a presença da poeira afetar as estimativas de massa dos quasares de tal forma que os pesquisadores sobrestimam as massas dos primeiros buracos negros? 

Decidir qual das explicações está correta requer uma imagem mais completa dos quasares do que a que existia anteriormente. Com o advento do telescópio espacial James Webb, e mais concretamente do seu instrumento MIRI (Mid-Infrared Instrument), a capacidade dos astrônomos para estudar quasares distantes deu um salto gigantesco. Para medir os espectros de quasares distantes, o MIRI é 4.000 vezes mais sensível do que qualquer outro instrumento anterior. 

Em 2019, foi observado o quasar mais distante conhecido, um objeto que tem a designação J1120+0641. Em janeiro de 2023, durante o primeiro ciclo de observações do James Webb,foi efetuado o primeiro estudo no infravermelho médio de um quasar no período do amanhecer cósmico, apenas 770 milhões de anos após o Big Bang (desvio para o vermelho z=7). A informação não provém de uma imagem, mas de um espectro: a decomposição da luz do objeto em componentes de diferentes comprimentos de onda, semelhante a um arco-íris.

A forma geral do espectro no infravermelho médio codifica as propriedades de um grande toróide de poeira que rodeia o disco de acreção nos quasares típicos. Este toróide ajuda a guiar a matéria para o disco de acreção, "alimentando" o buraco negro. Uma diferença  notável é que nenhum modelo de crescimento rápido dos quasares antigos previa: a temperatura da poeira é um pouco mais elevada, cerca de 100 K mais quente do que os 1.300 K encontrados para a poeira mais quente em quasares menos distantes. A parte de menor comprimento de onda do espectro, dominada pelas emissões do próprio disco de acreção, mostra que para observadores distantes, a luz do quasar não é obscurecida por mais poeira do que o habitual. 

A região de linhas largas do quasar, onde aglomerados de gás orbitam o buraco negro a velocidades próximas da velocidade da luz, o que permite deduzir a massa do buraco negro e a densidade e ionização da matéria circundante, também parece normal. Em quase todas as propriedades que podem ser deduzidas do espectro, J1120+0641 não é diferente dos quasares de épocas posteriores. 

Aparentemente, não só os buracos negros supermassivos, mas também os seus mecanismos de alimentação já estavam completamente "maduros" quando o Universo tinha apenas 5% da sua idade atual. Ao excluir uma série de soluções alternativas, os resultados apoiam fortemente a ideia de que os buracos negros supermassivos começaram com massas consideráveis desde o início. Os buracos negros supermassivos não se formaram a partir de remanescentes de estrelas primitivas, que depois se tornaram massivos muito rapidamente. Devem ter-se formado cedo, com massas iniciais de pelo menos cem mil massas solares, presumivelmente através do colapso de nuvens massivas de gás. 

Um artigo foi publicado na revista Nature Astronomy

Fonte: Max Planck Institute for Astronomy

terça-feira, 25 de junho de 2024

O primeiro par de quasares em fusão no "Amanhecer Cósmico"

Astrônomos descobriram um par de quasares que acaba de bater um duplo recorde.

© M. Garlick (ilustração de dois quasares em fusão)

Não só é o par mais distante de quasares em fusão alguma vez encontrado, como também é o único par confirmado na era passada da formação mais antiga do Universo. Desde o primeiro instante após o Big Bang que o Universo tem vindo a expandir-se. Isto significa que o Universo primitivo era consideravelmente menor e que era mais provável que as galáxias em formação inicial interagissem e se fundissem.

As fusões de galáxias alimentam a formação de quasares, que são núcleos galácticos extremamente luminosos onde o gás e a poeira que caem num buraco negro supermassivo central emitem enormes quantidades de luz. Assim, ao olhar para o Universo primitivo, os astrônomos esperariam encontrar vários pares de quasares muito próximos uns dos outros, à medida que as suas galáxias hospedeiras se fundem. No entanto, ficaram surpreendidos por não encontrarem exatamente nenhum, até agora. 

Com a ajuda do telescópio Gemini North, operado pelo NOIRLab (National Optical-Infrared Astronomy Research Laboratory), foi descoberto o par de quasares em fusão vistos apenas 900 milhões de anos após o Big Bang no período da história do Universo conhecido como "Amanhecer Cósmico". O Amanhecer Cósmico decorreu entre cerca de 50 milhões de anos a um bilhão de anos após o Big Bang. Durante este período, as primeiras estrelas e galáxias começaram a aparecer, enchendo de luz, e pela primeira vez, o escuro Universo. A chegada das primeiras estrelas e galáxias deu início a uma nova era na formação do cosmos, conhecida como a Época da Reionização. A Época da Reionização, que teve lugar no Amanhecer Cósmico, foi um período de transição cosmológica. Começando cerca de 400 milhões de anos após o Big Bang, a luz ultravioleta das primeiras estrelas, galáxias e quasares espalhou-se pelo cosmos, interagindo com o meio intergaláctico e retirando os elétrons dos átomos de hidrogênio primordiais do Universo.

A Época da Reionização foi uma época crítica na história do Universo, que marcou o fim da "Idade das Trevas" cósmica e que deu origem às grandes estruturas que hoje observamos no nosso Universo local. Para compreender o papel exato que os quasares desempenharam durante a Época da Reionização, os astrônomos estão interessados em encontrar e estudar os quasares que povoam esta era precoce e distante.

Até agora foram descobertos cerca de 300 quasares na Época da Reionização, mas nenhum deles foi encontrado num par. Isto é, até que Yoshiki Matsuoka, astrônomo da Universidade de Ehime, no Japão, e a sua equipe estavam revendo imagens tiradas com o instrumento HSC (Hyper Suprime-Cam) do telescópio Subaru e uma tênue mancha vermelha lhes chamou a atenção.

© NOIRLab / Subaru (par de quasares no processo de fusão)

A equipe não tinha a certeza de que se tratava de um par de quasares, uma vez que os candidatos a quasares distantes estão contaminados por numerosas outras fontes, tais como estrelas e galáxias em primeiro plano e por efeitos de lentes gravitacionais. Para confirmar a natureza dos objetos, a equipe realizou espectroscopia de acompanhamento utilizando o FOCAS (Faint Object Camera and Spectrograph) do telescópio Subaru e o GNIRS (Gemini Near-Infrared Spectrograph) do Gemini North. Os espectros, que dividem a luz emitida por uma fonte nos comprimentos de onda que a compõem, obtidos com o GNIRS, foram cruciais para caracterizar a natureza do par de quasares e das suas galáxias hospedeiras.

Foi descoberto também que os dois buracos negros são enormes, cada um com 100 milhões de vezes a massa do Sol. Este fato, associado à presença de uma ponte de gás entre os dois quasares, sugere que estes e as galáxias que os acolhem estão passando por uma fusão de grande escala.

A Época da Reionização liga a mais antiga formação da estrutura cósmica ao Universo complexo que observamos bilhões de anos mais tarde. Ao estudar objetos distantes deste período, os astrônomos obtêm informações valiosas sobre o processo de reionização e sobre a formação dos primeiros objetos do Universo. Mais descobertas como esta podem estar no horizonte com o LSST (Legacy Survey of Space and Time) do Observatório Vera C. Rubin, com a duração de uma década e com início em 2025, que está preparado para detectar milhões de quasares utilizando as suas capacidades de imagem profunda.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: University of Tokyo

domingo, 12 de maio de 2024

Elusiva luz estelar que rodeia quasares antigos

Os astrônomos do MIT (Massachusetts Institute of Technology) observaram a luz estelar elusiva que rodeia alguns dos primeiros quasares do Universo.

© NASA (quasar J0148)

Uma imagem, obtida pelo telescópio espacial James Webb, mostra o quasar J0148 no círculo vermelho. Duas inserções mostram, em cima, o buraco negro central, e em baixo, a emissão estelar da galáxia hospedeira.

Os sinais distantes, que remontam a mais de 13 bilhões de anos na infância do Universo, estão revelando pistas sobre a evolução dos primeiros buracos negros e galáxias. Os quasares são os centros fulgurantes de galáxias ativas, que abrigam um buraco negro supermassivo insaciável no seu núcleo. A maioria das galáxias tem um buraco negro central que pode, ocasionalmente, alimentar-se de gás e detritos estelares, gerando uma breve explosão de luz sob a forma de um anel brilhante à medida que o material se aproxima do buraco negro. 

Os quasares, em contraste, podem consumir enormes quantidades de matéria durante períodos de tempo muito mais longos, gerando um anel extremamente brilhante e duradouro, tão brilhante que os quasares estão entre os objetos mais luminosos do Universo. Por serem tão brilhantes, os quasares ofuscam o resto da galáxia em que residem. 

Mas a equipe do MIT conseguiu, pela primeira vez, observar a luz muito mais fraca das estrelas nas galáxias hospedeiras de três quasares antigos. Com base nesta luz estelar esquiva, os pesquisadores estimaram a massa de cada galáxia hospedeira, em comparação com a massa do seu buraco negro supermassivo central. Descobriram que, para estes quasares, os buracos negros centrais eram muito mais massivos em relação às galáxias hospedeiras, em comparação com os seus homólogos modernos. 

As descobertas podem esclarecer como é que os primeiros buracos negros supermassivos se tornaram tão grandes, apesar de terem tido um período de tempo cósmico relativamente curto para crescer. Os resultados implicam que, nos primórdios do Universo, os buracos negros supermassivos podem ter ganho massa antes das galáxias que os acolheram, e as sementes iniciais de buracos negros podem ter sido mais massivas do que atualmente. 

A luminosidade extrema de um quasar tem sido óbvia desde que os astrônomos descobriram estes objetos pela primeira vez na década de 1960. Assumiram então que a luz do quasar provinha de uma única "fonte pontual", semelhante a uma estrela. Os cientistas designaram os objetos por "quasares" (combinação das palavras "quase" e "estelar"). Desde essas primeiras observações, os cientistas aperceberam-se de que os quasares não são, de facto, de origem estelar, mas que emanam da acreção de buracos negros supermassivos, intensamente poderosos e persistentes, situados no centro de galáxias que também abrigam estrelas, que são muito mais tênues em comparação com os seus núcleos ofuscantes. 

Tem sido extremamente difícil separar a luz do buraco negro central de um quasar da luz estelar da galáxia que o acolhe. A tarefa é um pouco como discernir um grupo de pirilampos à volta de um holofote central e gigantesco. Mas, nos últimos anos, os astrônomos têm tido muito mais hipóteses de o fazer com o lançamento do telescópio espacial James Webb, que tem sido capaz de recuar mais no tempo e com uma sensibilidade e resolução muito maiores do que qualquer observatório existente.

Nesse novo estudo, foram observados seis quasares antigos e conhecidos, de forma intermitente, desde o outono de 2022 até à primavera seguinte. A equipe fez um balanço dos dados de imagem recolhidos pelo telescópio espacial James Webb de cada um dos seis quasares distantes, que estimaram ter cerca de 13 bilhões de anos. Esses dados incluíam medições da luz de cada quasar em diferentes comprimentos de onda. 

Foram introduzidos esses dados num modelo que calcula a quantidade de luz que provavelmente provém de uma "fonte pontual" compacta, como o disco de acreção de um buraco negro central, em comparação com uma fonte mais difusa, como a luz das estrelas dispersas que compõem a galáxia hospedeira. Através desta modelação, a equipe separou a luz de cada quasar em dois componentes: a luz do disco luminoso do buraco negro central e a luz das estrelas mais difusas da galáxia hospedeira. A quantidade de luz de ambas as fontes é um reflexo da sua massa total. 

Estima-se que, para estes quasares, a razão entre a massa do buraco negro central e a massa da galáxia hospedeira era de cerca de 1:10. Isto contrasta com o atual equilíbrio de massa de 1:1.000, em que os buracos negros formados mais recentemente são muito menos massivos do que as galáxias que os acolhem.

É o buraco negro que cresce primeiro, e depois a galáxia apanha-o? Ou será que é a galáxia e as suas estrelas que crescem primeiro e que dominam e regulam o crescimento do buraco negro? Vemos que os buracos negros no início do Universo parecem estar crescendo mais depressa do que as galáxias que os acolhem. Esta é uma evidência preliminar de que as sementes iniciais dos buracos negros podem ter sido mais massivas nesse momento. Deve ter havido algum mecanismo que fez com que um buraco negro ganhasse massa mais cedo do que a galáxia que o acolheu nesses primeiros bilhões de anos.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: Massachusetts Institute of Technology

sexta-feira, 23 de fevereiro de 2024

Descoberto o quasar mais brilhante e com maior crescimento

Com o auxílio do Very Large Telescope (VLT) do Observatório Europeu do Sul (ESO), os astrônomos caracterizaram um quasar brilhante, descobrindo que é não só o mais brilhante do seu tipo, mas também o objeto mais luminoso alguma vez observado.

© ESO (ilustração do quasar mais brilhante)

Os quasares são os núcleos brilhantes de galáxias distantes, alimentados por buracos negros supermassivos. O buraco negro deste quasar recordista está crescendo em massa o equivalente a um Sol por dia, o que faz dele o buraco negro com o crescimento mais rápido descoberto até à data. 

Os buracos negros que alimentam os quasares retiram matéria do meio que os rodeia por um processo tão energético que faz com que o objeto emita enormes quantidades de luz. É por isso que os quasares são dos objetos mais brilhantes do nosso céu, sendo que mesmo os mais distantes são visíveis a partir da Terra. Regra geral, os quasares mais luminosos indicam os buracos negros supermassivos com o mais rápido crescimento.

O quasar, chamado J0529-4351, tem uma massa de 17 bilhões de sóis, chamado J0529-4351, está tão longe da Terra que a sua luz demorou mais de 12 bilhões de anos para chegar até nós. A matéria que está sendo puxada em direção ao buraco negro, sob a forma de um disco, emite tanta energia que faz com que o quasar seja mais de 500 trilhões de vezes mais luminoso do que o Sol. Toda essa luz vem de um disco de acreção quente que mede sete anos-luz de diâmetro (correspondem a cerca de 15.000 vezes a distância do Sol à órbita de Netuno); este deve ser o maior disco de acreção do Universo.

Há alguns anos, a NASA e a ESA (Agência Espacial Europeia) divulgaram uma notícia que dizia que o telescópio espacial Hubble tinha descoberto um quasar, J043947.08+163415.7, tão brilhante como 600 trilhões de sóis. No entanto, o brilho desse quasar estava sendo ampliado por uma lente gravitacional, na forma de uma galáxia localizada entre nós e o quasar longínquo. Estima-se que a luminosidade real de J043947.08+163415.7 seja equivalente a cerca de 11 trilhões de sóis.

O quasar aparecia já em imagens do ESO Schmidt Southern Sky Survey datadas de 1980, mas que só foi reconhecido como sendo um quasar décadas mais tarde. Encontrar quasares requer dados observacionais precisos de grandes áreas do céu. As bases de dados resultantes deste tipo de observações são tão extensas que os pesquisadores utilizam frequentemente modelos de aprendizagem de máquina para as analisar e distinguir os quasares de outros objetos celestes. No entanto, estes modelos são treinados com base em dados existentes, o que limita os potenciais candidatos a quasares a serem identificados como objetos semelhantes aos que já conhecemos. Se um novo quasar for mais luminoso do que qualquer outro anteriormente observado, o programa pode rejeitá-lo e classificá-lo simplesmente como sendo uma estrela próxima da Terra.

Uma análise dos dados do satélite Gaia, da ESA, rejeitou o J0529-4351 como sendo um quasar por este ser demasiado brilhante, sugerindo antes que se tratava de uma estrela. Os astrônomos identificaram-no como um quasar distante apenas o ano passado, utilizando observações do telescópio de 2,3 metros da Australian National University (ANU), instalado no Observatório de Siding Spring, na Austrália. 

No entanto, para descobrir que se tratava do quasar mais luminoso alguma vez observado, foi necessário um telescópio maior e medições efetuadas por um instrumento mais preciso. O espectrógrafo X-shooter do VLT do ESO, situado no deserto chileno do Atacama, forneceu os dados cruciais. O buraco negro de crescimento mais rápido alguma vez observado será também um alvo perfeito para a atualização do GRAVITY+ montado no Interferômetro do VLT (VLTI) do ESO, que foi concebido para medir com precisão a massa dos buracos negros, incluindo os que se encontram a grande distância da Terra. Adicionalmente, o Extremely Large Telescope (ELT) do ESO, um telescópio de 39 metros em construção também no deserto chileno do Atacama, tornará ainda mais viável a identificação e caracterização destes objetos elusivos. 

A descoberta e o estudo de buracos negros supermassivos distantes poderá esclarecer alguns dos mistérios do Universo primordial, incluindo a forma como estes e as suas galáxias hospedeiras se formaram e evoluíram.

Um artigo foi publicado na revista Nature Astronomy

Fonte: ESO

sexta-feira, 2 de fevereiro de 2024

"Pesando" um buraco negro no Universo primordial

Com o atualizado instrumento GRAVITY do VLTI (Very Large Telescope Interferometer) do ESO, uma equipe de astrônomos liderada pelo Instituto Max Planck de Física Extraterrestre determinou a massa de um buraco negro numa galáxia apenas 2 bilhões de anos após o Big Bang.

© Cosmonovas (ilustração de um buraco negro)

Com 300 milhões de massas solares, o buraco negro é pouco massivo em comparação com a massa da sua galáxia hospedeira. 

No Universo mais local, os astrônomos observaram relações íntimas entre as propriedades das galáxias e a massa dos buracos negros supermassivos que residem nos seus centros, sugerindo que as galáxias e os buracos negros coevoluem. Um teste crucial seria sondar esta relação nos primeiros tempos do cosmos, mas para estas galáxias longínquas os tradicionais métodos diretos de medição da massa do buraco negro são impossíveis ou extremamente difíceis. 

Apesar destas galáxias brilharem frequentemente com muita intensidade, denominadas quasares quando descobertas na década de 1950, estão tão distantes que não podem ser detectadas pela maioria dos telescópios.

Em 2018, foram efetuadas as primeiras medições inovadoras da massa de um buraco negro de um quasar com o GRAVITY. No entanto, este quasar estava muito próximo. Agora, foi atingido um desvio para o vermelho de 2,3, o que corresponde a observar 11 bilhões de anos para trás no tempo. O GRAVITY+ abre agora um caminho novo e preciso para estudar o crescimento dos buracos negros nesta época crítica, frequentemente designada por "meio-dia cósmico", quando tanto os buracos negros como as galáxias estavam crescendo rapidamente. 

Atulamente é possível obter imagens de buracos negros no Universo inicial, 40 vezes mais nítidas do que é obtido com o telescópio espacial James Webb. O GRAVITY combina interferometricamente os quatro telescópios de 8 metros do VLT do ESO, criando essencialmente um telescópio virtual gigante com um diâmetro de 130 metros. 

A equipa foi capaz de resolver espacialmente o movimento das nuvens de gás em torno do buraco negro central da galáxia SDSS J092034.17+065718.0, à medida que giram num disco espesso. Isto permite uma medição direta da massa do buraco negro. Com 320 milhões de massas solares, a massa do buraco negro é inferior à da galáxia que o acolhe, que tem uma massa de cerca de 600 bilhões de massas solares. Este fato sugere que a galáxia hospedeira cresceu mais depressa do que o buraco negro supermassivo, indicando, em alguns sistemas, um atraso entre o crescimento da galáxia e o do buraco negro.

O cenário provável para a evolução desta galáxia parece ser uma forte atividade de supernova, no qual estas explosões estelares expulsam o gás das regiões centrais antes que este possa atingir o buraco negro no centro galáctico. O buraco negro só pode começar a crescer rapidamente e a acompanhar o crescimento global da galáxia quando a galáxia se tiver tornado suficientemente massiva para reter um reservatório de gás nas suas regiões centrais, mesmo contra a atividade de supernova.

Para determinar se este cenário é também o modo dominante da coevolução de outras galáxias e dos seus buracos negros centrais, a equipe vai fazer um acompanhamento com mais medições altamente precisas da massa de buracos negros no Universo primitivo.

Um artigo foi publicado na revista Nature

Fonte: Max Planck Institute for Extraterrestrial Physics

sábado, 27 de maio de 2023

Observando o quasar mais luminoso dos últimos 9 bilhões de anos

Os pesquisadores observaram a emissão de raios X do quasar mais luminoso observado nos últimos 9 bilhões de anos de história cósmica, conhecido como SMSS J114447.77-430859.3, ou J1144 para abreviar.

© STScI (ilustração de um quasar)

A nova perspectiva fornece informações sobre o funcionamento interno dos quasares e sobre a forma como interagem com o seu ambiente.

Situado numa galáxia a 9,6 bilhões de anos-luz de distância da Terra, entre as constelações de Centauro e Hidra, J1144 é extremamente poderoso, brilhando 100 trilhões de vezes mais do que o Sol. O quasar J1144 está muito mais próximo da Terra do que outras fontes com a mesma luminosidade, o que permite aos astrônomos conhecer melhor o buraco negro que alimenta o quasar e o ambiente em seu redor. 

Os quasares estão entre os objetos mais brilhantes e distantes do Universo conhecido, alimentados por gás que cai num buraco negro supermassivo. Podem ser descritos como núcleos galácticos ativos (NGAs) de luminosidade muito elevada que emitem grandes quantidades de radiação eletromagnética observável nos comprimentos de onda do rádio, infravermelho, visível, ultravioleta e raios X. 

O quasar J1144 foi inicialmente observado no visível em 2022 pelo SMSS (SkyMapper Southern Survey). Para este estudo, os pesquisadores combinaram observações de vários observatórios espaciais: o instrumento eROSITA a bordo do observatório SRG (Spectrum-Roentgen-Gamma), o observatório XMM-Newton da ESA, o NuSTAR (Nuclear Spectroscopic Telescope Array) da NASA e o observatório Neil Gehrels Swift da NASA. 

A equipe utilizou os dados dos quatro observatórios para medir a temperatura dos raios X emitidos pelo quasar. Descobriram que esta temperatura era de cerca de 350 milhões K, mais de 60.000 vezes a temperatura à superfície do Sol. Notou-se também que a massa do buraco negro no centro do quasar é cerca de 10 bilhões de vezes superior à massa do Sol, e que o ritmo de crescimento é da ordem de 100 massas solares por ano. 

Os raios X desta fonte variaram numa escala de tempo de alguns dias, o que não é observado normalmente em quasares com buracos negros tão grandes como o que reside em J1144. A escala de tempo típica de variabilidade para um buraco negro desta dimensão seria da ordem de meses ou mesmo anos. As observações também mostraram que, enquanto uma parte do gás é engolida pelo buraco negro, algum gás é ejetado sob a forma de ventos extremamente poderosos, injetando grandes quantidades de energia na galáxia hospedeira.

O quasar J1144 é uma fonte muito rara por ser tão luminosa e por estar muito mais perto da Terra (embora ainda a uma distância enorme!), dando-nos um vislumbre único do aspecto de quasares tão poderosos. Uma nova campanha de monitoramento desta fonte terá início em junho deste ano, o que poderá revelar mais surpresas sobre esta fonte única.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Max Planck Institute for Extraterrestrial Physics

quinta-feira, 18 de maio de 2023

Revelada a maior explosão cósmica jamais vista

Uma equipe de astrônomos liderada por pesquisadores da Universidade de Southampton descobriu a maior explosão cósmica jamais testemunhada.

© John Paice (ilustração da acreção de um buraco negro)

A explosão é mais de 10 vezes mais brilhante do que qualquer supernova conhecida. A explosão, conhecida como AT2021lwx, durou até agora mais de três anos, em comparação com a maioria das supernovas que só permanecem visivelmente brilhantes durante alguns meses. Ocorreu há quase 8 bilhões de anos, quando o Universo tinha cerca de 6 bilhões de anos, e está localizada na direção da constelação de Raposa. 

A AT2021lwx foi detectada pela primeira vez em 2020 pelo ZTF (Zwicky Transient Facility) na Califórnia e foi subsequentemente detectado pelo ATLAS (Asteroid Terrestrial-impact Last Alert System), sediado no Havaí. Estas instalações observam o céu noturno para detectar objetos transientes que mudam rapidamente de brilho, indicando eventos cósmicos como supernovas, bem como encontrando asteroides e cometas. 

Até agora, a escala da explosão era desconhecida. A equipe investigou o objeto com vários telescópios diferentes: o Observatório Neil Gehrels Swift, o NTT (New Technology Telescope) no Chile e o GTC (Gran Telescopio Canarias) em La Palma, Espanha. Os pesquisadores pensam que a explosão é o resultado de uma vasta nuvem de gás, possivelmente milhares de vezes maior do que o nosso Sol, que foi violentamente perturbada por um buraco negro supermassivo. Fragmentos da nuvem teriam sido engolidos, enviando ondas de choque através dos seus remanescentes, bem como para uma grande fração poeirenta em forma de rosquinha que rodeia o buraco negro. 

Estes eventos são muito raros e nunca antes se tinha visto nada a esta escala. No ano passado, os astrônomos testemunharam a explosão mais brilhante de que há registo, uma explosão de raios gama denominada GRB 221009A. Embora esta tenha sido mais brilhante do que AT2021lwx, durou apenas uma fração do tempo, o que significa que a energia total liberada pela explosão de AT2021lwx é muito maior. A dimensão física da explosão é cerca de 100 vezes maior do que todo o Sistema Solar e, no seu máximo brilho, foi cerca de 2 trilhões de vezes mais brilhante do que o Sol. 

As únicas coisas no Universo que são tão brilhantes como AT2021lwx são os quasares, ou seja, buracos negros supermassivos com um fluxo constante de gás caindo sobre eles a alta velocidade. Existem diferentes teorias sobre o que poderia ter causado tal explosão, mas considera-se que a explicação mais viável é uma nuvem extremamente grande de hidrogênio gasoso ou poeira que se desviou da sua órbita em torno do buraco negro supermassivo e que foi puxada para o centro do sistema.

A equipe está agora tentando recolher mais dados sobre a explosão, observando o objeto em diferentes comprimentos de onda, incluindo raios X, que poderão revelar a temperatura do objeto e os processos que poderão estar ocorrendo à superfície. Também vão efetuar simulações computacionais atualizadas para testar se estas correspondem à sua teoria sobre o que provocou a explosão.

Com novas instalações, como o LSST (Legacy Survey of Space and Time) do Observatório Vera Rubin entrando em funcionamento nos próximos anos, espera-se descobrir mais eventos como este e aprender mais sobre eles. É possível que estes acontecimentos, embora extremamente raros, sejam tão energéticos que são fundamentais da forma como os centros galácticos mudam ao longo do tempo. Uma vez conhecida a distância ao objeto e quão brilhante parece ser, é possível calcular o brilho do objeto na sua origem. Depois de efetuar estes cálculos, percebeu-se que este objeto é extremamente brilhante. 

Com um quasar, nota-se o brilho oscilando para cima e para baixo ao longo do tempo. Mas olhando para trás, ao longo de uma década, não foi detectado AT2021lwx e, de repente, apareceu como uma das coisas mais luminosas do Universo!

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Institute of Space Sciences