Mostrando postagens com marcador Via Láctea. Mostrar todas as postagens
Mostrando postagens com marcador Via Láctea. Mostrar todas as postagens

sábado, 18 de janeiro de 2025

Explicando as características incomuns de uma corrente estelar

Físicos propuseram uma solução para um enigma de longa data que envolve a corrente estelar GD-1, uma das correntes mais bem estudadas no interior do halo galáctico da Via Láctea, conhecida pela sua estrutura longa e fina e pelas suas características incomuns.

© Adrian Price-Whelan (corrente estelar GD-1)

A equipe de pesquisadores, liderada por Hai-Bo Yu, da Universidade da Califórnia em Riverside, propôs que um "sub-halo" de matéria escura autointerativa em colapso do núcleo, um halo satélite menor dentro do halo galáctico, é responsável pelas características peculiares em forma de esporão e pelas lacunas observadas na corrente estelar GD-1. A pesquisa poderá ter implicações significativas para a compreensão das propriedades da matéria escura no Universo.

Um fluxo estelar é um grupo de estrelas que se movem coletivamente ao longo de uma trajetória partilhada. Uma lacuna refere-se a uma subdensidade localizada de estrelas ao longo da corrente, enquanto um esporão é uma sobredensidade de estrelas que se estende para fora do corpo principal da corrente. Uma vez que a matéria escura governa o movimento das correntes estelares, será possível usá-las para localizar matéria escura invisível numa galáxia.

O halo galáctico da Via Láctea, uma região aproximadamente esférica que rodeia a Galáxia, contém matéria escura e estende-se para além da orla visível da Galáxia. Os astrônomos descobriram que as características de esporão e a lacuna da corrente estelar GD-1 não podem ser facilmente atribuídas à influência gravitacional de aglomerados globulares conhecidos ou galáxias satélite da Via Láctea.

Estas características podem ser explicadas, no entanto, por um objeto perturbador desconhecido, como um sub-halo. Mas a densidade do objeto teria de ser significativamente mais elevada do que a prevista pelos tradicionais sub-halos de matéria escura fria.

Os sub-halos de matéria escura fria não têm tipicamente a densidade necessária para produzir as características distintivas observadas na corrente GD-1. No entanto, a pesquisa demonstra que um sub-halo de matéria escura autointerativa em colapso do núcleo pode atingir a densidade necessária. Um sub-halo tão compacto seria suficientemente denso para exercer a influência gravitacional necessária para explicar as perturbações observadas na corrente GD-1.

Pensa-se que a matéria escura, que não pode ser vista diretamente, constitui 85% da matéria do Universo. A sua natureza não é bem compreendida. A matéria escura fria, a teoria da matéria escura predominante, assume que as partículas de matéria escura não têm colisões. A matéria escura autointerativa em colapso do núcleo, uma forma teórica de matéria escura, propõe que as partículas de matéria escura interagem entre si através de uma nova força escura.

Neste estudo os pesquisadores utilizaram simulações numéricas com N-corpos para modelar o comportamento de um subhalo de matéria escura autointerativa em colapso do núcleo. A descoberta também fornece informações sobre a natureza da própria matéria escura. Este trabalho abre uma nova e promissora via para a investigação das propriedades de autointeração da matéria escura através de fluxos estelares.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: University of California

terça-feira, 17 de dezembro de 2024

Primeira estrela binária próximo do buraco negro da Via Láctea

Pesquisadores detectaram uma estrela binária próxima de Sagitário A*, o buraco negro supermassivo situado no centro da nossa Galáxia.

© ESO / VLT (localização da estrela binária D9 próxima de Sagitário A*)

Esta imagem mostra a localização da estrela binária D9 recentemente descoberta na órbita de Sagitário A*, o buraco negro supermassivo localizado no centro da Via Láctea.

É a primeira vez que um par de estrelas é encontrado nas vizinhanças de um buraco negro supermassivo. A descoberta, baseada em dados recolhidos pelo Very Large Telescope (VLT) do Observatório Europeu do Sul (ESO), ajuda-nos a compreender melhor como é que as estrelas conseguem sobreviver em ambientes de gravidade extrema e pode abrir caminho à detecção de planetas perto de Sagitário A*.

As estrelas binárias, pares de estrelas que orbitam em torno uma da outra, são muito comuns no Universo, mas até agora nenhuma tinha ainda sido encontrada perto de um buraco negro supermassivo, local onde a gravidade muito extrema pode tornar os sistemas estelares instáveis. Esta nova descoberta mostra que alguns binários podem prosperar durante um curto espaço de tempo em condições destrutivas. 

D9, nome dado à estrela binária recém-descoberta, foi detectada mesmo a tempo: estima-se que tenha apenas 2,7 milhões de anos de idade, e a forte força gravitacional do buraco negro fará com que, muito provavelmente, se funda numa única estrela dentro de apenas um milhão de anos, o que corresponde a um período de tempo muito curto para um sistema tão jovem.

Durante muitos anos, os cientistas também pensaram que o ambiente extremo que existe nas proximidades de um buraco negro supermassivo impedisse a formação de novas estrelas. No entanto, as várias estrelas jovens encontradas nas proximidades de Sagitário A* desmentiram esta suposição. A descoberta desta estrela binária jovem mostra agora que até pares de estrelas têm o potencial de se formar no seio destas condições adversas.

O binário agora descoberto foi encontrado no seio de um denso aglomerado de estrelas e outros objetos que orbita Sagitário A*, o chamado aglomerado S. Os objetos mais enigmáticos neste aglomerado são os chamados objetos G, que se comportam como estrelas mas que mais parecem nuvens de gás e poeira. Foi precisamente durante observações destes objetos misteriosos que foi encontrado um padrão surpreendente em D9. Os dados obtidos com o instrumento ERIS, montado no VLT, combinados com dados de arquivo do instrumento SINFONI, revelaram variações recorrentes na velocidade da estrela, indicando que D9 se tratava de duas estrelas em órbita uma da outra.

A equipe propõe que os misteriosos objetos G possam ser uma combinação de estrelas binárias que ainda não se fundiram com o material que sobrou de estrelas já fundidas. A natureza precisa de muitos dos objetos que orbitam Sagitário A*, bem como a forma como se podem ter formado tão perto do buraco negro supermassivo, continuam sendo um mistério.

Em breve, a atualização GRAVITY+ do Interferômetro do VLT e o instrumento METIS do Extremely Large Telescope (ELT) do ESO, atualmente em construção no Chile, poderão mudar esta situação. Ambas estas infraestruturas permitirão a realização de observações ainda mais detalhadas do centro da Via Láctea, revelando a natureza de objetos conhecidos e, sem dúvida, descobrindo mais estrelas binárias e sistemas jovens.

Este trabalho foi publicado hoje na revista Nature Communications

Fonte: ESO

sexta-feira, 22 de novembro de 2024

A primeira imagem de uma estrela fora da Via Láctea

Pela primeira vez, foi obtida uma imagem de grande plano de uma estrela moribunda numa galáxia fora da Via Láctea.

© ESO / VLTI (estrela WOH G64)

A estrela WOH G64 situa-se a uns impressionantes 160.000 anos-luz de distância da Terra, mas ainda assim foi possível obter-se uma imagem sua extremamente nítida, graças à elevada resolução atingida pelo Interferômetro do Very Large Telescope (VLTI), do Observatório Europeu do Sul (ESO). 

As novas observações revelam que esta estrela se encontra expelindo gás e poeira, estando nas últimas fases de vida antes de explodir sob a forma de supernova. Foi descoberto um casulo em forma de ovo rodeando a estrela. 

Embora os astrônomos tenham obtido cerca de várias dezenas de imagens de grande plano de estrelas na nossa Galáxia, revelando assim as suas propriedades, existem inúmeras estrelas em outras galáxias tão distantes que observá-las em pormenor tem-se revelado extremamente difícil, pelo menos até agora. 

A estrela recentemente observada, WOH G64, situa-se na Grande Nuvem de Magalhães, uma das galáxias anãs que orbitam a Via Láctea, e os astrônomos sabem da sua existência desde há décadas. Com um tamanho de cerca de duas mil vezes superior ao do nosso Sol, a WOH G64 está classificada como uma estrela supergigante vermelha. 

Em 2005 e 2007, os pesquisadores utilizaram o VLTI no deserto chileno do Atacama, para aprender mais sobre as caraterísticas da estrela, tendo continuado a estudá-la nos anos seguintes. No entanto, obter uma imagem real da estrela revelava-se difícil. Com o desenvolvimento de um dos instrumentos de segunda geração do VLTI, o GRAVITY, surgiu a oportunidade de obter uma imagem desta estrela. Ao comparar os novos resultados com observações anteriores da WOH G64, os pesquisadores ficaram surpreendidos ao descobrir que a estrela se foi tornando cada vez mais tênue ao longo da última década.

Na fase final da sua vida, as supergigantes vermelhas como a WOH G64 liberam as suas camadas exteriores de gás e poeira, num processo que pode durar milhares de anos. Esta estrela é uma das mais extremas do seu gênero e qualquer mudança drástica pode aproximá-la de um fim explosivo. A equipe pensa que este material perdido pode ser igualmente responsável pelo escurecimento da estrela e pela forma incomum apresentada pelo casulo de poeira que a rodeia. A nova imagem mostra que o casulo está esticado, o que surpreendeu os cientistas, que esperavam uma forma diferente com base em observações anteriores e modelos de computador. 

Acredita-se que a forma em ovo do casulo pode ser explicada pela ejeção das camadas exteriores da estrela ou pela influência de uma estrela companheira ainda por descobrir. À medida que a WOH G64 se torna cada vez mais tênue, obter outras imagens de grande plano é cada vez mais difícil, mesmo com o VLTI. No entanto, as atualizações planejadas para a instrumentação do telescópio, como o futuro GRAVITY+, prometem mudar isto em breve.

Este trabalho foi descrito num artigo publicado no periódico Astronomy and Astrophysics.

Fonte: ESO

domingo, 27 de outubro de 2024

Encontradas as primeiras candidatas a anãs marrons fora da Via Láctea

Astrônomos utilizaram o telescópio espacial James Webb para detectar a primeira população de candidatas a anãs marrons fora da Via Láctea, no aglomerado estelar NGC 602.

© Webb (NGC 602)

Perto da periferia da Pequena Nuvem de Magalhães, uma galáxia satélite a cerca de 200.000 anos-luz da Terra, encontra-se o jovem aglomerado estelar NGC 602. O ambiente local deste aglomerado é um análogo próximo do que existia no Universo primitivo, com abundâncias muito baixas de elementos mais pesados do que o hidrogênio e o hélio. 

A existência de nuvens escuras de poeira densa e o fato de o aglomerado ser rico em gás ionizado também sugerem a presença de processos de formação estelar em curso. Juntamente com a sua região HII associada N90, que contém nuvens de hidrogênio atômico ionizado, este aglomerado constitui uma oportunidade valiosa para examinar cenários de formação estelar em condições dramaticamente diferentes das da vizinhança solar.

As anãs marrons são as primas mais massivas dos planetas gigantes gasosos (tipicamente variam entre 13 e 75 massas de Júpiter, por vezes menos). Flutuam livremente, o que significa que não estão gravitacionalmente ligadas a uma estrela como os exoplanetas. No entanto, algumas delas partilham características com os exoplanetas, como a sua composição atmosférica e padrões de tempestade.

Até agora, conhecíamos cerca de 3.000 anãs marrons, mas todas elas vivem dentro da nossa própria Galáxia. Esta descoberta realça o poder de usar tanto o Hubble como o Webb para estudar aglomerados estelares jovens. O Hubble mostrou que NGC 602 abriga estrelas muito jovens de baixa massa, mas só com o Webb é possível finalmente ver a extensão e o significado da formação de massa subestelar neste aglomerado. 

Os dados incluem uma nova imagem de NGC 602 obtida pelo instrumento NIRCam (Near-InfraRed Camera) do Webb, que destaca as estrelas do aglomerado, os jovens objetos estelares e as cristas de gás e poeira circundantes, bem como o próprio gás e poeira, ao mesmo tempo que mostra a contaminação significativa por galáxias de fundo e outras estrelas na Pequena Nuvem de Magalhães. Estas observações foram efetuadas em abril de 2023. 

Ao estudar as jovens anãs marrons pobres em metal recentemente descobertas em NGC 602, estamos mais perto de desvendar os segredos de como as estrelas e os planetas se formaram nas duras condições do Universo primitivo. Estes são os primeiros objetos subestelares fora da Via Láctea.

Um artigo foi publicado no periódico The Astrophysical Journal

Fonte: ESA

sexta-feira, 27 de setembro de 2024

O mapa infravermelho mais detalhado da Via Láctea

Os astrônomos publicaram um gigantesco mapa infravermelho da Via Láctea com mais de 1,5 bilhões de objetos, trata-se do mapa mais detalhado criado até à data.

© VISTA (mapa infravermelho da Via Láctea)

Esta colagem destaca uma pequena seleção de regiões da Via Láctea fotografadas para obtenção do mapa infravermelho. Nota-se, da esquerda para a direita e de cima para baixo: NGC 3576, NGC 6357, Messier 17, NGC 6188, Messier 22 e NGC 3603. Todos estes objetos são nuvens de gás e poeira onde estão se formando estrelas, exceto a Messier 22, que é um grupo muito denso de estrelas antigas.

Utilizando o telescópio VISTA do ESO (Observatório Europeu do Sul), a equipe monitorou as regiões centrais da nossa Galáxia durante mais de 13 anos. Com 500 terabytes de dados, este é o maior projeto de observação alguma vez realizado com um telescópio do ESO.

Este mapa recorde inclui 200.000 imagens obtidas pelo telescópio VISTA (Visible and Infrared Survey Telescope for Astronomy) do ESO (Observatório Europeu do Sul). Localizado no Observatório do Paranal, no Chile, o foco principal deste telescópio é cartografar grandes áreas do céu. A equipe monitorou as regiões centrais da nossa Galáxia durante mais de 13 anos. Com 500 terabytes de dados, este é o maior projeto de observação alguma vez realizado com um telescópio do ESO.

Foi utilizada a câmara de infravermelhos do VISTA, a VIRCAM, que consegue observar para além da poeira e do gás que permeiam a Via Láctea. Por conseguinte, é capaz de captar a radiação emitida nas regiões mais ocultas da Via Láctea, abrindo assim uma janela única para a nossa vizinhança galáctica. 

Este gigantesco conjunto de dados cobre uma área do céu equivalente a 8.600 Luas Cheias e contém cerca de 10 vezes mais objetos do que o mapa publicado em 2012 pela mesma equipe. Os dados incluem estrelas recém-nascidas, que se encontram frequentemente envolvidas por casulos de poeira, e aglomerados globulares, que são grupos densos de milhões das estrelas mais antigas da Via Láctea. 

Observar no infravermelho permite também ao VISTA detectar objetos muito frios, que brilham nestes comprimentos de onda, tais como anãs marrons (estrelas “falhadas” que não têm fusão nuclear sustentada) ou planetas flutuantes que não orbitam nenhuma estrela. 

As observações começaram em 2010 e terminaram na primeira metade de 2023, abrangendo um total de 420 noites. Ao observar cada área do céu muitas vezes, a equipe conseguiu não só determinar a localização destes objetos, mas também seguir o seu movimento e determinar se existem variações de brilho. Foram registradas ainda estrelas cuja luminosidade muda periodicamente e que podem ser usadas como réguas cósmicas para medir distâncias, dando-nos assim uma visão tridimensional exata das regiões mais interiores da Via Láctea, as quais se encontravam anteriormente escondidas pela poeira.

Os pesquisadores seguiram também estrelas com hipervelocidade, ou seja, estrelas em movimento rápido catapultadas da região central da Via Láctea após um encontro próximo com o buraco negro supermassivo que aí se enconde. 

O novo mapa contém dados recolhidos no âmbito do rastreio VVV (VISTA Variables in the Vía Láctea) e do seu projeto complementar, o rastreio VVVX (VVV eXtended). Os rastreios VVV e VVVX já deram origem a mais de 300 artigos científicos. Com os rastreios agora concluídos, a exploração científica dos dados recolhidos continuará ainda durante as próximas décadas. Entretanto, o Observatório do Paranal do ESO está sendo preparado para o futuro: o VISTA será atualizado com o novo instrumento 4MOST e o Very Large Telescope (VLT) do ESO receberá o instrumento MOONS. Juntos, estes instrumentos fornecerão espectros de milhões dos objetos aqui estudados, sendo de esperar inúmeras descobertas.

Este trabalho foi publicado no periódico Astronomy & Astrophysics.

Fonte: ESO

sábado, 24 de agosto de 2024

Rastreando uma estrela solitária que atravessa a Via Láctea

Pode parecer que o Sol está parado enquanto os planetas se movem à sua volta, mas na verdade o Sol está orbitando em torno do centro da nossa Galáxia, a Via Láctea, a uma impressionante velocidade de cerca de 220 quilômetros por segundo.

© Adam Makarenko (simulação da rápida velocidade de estrela)

Neste cenário, a subanã L pode ter sido parte de um sistema binário de anã branca que terminou com ela explodindo em uma supernova e ejetando a subanã L.

Por muito rápido que isso possa parecer, quando se descobriu uma tênue estrela vermelha que se movia ainda mais depressa no céu, a uma velocidade de cerca de 600 quilômetros por segundo, os cientistas ficaram atentos. Esta rara velocista estelar é a primeira estrela hiperveloz de massa muito baixa já encontrada, graças aos esforços de cientistas cidadãos e de uma equipe de astrônomos dos EUA utilizando vários telescópios, incluindo dois no arquipélago do Havaí, o Observatório W. M. Keck em Maunakea e o Pan-STARRS do Instituto de Astronomia da Universidade do Havaí, em Haleakalā, na ilha de Maui. 

Localizada a apenas 400 anos-luz da Terra, é a estrela hiperveloz mais próxima do Sol. Mais notavelmente, esta estrela pode estar numa trajetória incomum que poderá levá-la a deixar a Via Láctea. A estrela, designada por CWISE J124909+362116.0 (ou "J1249+36" para abreviar), foi detectada pela primeira vez por alguns dos mais de 80.000 cidadãos voluntários que participam no projeto Backyard Worlds: Planet 9, que passam a pente fino enormes quantidades de dados recolhidos nos últimos 14 anos pela missão WISE (Wide-field Infrared Survey Explorer) da NASA. Este projeto capitaliza a capacidade aguçada dos seres humanos, que estão evolutivamente programados para procurar padrões e detectar anomalias de uma forma que não é igualada pela tecnologia informática. 

Os voluntários marcam objetos em movimento em arquivos de dados e quando um número suficiente de voluntários marca o mesmo objeto, os astrônomos investigam. A J1249+36 destacou-se imediatamente porque se movia a cerca de 0,1% da velocidade da luz.

Para melhor compreender a natureza deste objeto, os astrônomos recorreram ao NIRES (Near-Infrared Echellette Spectrograph) do Observatório W. M. Keck e mediu o seu espectro infravermelho. Os dados revelaram que o objeto era uma subanã L, uma classe de estrelas com massas muito baixas e temperaturas mais baixas do que o nosso Sol. As subanãs representam as estrelas mais antigas da Via Láctea. 

Os dados espectrais, juntamente com os dados de imagem do Pan-STARRS e de vários outros telescópios terrestres, permitiram à equipe medir com precisão a posição e a velocidade de J1249+36 no espaço e assim prever a sua órbita através da Via Láctea. Os pesquisadores focaram-se em dois cenários possíveis para explicar a trajetória da J1249+36. No primeiro cenário, ela era originalmente a companheira de baixa massa de uma anã branca. As anãs brancas são os núcleos remanescentes de estrelas que esgotaram o seu combustível nuclear e se extinguiram. Quando uma companheira estelar está numa órbita muito próxima de uma anã branca, pode transferir massa, resultando em explosões periódicas chamadas novas. Se a anã branca acumular demasiada massa, pode entrar em colapso e explodir como uma supernova. Neste tipo de supernova, a anã branca é completamente destruída, pelo que a sua companheira é liberada e voa à velocidade orbital a que se movia originalmente, acrescida de um pequeno impulso da explosão da supernova.

No segundo cenário, J1249+36 era originalmente um membro de um aglomerado globular, um aglomerado de estrelas fortemente ligado, imediatamente reconhecível pela sua distinta forma esférica. Prevê-se que os centros destes aglomerados contenham buracos negros com uma grande variedade de massas. Estes buracos negros também podem formar binários, e tais sistemas acabam por ser grandes catapultas para quaisquer estrelas que se aproximem demasiado deles. Quando uma estrela encontra um buraco negro binário, a dinâmica complexa desta interação de três corpos pode atirar essa estrela para fora do aglomerado globular. 

Seguir J1249+36 para trás no tempo coloca-a numa parte muito povoada do céu, que pode esconder aglomerados ainda por descobrir. Para determinar se um destes cenários, ou algum outro mecanismo, pode explicar a trajetória de J1249+36, é necessário olhar mais de perto para a sua composição elementar. Por exemplo, quando uma anã branca explode, cria elementos pesados que podem ter "poluído" a atmosfera de J1249+36 quando esta estava escapando. As estrelas dos aglomerados globulares e das galáxias satélite da Via Láctea também têm padrões distintos de abundância de elementos que podem revelar a origem de J1249+36.

Os astrônomos estão essencialmente à procura de uma impressão digital química que permita identificar de que sistema vem esta estrela, cuja modelação permite medir as abundâncias de elementos de estrelas frias em vários aglomerados globulares. Quer a rápida viagem de J1249+36 se tenha devido a uma supernova, a um encontro casual com um buraco negro binário ou a qualquer outro cenário, a sua descoberta fornece uma nova oportunidade para os astrônomos aprenderem mais sobre a história e a dinâmica da Via Láctea.

Um artigo foi aceito para publicação no periódico The Astrophysical Journal Letters.

Fonte: W. M. Keck Observatory

sábado, 6 de julho de 2024

Porque é que parece que estamos sozinhos na Via Láctea?

Uma nova pesquisa sugere uma explicação geológica para o fato de não terem sido encontradas evidências conclusivas da existência de civilizações extraterrestres avançadas, apesar da equação de Drake prever que deveriam existir muitas civilizações deste tipo na nossa Galáxia, capazes de comunicar conosco.

© Copilot Designer (imagem gerada por inteligência artificial de um exoplaneta habitado)

A pesquisa realizada pelo Dr. Robert Stern, geocientista da Universidade do Texas em Dallas, e o Dr. Taras Gerya, professor de Ciências da Terra no ETH (Eidgenössische Technische Hochschule) em Zurique, propõem que, em planetas com vida, é essencial, para a evolução de civilizações ativas e comunicativas, a presença de oceanos e continentes, bem como de placas tectônicas a longo prazo. Os pesquisadores concluem que a provável escassez destes três requisitos, em exoplanetas, diminuiria significativamente o número esperado de civilizações extraterrestres na Via Láctea.

A vida existe na Terra há cerca de 4 bilhões de anos, mas organismos complexos como os animais só apareceram há cerca de 600 milhões de anos, ou seja, pouco tempo depois do início do episódio moderno das placas tectônicas. 

Em 1961, o astrónomo Dr. Frank Drake concebeu uma equação em que vários fatores são multiplicados para estimar o número de civilizações inteligentes na Via Láctea capazes de evidenciar a sua presença aos humanos: 

N = R* x fp x ne x fl x fi x fc x L 

N - o número de civilizações da Via Láctea cujas emissões eletromagnéticas (ondas de rádio, etc.) são detectáveis;

R* - o número de estrelas formadas anualmente;

fp - a fração dessas estrelas com sistemas planetários;

ne - o número de planetas por sistema solar com um ambiente adequado à vida;

fl - a fração de planetas adequados em que a vida realmente aparece;

fi - a fração de planetas com vida em que surge vida inteligente;

fc - a fração de civilizações que desenvolvem uma tecnologia que produz sinais detectáveis da sua existência;

L - o período médio de tempo (anos) em que essas civilizações produzem esses sinais.

A atribuição de valores às sete variáveis tem sido um jogo de adivinhação, levando a previsões de que tais civilizações devem ser comuns. Mas se isso é verdade, porque é que não existem evidências conclusivas da sua existência? Esta contradição é conhecida como o paradoxo de Fermi, nome dado em homenagem ao Dr. Enrico Fermi, físico nuclear e Prêmio Nobel de Física, que colocou informalmente tal questão. 

No seu estudo, Stern e Gerya propõem o aperfeiçoamento de uma das incógnitas da equação de Drake - fi, a fração de planetas com vida em que surge vida inteligente - para ter em conta a necessidade de grandes oceanos e continentes e a existência de placas tectônicas, há mais de 500 milhões de anos, nesses planetas. Na formulação original, pensava-se que esta incógnita era quase 1, ou 100%; isto é, em todos os planetas com vida a evolução avançaria e, com tempo suficiente, se transformaria numa civilização inteligente. 

As placas tectônicas é uma teoria científica formulada no final da década de 1960 que afirma que a crosta e o manto superior da Terra estão divididos em pedaços móveis, ou placas, que se movem muito lentamente. No nosso Sistema Solar, apenas um dos quatro corpos rochosos com deformação da superfície e atividade vulcânica, a Terra, tem placas tectônicas. Três outros corpos: Vênus, Marte e a lua de Júpiter, Io, estão ativamente deformados e têm vulcões jovens, mas não têm placas tectônicas. Dois outros corpos rochosos: Mercúrio e a Lua, não têm essa atividade e estão tectonicamente mortos.

À medida que as placas tectônicas se movem, estas chocam ou afastam-se umas das outras, formando estruturas geológicas como montanhas, vulcões e oceanos, que também permitem o desenvolvimento de padrões meteorológicos e climáticos moderados. Através do intemperismo, os nutrientes são liberados nos oceanos. Ao criar e destruir habitats, as placas tectônicas exercem uma pressão ambiental moderada, mas incessante, sobre as espécies, para que evoluam e se adaptem. 

Os pesquisadores também avaliaram a importância da presença duradoura de grandes massas de terra e de oceanos para a evolução que levou a uma espécie ativa e capaz de comunicar. Eles propuseram uma revisão da equação de Drake que define "fi" como o produto de dois termos: foc, a fração de exoplanetas habitáveis com continentes e oceanos significativos, e fpt, a fração de planetas que tiveram placas tectônicas de longa duração.

Com base na sua análise, a fração de exoplanetas com um volume ideal de água é provavelmente muito pequena. Estimam que o valor de foc varia entre 0,0002 e 0,01. Da mesma forma, as placas tectônicas com uma duração superior a 500 milhões de anos é também altamente incomum, o que leva a uma estimativa de fpt inferior a 0,17. Quando esses fatores são multiplicados, obtem-se uma estimativa refinada de fi que é muito pequena, entre 0,003% e 0,2%, em vez de 100%. Isto explica a extrema raridade de condições planetárias favoráveis ao desenvolvimento de vida inteligente na Via Láctea e possivelmente resolve o paradoxo de Fermi. 

Um artigo foi publicado na edição online da revista Scientific Reports

Fonte: University of Texas

terça-feira, 25 de junho de 2024

Estrela veloz pode escapar da Via Láctea

Cientistas cidadãos e astrônomos profissionais uniram-se para detectar uma rara estrela de hipervelocidade a percorrer a nossa Galáxia, a Via Láctea.

© UC San Diego (ilustração do sistema binário com explosão de supernova)

Com sua velocidade e trajetória atuais, é possível que um dia ela escape da galáxia para sempre. A descoberta só foi possível graças às legiões de voluntários que dedicaram seu tempo ao projeto Backyard Worlds: Planet 9. Esses voluntários auxiliam os astrônomos examinando dados de mais de 14 anos da missão Wide-field Infrared Survey Explorer (WISE) da NASA, procurando objetos que se movem entre as imagens. Os astrônomos podem então acompanhar descobertas interessantes para aprender mais. 

Na recente 244ª reunião nacional da Sociedade Astronômica Americana em Madison, Wisconsin, Adam Burgasser (Universidade da Califórnia, San Diego) anunciou a descoberta de um objeto em movimento rápido conhecido como CWISE J124909+362116.0 (J1249+36 para abreviar), cerca de 400 anos-luz da Terra. Ele estima que esteja viajando pela Via Láctea a cerca de 450 km/s. 

Burgasser usou o W.M. Observatório Keck em Maunakea, Havaí, para obter o espectro de J1249+36 no infravermelho. O espectro correspondia aos modelos atmosféricos criados por Roman Gerasimov (Universidade da Califórnia, San Diego) de uma classe de estrelas de baixa massa conhecidas como subanãs L. Essas estrelas são algumas das mais raras e antigas do Universo. Em seguida, Burgasser combinou os dados recolhidos dos espectros com imagens de telescópios terrestres para medir a posição e velocidade da estrela.

Podemos saber para onde está indo, mas de onde essa estrela surgiu? Uma opção é que uma vez orbitou uma estrela anã branca, que posteriormente explodiu como uma supernova Tipo Ia. Nesse tipo de supernova, a anã branca é completamente destruída, por isso a sua companheira é liberada e voa à velocidade orbital em que se movia originalmente, além de um pequeno impulso da explosão da supernova. Se isso aconteceu, ocorreu há tanto tempo que não há mais remanescentes de supernova para caçar. A segunda possibilidade é que a estrela tenha começado nas profundezas de um denso grupo de estrelas conhecido como aglomerado globular. Em seguida, encontrou um par de buracos negros aninhados nas profundezas do aglomerado. 

Quando uma estrela encontra um buraco negro binário, a dinâmica complexa desta interação de três corpos pode expulsar essa estrela do aglomerado globular. Existe uma maneira de os astrônomos decidirem entre essas duas opções. Os astrônomos estão essencialmente à procura de uma impressão digital química que identifique de que sistema esta estrela provém. Mas isso exigiria um espectro mais detalhado de J1249+36. Tal espectro poderia mostrar que a subanã estava poluída com elementos expelidos pela supernova. Por outro lado, poderia mostrar uma correspondência estreita com a química das estrelas em aglomerados globulares; como os globulares são tão antigos, suas estrelas contêm muito poucos elementos além do hidrogênio e do hélio.

Fonte: Sky & Telescope