Mostrando postagens com marcador Via Láctea. Mostrar todas as postagens
Mostrando postagens com marcador Via Láctea. Mostrar todas as postagens

domingo, 27 de outubro de 2024

Encontradas as primeiras candidatas a anãs marrons fora da Via Láctea

Astrônomos utilizaram o telescópio espacial James Webb para detectar a primeira população de candidatas a anãs marrons fora da Via Láctea, no aglomerado estelar NGC 602.

© Webb (NGC 602)

Perto da periferia da Pequena Nuvem de Magalhães, uma galáxia satélite a cerca de 200.000 anos-luz da Terra, encontra-se o jovem aglomerado estelar NGC 602. O ambiente local deste aglomerado é um análogo próximo do que existia no Universo primitivo, com abundâncias muito baixas de elementos mais pesados do que o hidrogênio e o hélio. 

A existência de nuvens escuras de poeira densa e o fato de o aglomerado ser rico em gás ionizado também sugerem a presença de processos de formação estelar em curso. Juntamente com a sua região HII associada N90, que contém nuvens de hidrogênio atômico ionizado, este aglomerado constitui uma oportunidade valiosa para examinar cenários de formação estelar em condições dramaticamente diferentes das da vizinhança solar.

As anãs marrons são as primas mais massivas dos planetas gigantes gasosos (tipicamente variam entre 13 e 75 massas de Júpiter, por vezes menos). Flutuam livremente, o que significa que não estão gravitacionalmente ligadas a uma estrela como os exoplanetas. No entanto, algumas delas partilham características com os exoplanetas, como a sua composição atmosférica e padrões de tempestade.

Até agora, conhecíamos cerca de 3.000 anãs marrons, mas todas elas vivem dentro da nossa própria Galáxia. Esta descoberta realça o poder de usar tanto o Hubble como o Webb para estudar aglomerados estelares jovens. O Hubble mostrou que NGC 602 abriga estrelas muito jovens de baixa massa, mas só com o Webb é possível finalmente ver a extensão e o significado da formação de massa subestelar neste aglomerado. 

Os dados incluem uma nova imagem de NGC 602 obtida pelo instrumento NIRCam (Near-InfraRed Camera) do Webb, que destaca as estrelas do aglomerado, os jovens objetos estelares e as cristas de gás e poeira circundantes, bem como o próprio gás e poeira, ao mesmo tempo que mostra a contaminação significativa por galáxias de fundo e outras estrelas na Pequena Nuvem de Magalhães. Estas observações foram efetuadas em abril de 2023. 

Ao estudar as jovens anãs marrons pobres em metal recentemente descobertas em NGC 602, estamos mais perto de desvendar os segredos de como as estrelas e os planetas se formaram nas duras condições do Universo primitivo. Estes são os primeiros objetos subestelares fora da Via Láctea.

Um artigo foi publicado no periódico The Astrophysical Journal

Fonte: ESA

sexta-feira, 27 de setembro de 2024

O mapa infravermelho mais detalhado da Via Láctea

Os astrônomos publicaram um gigantesco mapa infravermelho da Via Láctea com mais de 1,5 bilhões de objetos, trata-se do mapa mais detalhado criado até à data.

© VISTA (mapa infravermelho da Via Láctea)

Esta colagem destaca uma pequena seleção de regiões da Via Láctea fotografadas para obtenção do mapa infravermelho. Nota-se, da esquerda para a direita e de cima para baixo: NGC 3576, NGC 6357, Messier 17, NGC 6188, Messier 22 e NGC 3603. Todos estes objetos são nuvens de gás e poeira onde estão se formando estrelas, exceto a Messier 22, que é um grupo muito denso de estrelas antigas.

Utilizando o telescópio VISTA do ESO (Observatório Europeu do Sul), a equipe monitorou as regiões centrais da nossa Galáxia durante mais de 13 anos. Com 500 terabytes de dados, este é o maior projeto de observação alguma vez realizado com um telescópio do ESO.

Este mapa recorde inclui 200.000 imagens obtidas pelo telescópio VISTA (Visible and Infrared Survey Telescope for Astronomy) do ESO (Observatório Europeu do Sul). Localizado no Observatório do Paranal, no Chile, o foco principal deste telescópio é cartografar grandes áreas do céu. A equipe monitorou as regiões centrais da nossa Galáxia durante mais de 13 anos. Com 500 terabytes de dados, este é o maior projeto de observação alguma vez realizado com um telescópio do ESO.

Foi utilizada a câmara de infravermelhos do VISTA, a VIRCAM, que consegue observar para além da poeira e do gás que permeiam a Via Láctea. Por conseguinte, é capaz de captar a radiação emitida nas regiões mais ocultas da Via Láctea, abrindo assim uma janela única para a nossa vizinhança galáctica. 

Este gigantesco conjunto de dados cobre uma área do céu equivalente a 8.600 Luas Cheias e contém cerca de 10 vezes mais objetos do que o mapa publicado em 2012 pela mesma equipe. Os dados incluem estrelas recém-nascidas, que se encontram frequentemente envolvidas por casulos de poeira, e aglomerados globulares, que são grupos densos de milhões das estrelas mais antigas da Via Láctea. 

Observar no infravermelho permite também ao VISTA detectar objetos muito frios, que brilham nestes comprimentos de onda, tais como anãs marrons (estrelas “falhadas” que não têm fusão nuclear sustentada) ou planetas flutuantes que não orbitam nenhuma estrela. 

As observações começaram em 2010 e terminaram na primeira metade de 2023, abrangendo um total de 420 noites. Ao observar cada área do céu muitas vezes, a equipe conseguiu não só determinar a localização destes objetos, mas também seguir o seu movimento e determinar se existem variações de brilho. Foram registradas ainda estrelas cuja luminosidade muda periodicamente e que podem ser usadas como réguas cósmicas para medir distâncias, dando-nos assim uma visão tridimensional exata das regiões mais interiores da Via Láctea, as quais se encontravam anteriormente escondidas pela poeira.

Os pesquisadores seguiram também estrelas com hipervelocidade, ou seja, estrelas em movimento rápido catapultadas da região central da Via Láctea após um encontro próximo com o buraco negro supermassivo que aí se enconde. 

O novo mapa contém dados recolhidos no âmbito do rastreio VVV (VISTA Variables in the Vía Láctea) e do seu projeto complementar, o rastreio VVVX (VVV eXtended). Os rastreios VVV e VVVX já deram origem a mais de 300 artigos científicos. Com os rastreios agora concluídos, a exploração científica dos dados recolhidos continuará ainda durante as próximas décadas. Entretanto, o Observatório do Paranal do ESO está sendo preparado para o futuro: o VISTA será atualizado com o novo instrumento 4MOST e o Very Large Telescope (VLT) do ESO receberá o instrumento MOONS. Juntos, estes instrumentos fornecerão espectros de milhões dos objetos aqui estudados, sendo de esperar inúmeras descobertas.

Este trabalho foi publicado no periódico Astronomy & Astrophysics.

Fonte: ESO

sábado, 24 de agosto de 2024

Rastreando uma estrela solitária que atravessa a Via Láctea

Pode parecer que o Sol está parado enquanto os planetas se movem à sua volta, mas na verdade o Sol está orbitando em torno do centro da nossa Galáxia, a Via Láctea, a uma impressionante velocidade de cerca de 220 quilômetros por segundo.

© Adam Makarenko (simulação da rápida velocidade de estrela)

Neste cenário, a subanã L pode ter sido parte de um sistema binário de anã branca que terminou com ela explodindo em uma supernova e ejetando a subanã L.

Por muito rápido que isso possa parecer, quando se descobriu uma tênue estrela vermelha que se movia ainda mais depressa no céu, a uma velocidade de cerca de 600 quilômetros por segundo, os cientistas ficaram atentos. Esta rara velocista estelar é a primeira estrela hiperveloz de massa muito baixa já encontrada, graças aos esforços de cientistas cidadãos e de uma equipe de astrônomos dos EUA utilizando vários telescópios, incluindo dois no arquipélago do Havaí, o Observatório W. M. Keck em Maunakea e o Pan-STARRS do Instituto de Astronomia da Universidade do Havaí, em Haleakalā, na ilha de Maui. 

Localizada a apenas 400 anos-luz da Terra, é a estrela hiperveloz mais próxima do Sol. Mais notavelmente, esta estrela pode estar numa trajetória incomum que poderá levá-la a deixar a Via Láctea. A estrela, designada por CWISE J124909+362116.0 (ou "J1249+36" para abreviar), foi detectada pela primeira vez por alguns dos mais de 80.000 cidadãos voluntários que participam no projeto Backyard Worlds: Planet 9, que passam a pente fino enormes quantidades de dados recolhidos nos últimos 14 anos pela missão WISE (Wide-field Infrared Survey Explorer) da NASA. Este projeto capitaliza a capacidade aguçada dos seres humanos, que estão evolutivamente programados para procurar padrões e detectar anomalias de uma forma que não é igualada pela tecnologia informática. 

Os voluntários marcam objetos em movimento em arquivos de dados e quando um número suficiente de voluntários marca o mesmo objeto, os astrônomos investigam. A J1249+36 destacou-se imediatamente porque se movia a cerca de 0,1% da velocidade da luz.

Para melhor compreender a natureza deste objeto, os astrônomos recorreram ao NIRES (Near-Infrared Echellette Spectrograph) do Observatório W. M. Keck e mediu o seu espectro infravermelho. Os dados revelaram que o objeto era uma subanã L, uma classe de estrelas com massas muito baixas e temperaturas mais baixas do que o nosso Sol. As subanãs representam as estrelas mais antigas da Via Láctea. 

Os dados espectrais, juntamente com os dados de imagem do Pan-STARRS e de vários outros telescópios terrestres, permitiram à equipe medir com precisão a posição e a velocidade de J1249+36 no espaço e assim prever a sua órbita através da Via Láctea. Os pesquisadores focaram-se em dois cenários possíveis para explicar a trajetória da J1249+36. No primeiro cenário, ela era originalmente a companheira de baixa massa de uma anã branca. As anãs brancas são os núcleos remanescentes de estrelas que esgotaram o seu combustível nuclear e se extinguiram. Quando uma companheira estelar está numa órbita muito próxima de uma anã branca, pode transferir massa, resultando em explosões periódicas chamadas novas. Se a anã branca acumular demasiada massa, pode entrar em colapso e explodir como uma supernova. Neste tipo de supernova, a anã branca é completamente destruída, pelo que a sua companheira é liberada e voa à velocidade orbital a que se movia originalmente, acrescida de um pequeno impulso da explosão da supernova.

No segundo cenário, J1249+36 era originalmente um membro de um aglomerado globular, um aglomerado de estrelas fortemente ligado, imediatamente reconhecível pela sua distinta forma esférica. Prevê-se que os centros destes aglomerados contenham buracos negros com uma grande variedade de massas. Estes buracos negros também podem formar binários, e tais sistemas acabam por ser grandes catapultas para quaisquer estrelas que se aproximem demasiado deles. Quando uma estrela encontra um buraco negro binário, a dinâmica complexa desta interação de três corpos pode atirar essa estrela para fora do aglomerado globular. 

Seguir J1249+36 para trás no tempo coloca-a numa parte muito povoada do céu, que pode esconder aglomerados ainda por descobrir. Para determinar se um destes cenários, ou algum outro mecanismo, pode explicar a trajetória de J1249+36, é necessário olhar mais de perto para a sua composição elementar. Por exemplo, quando uma anã branca explode, cria elementos pesados que podem ter "poluído" a atmosfera de J1249+36 quando esta estava escapando. As estrelas dos aglomerados globulares e das galáxias satélite da Via Láctea também têm padrões distintos de abundância de elementos que podem revelar a origem de J1249+36.

Os astrônomos estão essencialmente à procura de uma impressão digital química que permita identificar de que sistema vem esta estrela, cuja modelação permite medir as abundâncias de elementos de estrelas frias em vários aglomerados globulares. Quer a rápida viagem de J1249+36 se tenha devido a uma supernova, a um encontro casual com um buraco negro binário ou a qualquer outro cenário, a sua descoberta fornece uma nova oportunidade para os astrônomos aprenderem mais sobre a história e a dinâmica da Via Láctea.

Um artigo foi aceito para publicação no periódico The Astrophysical Journal Letters.

Fonte: W. M. Keck Observatory

sábado, 6 de julho de 2024

Porque é que parece que estamos sozinhos na Via Láctea?

Uma nova pesquisa sugere uma explicação geológica para o fato de não terem sido encontradas evidências conclusivas da existência de civilizações extraterrestres avançadas, apesar da equação de Drake prever que deveriam existir muitas civilizações deste tipo na nossa Galáxia, capazes de comunicar conosco.

© Copilot Designer (imagem gerada por inteligência artificial de um exoplaneta habitado)

A pesquisa realizada pelo Dr. Robert Stern, geocientista da Universidade do Texas em Dallas, e o Dr. Taras Gerya, professor de Ciências da Terra no ETH (Eidgenössische Technische Hochschule) em Zurique, propõem que, em planetas com vida, é essencial, para a evolução de civilizações ativas e comunicativas, a presença de oceanos e continentes, bem como de placas tectônicas a longo prazo. Os pesquisadores concluem que a provável escassez destes três requisitos, em exoplanetas, diminuiria significativamente o número esperado de civilizações extraterrestres na Via Láctea.

A vida existe na Terra há cerca de 4 bilhões de anos, mas organismos complexos como os animais só apareceram há cerca de 600 milhões de anos, ou seja, pouco tempo depois do início do episódio moderno das placas tectônicas. 

Em 1961, o astrónomo Dr. Frank Drake concebeu uma equação em que vários fatores são multiplicados para estimar o número de civilizações inteligentes na Via Láctea capazes de evidenciar a sua presença aos humanos: 

N = R* x fp x ne x fl x fi x fc x L 

N - o número de civilizações da Via Láctea cujas emissões eletromagnéticas (ondas de rádio, etc.) são detectáveis;

R* - o número de estrelas formadas anualmente;

fp - a fração dessas estrelas com sistemas planetários;

ne - o número de planetas por sistema solar com um ambiente adequado à vida;

fl - a fração de planetas adequados em que a vida realmente aparece;

fi - a fração de planetas com vida em que surge vida inteligente;

fc - a fração de civilizações que desenvolvem uma tecnologia que produz sinais detectáveis da sua existência;

L - o período médio de tempo (anos) em que essas civilizações produzem esses sinais.

A atribuição de valores às sete variáveis tem sido um jogo de adivinhação, levando a previsões de que tais civilizações devem ser comuns. Mas se isso é verdade, porque é que não existem evidências conclusivas da sua existência? Esta contradição é conhecida como o paradoxo de Fermi, nome dado em homenagem ao Dr. Enrico Fermi, físico nuclear e Prêmio Nobel de Física, que colocou informalmente tal questão. 

No seu estudo, Stern e Gerya propõem o aperfeiçoamento de uma das incógnitas da equação de Drake - fi, a fração de planetas com vida em que surge vida inteligente - para ter em conta a necessidade de grandes oceanos e continentes e a existência de placas tectônicas, há mais de 500 milhões de anos, nesses planetas. Na formulação original, pensava-se que esta incógnita era quase 1, ou 100%; isto é, em todos os planetas com vida a evolução avançaria e, com tempo suficiente, se transformaria numa civilização inteligente. 

As placas tectônicas é uma teoria científica formulada no final da década de 1960 que afirma que a crosta e o manto superior da Terra estão divididos em pedaços móveis, ou placas, que se movem muito lentamente. No nosso Sistema Solar, apenas um dos quatro corpos rochosos com deformação da superfície e atividade vulcânica, a Terra, tem placas tectônicas. Três outros corpos: Vênus, Marte e a lua de Júpiter, Io, estão ativamente deformados e têm vulcões jovens, mas não têm placas tectônicas. Dois outros corpos rochosos: Mercúrio e a Lua, não têm essa atividade e estão tectonicamente mortos.

À medida que as placas tectônicas se movem, estas chocam ou afastam-se umas das outras, formando estruturas geológicas como montanhas, vulcões e oceanos, que também permitem o desenvolvimento de padrões meteorológicos e climáticos moderados. Através do intemperismo, os nutrientes são liberados nos oceanos. Ao criar e destruir habitats, as placas tectônicas exercem uma pressão ambiental moderada, mas incessante, sobre as espécies, para que evoluam e se adaptem. 

Os pesquisadores também avaliaram a importância da presença duradoura de grandes massas de terra e de oceanos para a evolução que levou a uma espécie ativa e capaz de comunicar. Eles propuseram uma revisão da equação de Drake que define "fi" como o produto de dois termos: foc, a fração de exoplanetas habitáveis com continentes e oceanos significativos, e fpt, a fração de planetas que tiveram placas tectônicas de longa duração.

Com base na sua análise, a fração de exoplanetas com um volume ideal de água é provavelmente muito pequena. Estimam que o valor de foc varia entre 0,0002 e 0,01. Da mesma forma, as placas tectônicas com uma duração superior a 500 milhões de anos é também altamente incomum, o que leva a uma estimativa de fpt inferior a 0,17. Quando esses fatores são multiplicados, obtem-se uma estimativa refinada de fi que é muito pequena, entre 0,003% e 0,2%, em vez de 100%. Isto explica a extrema raridade de condições planetárias favoráveis ao desenvolvimento de vida inteligente na Via Láctea e possivelmente resolve o paradoxo de Fermi. 

Um artigo foi publicado na edição online da revista Scientific Reports

Fonte: University of Texas

terça-feira, 25 de junho de 2024

Estrela veloz pode escapar da Via Láctea

Cientistas cidadãos e astrônomos profissionais uniram-se para detectar uma rara estrela de hipervelocidade a percorrer a nossa Galáxia, a Via Láctea.

© UC San Diego (ilustração do sistema binário com explosão de supernova)

Com sua velocidade e trajetória atuais, é possível que um dia ela escape da galáxia para sempre. A descoberta só foi possível graças às legiões de voluntários que dedicaram seu tempo ao projeto Backyard Worlds: Planet 9. Esses voluntários auxiliam os astrônomos examinando dados de mais de 14 anos da missão Wide-field Infrared Survey Explorer (WISE) da NASA, procurando objetos que se movem entre as imagens. Os astrônomos podem então acompanhar descobertas interessantes para aprender mais. 

Na recente 244ª reunião nacional da Sociedade Astronômica Americana em Madison, Wisconsin, Adam Burgasser (Universidade da Califórnia, San Diego) anunciou a descoberta de um objeto em movimento rápido conhecido como CWISE J124909+362116.0 (J1249+36 para abreviar), cerca de 400 anos-luz da Terra. Ele estima que esteja viajando pela Via Láctea a cerca de 450 km/s. 

Burgasser usou o W.M. Observatório Keck em Maunakea, Havaí, para obter o espectro de J1249+36 no infravermelho. O espectro correspondia aos modelos atmosféricos criados por Roman Gerasimov (Universidade da Califórnia, San Diego) de uma classe de estrelas de baixa massa conhecidas como subanãs L. Essas estrelas são algumas das mais raras e antigas do Universo. Em seguida, Burgasser combinou os dados recolhidos dos espectros com imagens de telescópios terrestres para medir a posição e velocidade da estrela.

Podemos saber para onde está indo, mas de onde essa estrela surgiu? Uma opção é que uma vez orbitou uma estrela anã branca, que posteriormente explodiu como uma supernova Tipo Ia. Nesse tipo de supernova, a anã branca é completamente destruída, por isso a sua companheira é liberada e voa à velocidade orbital em que se movia originalmente, além de um pequeno impulso da explosão da supernova. Se isso aconteceu, ocorreu há tanto tempo que não há mais remanescentes de supernova para caçar. A segunda possibilidade é que a estrela tenha começado nas profundezas de um denso grupo de estrelas conhecido como aglomerado globular. Em seguida, encontrou um par de buracos negros aninhados nas profundezas do aglomerado. 

Quando uma estrela encontra um buraco negro binário, a dinâmica complexa desta interação de três corpos pode expulsar essa estrela do aglomerado globular. Existe uma maneira de os astrônomos decidirem entre essas duas opções. Os astrônomos estão essencialmente à procura de uma impressão digital química que identifique de que sistema esta estrela provém. Mas isso exigiria um espectro mais detalhado de J1249+36. Tal espectro poderia mostrar que a subanã estava poluída com elementos expelidos pela supernova. Por outro lado, poderia mostrar uma correspondência estreita com a química das estrelas em aglomerados globulares; como os globulares são tão antigos, suas estrelas contêm muito poucos elementos além do hidrogênio e do hélio.

Fonte: Sky & Telescope

terça-feira, 11 de junho de 2024

A última grande colisão da Via Láctea ocorreu há pouco tempo

A Via Láctea colidiu com muitas outras desde o seu nascimento.

© ESA (ilustração da Via Láctea e seu halo circundante de estrelas)

O telescópio espacial Gaia da ESA revela agora que a mais recente destas colisões ocorreu bilhões de anos mais tarde do que pensávamos. A Via Láctea cresceu com o passar do tempo, à medida que outras galáxias se aproximaram, colidiram e foram despedaçadas e consumidas pela nossa Galáxia. Cada colisão provocou "rugas" que ainda hoje se propagam por diferentes famílias de estrelas, afetando a maneira como se movem e se comportam no espaço. 

Um dos objetivos do Gaia é desvendar a história da Via Láctea através do estudo destas "rugas", algo que está fazendo ao identificar as posições e movimentos de mais de 100.000 estrelas próximas, uma pequena fração dos cerca de dois bilhões de fontes que observa. Estas "rugas" galácticas só foram descobertas pelo Gaia em 2018. Este estudo é o primeiro a determinar com exatidão o momento da colisão que originou as "rugas", comparando observações com simulações cosmológicas. 

O halo da Via Láctea contém um grande grupo de estrelas com órbitas incomuns, muitas das quais se pensa terem sido adotadas pela nossa Galáxia durante um acontecimento chamado de "última grande fusão". Tal como o nome sugere, esta foi a última vez que a Via Láctea sofreu uma colisão significativa com outra galáxia, que se propõe ser uma galáxia anã massiva que inundou a nossa Galáxia com estrelas que passam muito perto do Centro Galáctico. 

Os cientistas tinham datado esta fusão há 8 a 11 bilhões de anos atrás, quando a Via Láctea estava na sua infância, e é conhecida como Gaia-Salsicha-Encélado (ou GSE). Mas os dados do Gaia - parte da terceira divulgação de dados do telescópio em 2022 - sugerem agora que outra fusão pode ter originado as estrelas com um movimento incomum. Para que as "rugas" das estrelas sejam tão claras como aparecem nos dados do Gaia, devem ter-se juntado a nós há menos de três bilhões de anos, pelo menos cinco bilhões de anos mais tarde do que se pensava anteriormente. 

A descoberta sugere que, em vez destas estrelas terem origem na antiga fusão GSE, devem ter vindo de um acontecimento mais recente, designado por Fusão Radial de Virgem, que teve lugar há menos de três bilhões de anos. Há evidências de que a fusão GSE teve lugar num passado longínquo da história da Via Láctea. No entanto, trabalhos recentes têm questionado se uma fusão massiva antiga é de fato necessária para explicar as propriedades da Via Láctea tal como a vemos hoje, e se todas as estrelas originalmente associadas à GSE são provenientes do mesmo evento de fusão. 

É provável que a Fusão Radial de Virgem tenha trazido consigo uma família de outras pequenas galáxias anãs e aglomerados estelares, que se terão juntado à Via Láctea mais ou menos no mesmo momento. Explorações futuras revelarão quais destes pequenos objetos, que se pensava estarem relacionados com uma antiga GSE, estão na realidade relacionados com a mais recente Fusão Radial de Virgem. 

Esta descoberta junta-se a uma série de resultados do Gaia que estão reescrevendo a história do nosso lar cósmico. O telescópio espacial está numa posição única para explorar a miríade de estrelas nos nossos céus e, até à data, compilou um conjunto de dados inigualável sobre as posições, distâncias e movimentos de cerca de 1,5 bilhões de estrelas. Esta descoberta melhora o que sabemos sobre os muitos acontecimentos complicados que moldaram a Via Láctea, ajudando-nos a compreender melhor como as galáxias se formam e são moldadas.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: ESA

sábado, 1 de junho de 2024

Primeira detecção de estrelas magnéticas para além da Via Láctea

Pela primeira vez foram detectados campos magnéticos em três estrelas massivas e quentes nas galáxias vizinhas da Via Láctea, a Grande e a Pequena Nuvem de Magalhães.

© Webb (NGC 346)

Embora já tenham sido detectadas estrelas massivas magnéticas na nossa própria Galáxia, a descoberta de magnetismo nas Nuvens de Magalhães é especialmente importante porque estas galáxias têm uma forte população de jovens estrelas massivas. Isto proporciona uma oportunidade única para estudar estrelas em formação ativa e o limite superior da massa que uma estrela pode ter e permanecer estável.

O magnetismo é considerado um componente chave na evolução de estrelas massivas, com um impacto de longo alcance no seu destino final. São as estrelas massivas, inicialmente com mais de oito massas solares, que deixam para trás estrelas de nêutrons e buracos negros no final da sua evolução. 

Os observatórios de ondas gravitacionais têm observado eventos espetaculares de fusão destes sistemas compactos remanescentes. Além disso, estudos teóricos propõem um mecanismo magnético para a explosão de estrelas massivas, relevante para as explosões de raios gama, flashes de raios X e supernovas.

Os campos magnéticos estelares são medidos por espectropolarimetria. Para tal, regista-se a luz estelar polarizada circularmente e investigam-se as menores alterações nas linhas espectrais. No entanto, para atingir a precisão necessária nas medições da polarização, este método requer dados de alta qualidade. O método é extremamente ávido por fótons. Devido a estas condições, os espectropolarímetros convencionais de alta resolução e os telescópios menores não são adequados para tais exploraçõess. Por conseguinte, foi utilizado o espectropolarímetro de baixa resolução FORS2, que está montado num dos quatro telescópios de 8 metros do VLT (Very Large Telescope) do ESO. As tentativas anteriores de detectar campos magnéticos em estrelas massivas localizadas além da Via Láctea não tiveram êxito. Estas medições são complexas e dependem de vários fatores. 

O campo magnético que é medido com polarização circular é chamado campo magnético longitudinal e corresponde exclusivamente à componente do campo que aponta na direção do observador. É semelhante à luz proveniente de um farol, que é fácil de ver quando o feixe brilha na direção do observador. Como a estrutura do campo magnético nas estrelas massivas é geralmente caracterizada por um dipolo global com o eixo inclinado em relação ao eixo de rotação, a intensidade do campo magnético longitudinal pode ser zero nas fases de rotação quando o observador está olhando diretamente para o equador magnético da estrela em rotação. 

A detectabilidade do sinal de polarização também depende do número de características espectrais usadas para analisar a polarização. É preferível a observação de uma região espectral mais vasta com um maior número de características espectrais. Além disso, tempos de exposição mais longos são cruciais para registar espectros polarimétricos com uma relação sinal/ruído suficientemente elevada. 

Os astrônomos realizaram observações espectropolarimétricas de cinco estrelas massivas nas Nuvens de Magalhães. Em duas estrelas presumivelmente individuais com características espectrais típicas de estrelas massivas magnéticas da Via Láctea e num sistema binário massivo em interação ativa (Cl*NGC346 SSN7) localizado no núcleo da região de formação estelar mais massiva NGC 346, na Pequena Nuvem de Magalhães, conseguiram detectar campos magnéticos da ordem de kilogauss. 

Na superfície do nosso Sol, campos magnéticos tão fortes só podem ser detectados em pequenas regiões altamente magnetizadas, as manchas solares. As detecções de campos magnéticos nas Nuvens de Magalhães constituem a primeira indicação de que a formação de estrelas massivas se processa em galáxias com populações estelares jovens de forma semelhante à da Via Láctea.

Um artigo foi publicado no periódico Astronomy & Astrophysics.

Fonte: Leibniz-Institut für Astrophysik Potsdam

quarta-feira, 17 de abril de 2024

Identificado o buraco negro estelar mais massivo da nossa Galáxia

Os astrônomos identificaram o buraco negro estelar mais massivo descoberto até à data na Via Láctea.


© ESO (oscilação de estrela devido ao buraco negro Gaia BH3)

A imagem mostra as órbitas da estrela (em azul) e do buraco negro (em vermelho), designado Gaia BH3, em torno do seu centro de massa comum. Este buraco negro foi detectado em dados da missão Gaia da Agência Espacial Europeia (ESA) através de um movimento de "oscilação" estranho que este objeto impõe à estrela companheira que o orbita. 

Foram utilizados dados do Very Large Telescope (VLT) do Observatório Europeu do Sul (ESO) e de outros observatórios terrestres para calcular que a massa deste buraco negro é 33 vezes superior à do Sol. 

Os buracos negros estelares formam-se a partir do colapso de estrelas de grande massa e os anteriormente identificados na Via Láctea são, em média, cerca de 10 vezes mais massivos que o Sol. O buraco negro estelar mais massivo que conhecíamos na nossa Galáxia, Cygnus X-1, atinge apenas 21 massas solares, o que torna esta nova observação de 33 massas solares algo verdadeiramente excepcional. 

Mas, este não é o buraco negro mais massivo existente na nossa Galáxia, este título pertence a Sagitário A*, o buraco negro supermassivo situado no centro da Via Láctea, que tem cerca de quatro milhões de vezes a massa do Sol. No entanto, este é o buraco negro de maior massa conhecido na Via Láctea que se formou a partir do colapso de uma estrela. 

Curiosamente, este buraco negro encontra-se também extremamente próximo de nós, a apenas 2.000 anos-luz de distância, na constelação da Águia, sendo o segundo buraco negro mais próximo da Terra que conhecemos. Denominado Gaia BH3 foi encontrado quando a equipe analisava as observações de Gaia em preparação para uma próxima publicação de dados. 

Para confirmar a descoberta, a colaboração Gaia utilizou dados de observatórios terrestres, incluindo o instrumento UVES (Ultraviolet and Visual Echelle Spectrograph) montado no VLT do ESO, no deserto chileno do Atacama. Estas observações revelaram propriedades chave da estrela companheira, que, juntamente com os dados de Gaia, permitiram aos astrônomos medir com precisão a massa de Gaia BH3. 

Os astrônomos tinham já encontrado buracos negros igualmente massivos fora da nossa Galáxia (utilizando um método de detecção diferente), tendo teorizado que estes objetos poderão ser formados a partir do colapso de estrelas cuja composição química apresente pouquíssimos elementos mais pesados que o hidrogênio e o hélio. 

Pensa-se que estas estrelas, pobres em metais, perdem menos massa ao longo da sua vida e, portanto, possuem mais matéria, o que dará origem, após a sua morte, a buracos negros de elevada massa. No entanto, e até agora, não existiam provas que ligassem diretamente estrelas pobres em metais a buracos negros de elevada massa. As estrelas em pares tendem a ter composições químicas semelhantes, o que significa que a companheira de BH3 contém pistas importantes sobre a estrela que colapsou e formou este buraco negro. 

Os dados do UVES mostraram que a companheira é uma estrela muito pobre em metais, o que sugere que a estrela que colapsou para formar o Gaia BH3 seria também pobre em metais, tal como previsto pela teoria.

A disponibilização antecipada dos dados permitirá que outros astrônomos comecem a estudar este buraco negro desde já, sem esperar pela publicação dos dados completos, prevista para finais de 2025, na melhor das hipóteses. Outras observações deste sistema poderão revelar mais sobre a sua história e sobre o próprio buraco negro. O instrumento GRAVITY montado no Interferômetro do VLT do ESO poderá ajudar na compreensão deste objeto, analisando, por exemplo, se este buraco negro está atraindo matéria da sua vizinhança.

Um artigo foi publicado no periódico Astronomy & Astrophysics.

Fonte: ESO

sábado, 30 de março de 2024

Gaia revela duas antigas correntes estelares da Via Láctea

O telescópio espacial Gaia, da ESA, desfez ainda mais o enredo da nossa Galáxia, descobrindo duas surpreendentes correntes de estrelas que se formaram e se entrelaçaram há mais de 12 bilhões de anos.

© ESA (imagem das correntes estelares Shakti e Shiva)

Na imagem os pontos amarelos mostram a localização das estrelas do fluxo estelar Shakti. Os pontos azuis mostram a localização das estrelas da corrente estelar Shiva. 

As duas correntes, Shakti e Shiva, ajudaram a formar a jovem Via Láctea. Ambas são tão antigas que provavelmente se formaram antes mesmo das partes mais velhas dos braços espirais e do disco da nossa atual Galáxia.

Utilizando as observações do Gaia, os pesquisadores conseguiram determinar as órbitas de estrelas individuais da Via Láctea, bem como o seu conteúdo e composição. Cada fluxo contém a massa de cerca de 10 milhões de sóis, com estrelas de 12 a 13 bilhões de anos, todas se movendo em órbitas muito semelhantes e com composições semelhantes. A forma como estão distribuídos sugere que podem ter sido formados como fragmentos distintos que se fundiram com a jovem Via Láctea. 

Ambas as correntes se encontram perto do núcleo da Via Láctea. O Gaia explorou esta parte da Via Láctea em 2022, utilizando uma espécie de "arqueologia galáctica"; este estudo mostrou que a região contém as estrelas mais antigas de toda a Galáxia, todas nascidas antes do disco da Via Láctea se ter devidamente formado.

As estrelas são tão velhas que não possuem muitos dos elementos metálicos mais pesados criados mais tarde na vida do Universo. Estes metais pesados são os forjados no interior das estrelas e espalhados para o espaço quando estas morrem. As estrelas no coração da Via Láctea são pobres em metais. 

Embora muito semelhantes, as duas correntes estelares não são idênticas. As estrelas de Shakti orbitam um pouco mais longe do centro da Via Láctea e em órbitas mais circulares do que as estrelas de Shiva. O nome das correntes deriva do nome de um casal divino da filosofia hindu que se une para criar o Universo (ou macrocosmo). Há cerca de 12 bilhões de anos, a Via Láctea tinha um aspecto muito diferente da espiral ordenada que vemos hoje.

Pensamos que a nossa Galáxia se formou quando múltiplos filamentos longos e irregulares de gás e poeira se fundiram, formando estrelas e envolvendo-se para dar origem à nossa Galáxia tal como a conhecemos. Parece que Shaki e Shiva são dois desses componentes, e os futuros lançamentos de dados Gaia poderão revelar mais. 

Khyati Malhan e Hans-Walter Rix, amos do Instituto Max Planck, construíram também um mapa dinâmico de outros componentes conhecidos que desempenharam um papel na formação da Via Láctea e que foram descobertos utilizando dados do Gaia. Estes incluem Gaia-Salsicha-Encélado, GNM-1/Wukong, Arjuna/Sequoia/I'itoi e Ponto. Todos estes grupos de estrelas fazem parte da complexa árvore genealógica da Via Láctea, algo que o Gaia tem trabalhado para construir ao longo da última década.

À medida que descobrimos partes surpreendentes da Via Láctea, como as correntes Shiva e Shakti, estamos preenchendo as lacunas da nossa história cósmica mais antiga.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: Max Planck Institute

sábado, 2 de março de 2024

Encontrada galáxia antiga maior que a Via Láctea

O telescópio espacial James Webb (JWST) encontrou uma galáxia no universo primitivo que é tão massiva que não deveria existir, representando um desafio ao modelo padrão da cosmologia, de acordo com os autores do estudo.

© JWST (galáxia massiva ZF-UDS-7329)

A galáxia, chamada ZF-UDS-7329, contém mais estrelas do que a Via Láctea, apesar de ter se formado apenas 800 milhões de anos nos 13,8 bilhões de anos de existência do Universo. Isto significa que, de alguma forma, nasceram sem a matéria escura semear a sua formação, ao contrário do que sugere o modelo padrão de formação de galáxias. 

Não está claro como isso poderia ter acontecido, mas, assim como as descobertas anteriores do JWST de outras galáxias inexplicavelmente massivas no universo primitivo, ameaçando mudar nossa compreensão de como a primeira matéria no Universo se formou. 

Isto acontece porque as estruturas massivas de matéria escura, que se pensa serem componentes necessários para manter unidas as primeiras galáxias, ainda não tiveram tempo de se formar tão cedo no Universo. A luz viaja a uma velocidade fixa através do vácuo do espaço, portanto, quanto mais fundo olhamos para o Universo, mais distante a luz interceptamos e mais para trás no tempo vemos. Foi isto que permitiu aos pesquisadores usar o JWST para detectar ZF-UDS-7329 há cerca de 11,5 bilhões de anos. 

Ao estudar os espectros de luz provenientes das estrelas desta galáxia extremamente distante, foi descoberto que as estrelas nasceram 1,5 bilhões de anos antes desta observação, ou cerca de 13 bilhões de anos atrás. Os astrônomos não têm a certeza de quando é que os primeiros glóbulos de estrelas começaram a aglomerar-se nas galáxias que vemos hoje, mas os cosmólogos estimaram anteriormente que o processo começou lentamente nas primeiras centenas de milhões de anos após o Big Bang. 

As teorias atuais sugerem que halos de matéria escura (uma substância misteriosa e invisível que se acredita constituir 25% do Universo atual) combinaram-se com gás para formar as primeiras estruturas de galáxias. Após 1 bilhão a 2 bilhões de anos de existência do Universo, as primeiras protogaláxias atingiram a adolescência, formando-se em galáxias anãs que começaram a devorar-se umas às outras para se transformarem em galáxias como a Via Láctea. 

Mas a nova descoberta confundiu esta visão: não só a galáxia cristalizou sem acumular matéria escura suficiente para a semear, mas não muito depois de uma súbita explosão de formação estelar, a galáxia tornou-se abruptamente quiescente, o que significa que a sua formação estelar cessou. 

A questão chave agora é como é que se formam tão rapidamente no início do Universo, e que mecanismos misteriosos levam a impedir a formação de estrelas abruptamente quando o resto do Universo o faz. Os próximos passos dos pesquisadores serão procurar mais galáxias como esta. Se encontrarem alguma, isto poderia contradizer seriamente as ideias anteriores sobre como as galáxias se formaram.

Um artigo foi publicado na revista Nature.

Fonte: Swinburne University of Technology