domingo, 30 de junho de 2024

Três potenciais super-Terras em torno de uma estrela próxima

Os astrônomos descobriram três potenciais "super-Terras" em órbita de uma estrela anã laranja relativamente próxima.

© S. Samanta (ilustração do sistema estelar HD 48498)

Esta descoberta inovadora foi feita por uma equipe internacional de pesquisadores liderada pela Dra. Shweta Dalal da Universidade de Exeter, Inglaterra. Os exoplanetas estão orbitando a estrela HD 48498, localizada a cerca de 55 anos-luz da Terra. Uma anã laranja é uma estrela de classe K da sequência principal. Estes planetas completam uma órbita em torno da sua estrela hospedeira a cada 7, 38 e 151 dias terrestres, respectivamente.

Nomeadamente, o candidato mais externo a exoplaneta reside na zona habitável da sua estrela hospedeira, onde as condições poderiam permitir a existência de água líquida. Esta região é considerada ideal para potencialmente suportar vida. 

Os cientistas sublinham a importância desta descoberta, referindo que esta estrela laranja é algo semelhante ao nosso Sol e representa o sistema planetário mais próximo com uma Super-Terra na zona habitável em torno de uma estrela parecida com o Sol. 

Estas potenciais super-Terras, planetas com uma massa superior à da Terra mas significativamente inferior à dos gigantes gelados do Sistema Solar, Urano e Netuno, foram identificadas através do programa HARPS-N Rocky Planet Search. Ao longo de uma década, a equipe recolheu cerca de 190 medições altamente precisas de velocidade radial usando o espectrógrafo HARPS-N montado no TNG (Telescopio Nazionale Galileo) de 3,58 metros no Observatório Roque de los Muchachos em La Palma, Canárias. 

As medições da velocidade radial, que acompanham os movimentos sutis da estrela causados pelos planetas em órbita, são cruciais para estas descobertas. Ao analisar o espectro da luz estelar, os astrônomos podem determinar se esta está se movendo na nossa direção (desvio para o azul) ou para longe de nós (desvio para o vermelho). 

Para garantir a precisão das suas descobertas, a equipe utilizou várias metodologias e análises comparativas. A pesquisa revelou três candidatos planetários com massas mínimas que variam entre 5 e 11 vezes a da Terra. Isto sugere que a proximidade da estrela, combinada com a órbita favorável do planeta mais exterior, faz deste sistema um alvo promissor para futuras imagens diretas de alto contraste e estudos espectroscópicos de alta resolução. 

Esta descoberta realça a importância do monitoramento a longo prazo e de técnicas avançadas para desvendar os segredos de sistemas estelares distantes, abrindo novas portas do potencial da vida para além do nosso Sistema Solar.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: University of Exeter

O misterioso "círculo de rádio estranho" de Cloverleaf

Em 2020, quando astrônomos usaram o Australian Square Kilometer Array Pathfinder (ASKAP) descobriram círculos fantasmagóricos de emissões de rádio no céu que eram tão gigantescos que ultrapassaram dez vezes o tamanho da Via Láctea.

© CSIRO (ilustração de estranho círculo de rádio explodindo)

E até agora, nenhum fenômeno cósmico conhecido poderia explicar como eles surgiram e o que são. Os perfis extremamente inflados dos círculos gigantescos não concordavam com as características circulares comuns em imagens de rádio, como a camada de material derramado por uma estrela moribunda ou a visão frontal de um disco protoplanetário empoeirado; eles são diferentes de tudo mencionado em estudos anteriores.

E como o punhado de objetos bizarros podia ser visto por mais de um telescópio em diferentes momentos e comprimentos de onda, os astrônomos descartaram a possibilidade de que fossem artefatos banais presentes em dados telescópicos brutos. Devido à origem misteriosa dos enormes anéis espaciais e à brevidade, a equipe de descoberta os apelidou de “Odd Radio Circles” ou ORCs. 

Mais quatro círculos de rádio bizarros apareceram recentemente em dados ASKAP mais recentes e em imagens recolhidas pelo radiotelescópio MeerKAT da África do Sul, incluindo um intrigante ORC com uma estrutura de dois lóbulos. Com um conjunto de dados tão limitado de ORCs, é difícil investigar as suas origens para os astrofísicos que lutam para compreender os processos físicos que poderiam produzir anéis de emissão tão massivos. 

Num novo estudo, os astrônomos propõem a origem de um desses círculos de rádio apelidado de Cloverleaf, devido o formato de trevo de quatro folhas, que reside a cerca de 600 milhões de anos-luz da Terra e se estende por mais de cem quiloparsecs (a Via Láctea tem cerca de 30 kpc de diâmetro). 

Com base em observações recolhidas pelo telescópio XMM-Newton da Agência Espacial Europeia (ESA), os pesquisadores dizem que Cloverleaf pode ter sido criada por dois grupos de galáxias que gravitaram uma em direção à outra e estão no meio de uma fusão caótica. O grupo de galáxias parece abrigar pelo menos uma dúzia de galáxias tão antigas quanto o Universo que estão em vários níveis de desfiguração, embora ainda não esteja claro quantas estão em cada grupo. É possível que a fusão tenha criado ondas de choque que aceleraram partículas fósseis de raios cósmicos dentro das galáxias, o que teria criado a emissão de rádio observada.

Ainda há questões em aberto, por exemplo, as fusões de galáxias ocorrem frequentemente sem quaisquer ORCs associados registrados, por isso é importante definir o que cria os grupos de galáxias que produzem Cloverleaf únicos. Dado que existem apenas alguns ORCs conhecidos, qualquer explicação para a sua presença deve também explicar a sua raridade em geral. 

Os astrônomos também analisaram dados do levantamento alemão-russo Roentgen Extended Survey com o telescópio espacial Imaging Telescope Array (eROSITA), que coletou radiação de raios X de todo o céu de 2019 até fevereiro de 2022; as observações foram pausadas para protestar contra a invasão russa da Ucrânia. 

Os dados do XMM-Newton provaram basicamente que cerca de 700 bilhões de massas solares em gás quente flutuavam entre as dezenas de galáxias. O gás atinge temperaturas em torno de 8 milhões de graus Celsius, oferecendo o tipo de ambiente onde os raios cósmicos são acelerados. A fonte dos próprios raios cósmicos energéticos é atualmente desconhecida. É possível que tenham sido criados quando buracos negros supermassivos à espreita nos centros das galáxias sofreram explosões de atividade extrema.

As origens dos ORCs podem ser oriundas dos cenários: eles poderiam ser devidos a restos de enormes explosões em centros de galáxias, como aquelas provocadas pela fusão de buracos negros, ou partículas energéticas bombeadas por jatos de buracos negros, ou o produtos de ondas de choque surgiram da explosão do nascimento de uma estrela em uma galáxia. 

Observações mais profundas em comprimentos de onda de rádio e raios X, que podem revelar estruturas diferenciadas dos gases que flutuam nos ORCs, poderiam fornecer a origem do Cloverleaf e de outros ORCs catalogados.

Um artigo foi publicado no periódico Astronomy and Astrophysics Letters.

Fonte: Astronomy

terça-feira, 25 de junho de 2024

Estrela veloz pode escapar da Via Láctea

Cientistas cidadãos e astrônomos profissionais uniram-se para detectar uma rara estrela de hipervelocidade a percorrer a nossa Galáxia, a Via Láctea.

© UC San Diego (ilustração do sistema binário com explosão de supernova)

Com sua velocidade e trajetória atuais, é possível que um dia ela escape da galáxia para sempre. A descoberta só foi possível graças às legiões de voluntários que dedicaram seu tempo ao projeto Backyard Worlds: Planet 9. Esses voluntários auxiliam os astrônomos examinando dados de mais de 14 anos da missão Wide-field Infrared Survey Explorer (WISE) da NASA, procurando objetos que se movem entre as imagens. Os astrônomos podem então acompanhar descobertas interessantes para aprender mais. 

Na recente 244ª reunião nacional da Sociedade Astronômica Americana em Madison, Wisconsin, Adam Burgasser (Universidade da Califórnia, San Diego) anunciou a descoberta de um objeto em movimento rápido conhecido como CWISE J124909+362116.0 (J1249+36 para abreviar), cerca de 400 anos-luz da Terra. Ele estima que esteja viajando pela Via Láctea a cerca de 450 km/s. 

Burgasser usou o W.M. Observatório Keck em Maunakea, Havaí, para obter o espectro de J1249+36 no infravermelho. O espectro correspondia aos modelos atmosféricos criados por Roman Gerasimov (Universidade da Califórnia, San Diego) de uma classe de estrelas de baixa massa conhecidas como subanãs L. Essas estrelas são algumas das mais raras e antigas do Universo. Em seguida, Burgasser combinou os dados recolhidos dos espectros com imagens de telescópios terrestres para medir a posição e velocidade da estrela.

Podemos saber para onde está indo, mas de onde essa estrela surgiu? Uma opção é que uma vez orbitou uma estrela anã branca, que posteriormente explodiu como uma supernova Tipo Ia. Nesse tipo de supernova, a anã branca é completamente destruída, por isso a sua companheira é liberada e voa à velocidade orbital em que se movia originalmente, além de um pequeno impulso da explosão da supernova. Se isso aconteceu, ocorreu há tanto tempo que não há mais remanescentes de supernova para caçar. A segunda possibilidade é que a estrela tenha começado nas profundezas de um denso grupo de estrelas conhecido como aglomerado globular. Em seguida, encontrou um par de buracos negros aninhados nas profundezas do aglomerado. 

Quando uma estrela encontra um buraco negro binário, a dinâmica complexa desta interação de três corpos pode expulsar essa estrela do aglomerado globular. Existe uma maneira de os astrônomos decidirem entre essas duas opções. Os astrônomos estão essencialmente à procura de uma impressão digital química que identifique de que sistema esta estrela provém. Mas isso exigiria um espectro mais detalhado de J1249+36. Tal espectro poderia mostrar que a subanã estava poluída com elementos expelidos pela supernova. Por outro lado, poderia mostrar uma correspondência estreita com a química das estrelas em aglomerados globulares; como os globulares são tão antigos, suas estrelas contêm muito poucos elementos além do hidrogênio e do hélio.

Fonte: Sky & Telescope

O primeiro par de quasares em fusão no "Amanhecer Cósmico"

Astrônomos descobriram um par de quasares que acaba de bater um duplo recorde.

© M. Garlick (ilustração de dois quasares em fusão)

Não só é o par mais distante de quasares em fusão alguma vez encontrado, como também é o único par confirmado na era passada da formação mais antiga do Universo. Desde o primeiro instante após o Big Bang que o Universo tem vindo a expandir-se. Isto significa que o Universo primitivo era consideravelmente menor e que era mais provável que as galáxias em formação inicial interagissem e se fundissem.

As fusões de galáxias alimentam a formação de quasares, que são núcleos galácticos extremamente luminosos onde o gás e a poeira que caem num buraco negro supermassivo central emitem enormes quantidades de luz. Assim, ao olhar para o Universo primitivo, os astrônomos esperariam encontrar vários pares de quasares muito próximos uns dos outros, à medida que as suas galáxias hospedeiras se fundem. No entanto, ficaram surpreendidos por não encontrarem exatamente nenhum, até agora. 

Com a ajuda do telescópio Gemini North, operado pelo NOIRLab (National Optical-Infrared Astronomy Research Laboratory), foi descoberto o par de quasares em fusão vistos apenas 900 milhões de anos após o Big Bang no período da história do Universo conhecido como "Amanhecer Cósmico". O Amanhecer Cósmico decorreu entre cerca de 50 milhões de anos a um bilhão de anos após o Big Bang. Durante este período, as primeiras estrelas e galáxias começaram a aparecer, enchendo de luz, e pela primeira vez, o escuro Universo. A chegada das primeiras estrelas e galáxias deu início a uma nova era na formação do cosmos, conhecida como a Época da Reionização. A Época da Reionização, que teve lugar no Amanhecer Cósmico, foi um período de transição cosmológica. Começando cerca de 400 milhões de anos após o Big Bang, a luz ultravioleta das primeiras estrelas, galáxias e quasares espalhou-se pelo cosmos, interagindo com o meio intergaláctico e retirando os elétrons dos átomos de hidrogênio primordiais do Universo.

A Época da Reionização foi uma época crítica na história do Universo, que marcou o fim da "Idade das Trevas" cósmica e que deu origem às grandes estruturas que hoje observamos no nosso Universo local. Para compreender o papel exato que os quasares desempenharam durante a Época da Reionização, os astrônomos estão interessados em encontrar e estudar os quasares que povoam esta era precoce e distante.

Até agora foram descobertos cerca de 300 quasares na Época da Reionização, mas nenhum deles foi encontrado num par. Isto é, até que Yoshiki Matsuoka, astrônomo da Universidade de Ehime, no Japão, e a sua equipe estavam revendo imagens tiradas com o instrumento HSC (Hyper Suprime-Cam) do telescópio Subaru e uma tênue mancha vermelha lhes chamou a atenção.

© NOIRLab / Subaru (par de quasares no processo de fusão)

A equipe não tinha a certeza de que se tratava de um par de quasares, uma vez que os candidatos a quasares distantes estão contaminados por numerosas outras fontes, tais como estrelas e galáxias em primeiro plano e por efeitos de lentes gravitacionais. Para confirmar a natureza dos objetos, a equipe realizou espectroscopia de acompanhamento utilizando o FOCAS (Faint Object Camera and Spectrograph) do telescópio Subaru e o GNIRS (Gemini Near-Infrared Spectrograph) do Gemini North. Os espectros, que dividem a luz emitida por uma fonte nos comprimentos de onda que a compõem, obtidos com o GNIRS, foram cruciais para caracterizar a natureza do par de quasares e das suas galáxias hospedeiras.

Foi descoberto também que os dois buracos negros são enormes, cada um com 100 milhões de vezes a massa do Sol. Este fato, associado à presença de uma ponte de gás entre os dois quasares, sugere que estes e as galáxias que os acolhem estão passando por uma fusão de grande escala.

A Época da Reionização liga a mais antiga formação da estrutura cósmica ao Universo complexo que observamos bilhões de anos mais tarde. Ao estudar objetos distantes deste período, os astrônomos obtêm informações valiosas sobre o processo de reionização e sobre a formação dos primeiros objetos do Universo. Mais descobertas como esta podem estar no horizonte com o LSST (Legacy Survey of Space and Time) do Observatório Vera C. Rubin, com a duração de uma década e com início em 2025, que está preparado para detectar milhões de quasares utilizando as suas capacidades de imagem profunda.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: University of Tokyo

Sondando as origens da Nebulosa do Caranguejo

A Nebulosa do Caranguejo (Messier 1 ou M1) é um exemplo próximo dos detritos deixados para trás quando uma estrela sofre uma morte violenta numa explosão de supernova.

© Webb (M1)

No entanto, apesar de décadas de estudo, este remanescente de supernova continua mantendo um certo grau de mistério: que tipo de estrela foi responsável pela criação da Nebulosa do Caranguejo e qual foi a natureza da explosão? 

O telescópio espacial James Webb com os instrumentos MIRI (Mid-Infared Instrument) e NIRCam (Near-Infrared Camera) proporcionou uma nova visão de M1, incluindo os dados infravermelhos de maior qualidade já disponíveis para ajudar os cientistas a explorar a estrutura detalhada e a composição química do remanescente. Estas pistas estão ajudando a desvendar a forma incomum como a estrela explodiu há cerca de 1.000 anos. 

Os astrônomos analisaram a composição da Nebulosa do Caranguejo, um remanescente de supernova situado a 6.500 anos-luz de distância, na direção da constelação de Touro. A Nebulosa do Caranguejo é o resultado de uma supernova de colapso do núcleo, a morte de uma estrela massiva. A explosão de supernova foi observada na Terra no ano 1054 e foi suficientemente brilhante para ser vista durante o dia. O remanescente, muito mais tênue, observado hoje em dia, é uma concha em expansão de gás e poeira, e um vento alimentado por um pulsar, uma estrela de nêutrons de rotação rápida e altamente magnetizada.

A M1 possui composição atípica e a energia muito baixa da explosão levaram os astrônomos a pensar que se tratava de uma supernova de captura de elétrons, um tipo raro de explosão que surge de uma estrela com um núcleo menos evoluído feito de oxigênio, neônio e magnésio, em vez de um mais típico núcleo de ferro. Esforços de pesquisa anteriores calcularam a energia cinética total da explosão com base na quantidade e velocidades dos detritos atuais. Os astrónomos deduziram que a natureza da explosão foi de uma energia relativamente baixa (menos de um-décimo da de uma supernova normal) e que a massa da estrela progenitora se situava entre oito e 10 massas solares, oscilando na linha tênue entre as estrelas que sofrem uma morte violenta por supernova e as que não sofrem. 

No entanto, existem inconsistências entre a teoria da supernova por captura de elétrons e as observações da Nebulosa do Caranguejo, particularmente o rápido movimento observado do pulsar. Nos últimos anos, os astrônomos também melhoraram a sua compreensão das supernovas de colapso do núcleo de ferro e agora pensam que este tipo também pode produzir explosões de baixa energia, desde que a massa estelar seja adequadamente baixa.

Para reduzir o nível de incerteza acerca da estrela progenitora da Nebulosa do Caranguejo e da natureza da explosão, foram usadas as capacidades espectroscópicas do Webb para se focar em duas áreas localizadas nos filamentos interiores da nebulosa. As teorias preveem que, devido à diferente composição química do núcleo de uma supernova com captura de elétrons, a taxa da abundância de níquel em relação ao ferro (Ni/Fe) deve ser muito maior do que a taxa medida no nosso Sol (que contém estes elementos de gerações anteriores de estrelas). 

Estudos realizados no final da década de 1980 e início da década de 1990 mediram a taxa Ni/Fe na Nebulosa do Caranguejo usando dados ópticos e no infravermelho próximo e notaram uma taxa de abundância Ni/Fe elevada que parecia favorecer o cenário da supernova de captura de elétrons. Foi descoberto que a taxa ainda era elevada em comparação com o do Sol, mas apenas modestamente e muito mais baixo em comparação com estimativas anteriores. Os valores revistos são consistentes com a captura de elétrons, mas não excluem uma explosão de colapso do núcleo de ferro de uma estrela de massa similarmente baixa. 

Será necessário mais trabalho teórico e observacional para distinguir entre estas duas possibilidades. Para além de obter dados espectrais de duas pequenas regiões do interior da Nebulosa do Caranguejo a fim de medir a taxa de abundância, o telescópio também observou o ambiente mais amplo do remanescente para compreender os detalhes da emissão de síncrotron e a distribuição de poeira. As imagens e os dados recolhidos pelo MIRI permitiram à equipe isolar a emissão de poeira no interior da Nebulosa do Caranguejo e mapeá-la em alta resolução pela primeira vez. Ao mapear a emissão de poeira quente com o Webb, e até combinando-a com os dados do observatório espacial Herschel referente aos grãos de poeira mais frios, a equipe criou uma imagem completa da distribuição da poeira: os filamentos mais exteriores contêm poeira relativamente mais quente, enquanto os grãos mais frios estão predominantes perto do centro.

Estas conclusões foram aceitas para publicação no periódico The Astrophysical Journal Letters.

Fonte: Space Telescope Science Institute

terça-feira, 18 de junho de 2024

Observado em tempo real o despertar de buraco negro de grande massa

No final de 2019, a galáxia SDSS1335+0728, que até ao momento tinha passado despercebida, começou subitamente a brilhar intensamente.

© ESO / M. Kornmesser (ilustração da galáxia SDSS1335+0728)

Para compreenderem melhor este fenômeno, os astrônomos utilizaram dados de vários observatórios espaciais e terrestres, incluindo o Very Large Telescope (VLT) do Observatório Europeu do Sul (ESO), e seguiram esta variação do brilho da galáxia. 

Os pesquisadores indagam que estamos assistindo a mudanças nunca antes observadas numa galáxia: provavelmente resultado do súbito despertar do enorme buraco negro existente no seu núcleo. De repente, o seu núcleo começa a apresentar enormes variações de brilho, diferentes de quaisquer eventos típicos observados até à data. Foi precisamente isto que aconteceu a SDSS1335+0728 após ter começado a brilhar intensamente em dezembro de 2019, agora classificada como possuindo um "núcleo galáctico ativo", que é uma região compacta brilhante alimentada por um buraco negro de grande massa.

Alguns fenômenos, como explosões de supernovas ou eventos de maré (quando uma estrela se aproxima demasiado de um buraco negro e é despedaçada) podem fazer com que as galáxias se iluminem subitamente. Mas estas variações de brilho duram normalmente apenas algumas dezenas ou, no máximo, algumas centenas de dias. A SDSS1335+0728 continua ainda hoje aumentando de brilho. Além disso, as variações detectadas na galáxia, que se encontra a 300 milhões de anos-luz de distância da Terra, na constelação de Virgem, são diferentes de todas as observadas anteriormente, necessitando, por isso, de uma explicação diferente. 

Para tentar compreender estas variações de brilho, a equipe usou uma combinação de dados de arquivo e novas observações de várias infraestruturas, incluindo o instrumento X-shooter montado no VLT do ESO, instalado no deserto chileno do Atacama. Comparando os dados obtidos antes e depois de dezembro de 2019, os cientistas descobriram que a SDSS1335+0728 está agora emitindo muito mais radiação nos comprimentos de onda do ultravioleta, óptico e infravermelho. A galáxia começou também a emitir em raios X em fevereiro de 2024.

A razão mais óbvia que explica este fenômeno é que o núcleo da galáxia começa a mostrar atividade. Se isto se comprovar, trata-se da primeira vez que é observado em tempo real a ativação de um buraco negro de grande massa. Os buracos negros massivos, com massas superiores a cem mil vezes a do nosso Sol, existem no centro da maioria das galáxias, incluindo a nossa Via Láctea.

Estudos anteriores relataram galáxias inativas que se tornaram ativas após vários anos, mas esta é a primeira vez que o processo em si foi observado em tempo real. Os instrumentos como o MUSE no VLT, ou os que serão instalados no futuro Extremely Large Telescope (ELT), serão fundamentais para compreender melhor porque é que esta galáxia está aumentando de brilho.

Este trabalho foi descrito num artigo científico intitulado “SDSS1335+0728: The awakening of a ∼ 106 M⊙ black hole” publicado no periódico Astronomy & Astrophysics.

Fonte: ESO

Descobertos discos e jatos que irrompem de um par de estrelas jovens

A maior parte do Universo é invisível ao olho humano.

© Webb / ALMA (sistema estelar WL20)

Esta imagem do sistema estelar WL 20 combina dados do ALMA (Atacama Large Millimeter/submillimeter Array) e do instrumento Mid-Infrared do telescópio espacial  James Webb da NASA. Os jatos de gás que emanam dos polos das estrelas gêmeas aparecem em azul e verde; os discos de poeira e gás que cercam as estrelas são rosa.

Os blocos de construção das estrelas só são revelados em comprimentos de onda para lá do espectro visível. Recentemente, os astrônomos utilizaram dois telescópios muito diferentes e poderosos para descobrir discos gêmeos e jatos paralelos que irrompiam de estrelas jovens num sistema estelar múltiplo. 

Esta descoberta foi inesperada e sem precedentes, dada a idade, tamanho e composição química das estrelas, discos e jatos. A sua localização numa parte conhecida e bem estudada do Universo acrescenta à emoção. Para esta exploração foram combinados o ALMA (Atacama Large Millimeter/submillimeter Array) e o MIRI (Mid-Infrared Instrument) do Telescópio Espacial James Webb (JWST) da NASA. O ALMA e o MIRI do JWST observam partes muito diferentes do espectro eletromagnético. O ALMA detectou os discos, enquanto o MIRI encontrou os jatos. A sua utilização conjunta permitiu aos astrônomos descobrir estas gêmeas, escondidas nos comprimentos de onda rádio e infravermelho no sistema estelar WL20, localizado no complexo de nuvens moleculares de Rho Ophiuchi, a mais de 400 anos-luz de distância do Sistema Solar.

Ao combinar dados de vários comprimentos de onda do ALMA e do JWST, estas novas descobertas lançam luz sobre os complexos processos envolvidos na formação de sistemas estelares múltiplos. Os astrônomos planejam utilizar as futuras capacidades melhoradas do ALMA para continuar desvendando os mistérios que envolvem o nascimento de estrelas e sistemas planetários.

Fonte: National Radio Astronomy Observatory

TESS observa o menor de um par de buracos negros

Vários grupos de pesquisa internacionais já confirmaram a teoria de que existem dois buracos negros no centro da distante galáxia OJ 287, sugerida pela primeira vez por astrônomos da Universidade de Turku, na Finlândia.

© NASA / JPL-Caltech (ilustração do par de buracos negros)

Um novo estudo mostra que observações de satélite, efetuadas em 2021, revelaram pela primeira vez o buraco negro menor do par. Em 2021, o caçador de exoplanetas TESS (Transiting Exoplanet Survey Satellite) da NASA foi apontado para a galáxia OJ 287. 

O TESS foi concebido para descobrir milhares de exoplanetas em órbita das estrelas anãs mais brilhantes do céu. O TESS está encontrando planetas que vão desde pequenos mundos rochosos a planetas gigantes, mostrando a diversidade de planetas na Via Láctea. Até agora, encontrou 410 exoplanetas confirmados. 

Os pesquisadores encontraram evidências indiretas de que um buraco negro muito massivo, em OJ 287, está orbitando um buraco negro gigante 100 vezes maior. Para verificar a existência do buraco negro menor, o TESS monitorou o brilho do buraco negro primário e o jato a ele associado. A observação direta do buraco negro menor, orbitando o maior, é muito difícil, mas a sua presença foi revelada por uma súbita explosão de brilho. 

Este tipo de evento nunca tinha sido observado em OJ 287, mas o pesquisador Pauli Pihajoki, da Universidade de Turku, na Finlândia, previu o acontecimento na sua tese de doutorado já em 2014. De acordo com a sua tese, o próximo surto deveria ter lugar no final de 2021 e, no moneto, vários satélites e telescópios estavam focados no objeto. O satélite TESS detectou a esperada erupção no dia 12 de novembro de 2021, às 2 horas da manhã (GMT). O evento durou apenas 12 horas. Esta curta duração mostra que é muito difícil encontrar uma explosão de grande brilho, a menos que o seu momento seja conhecido com antecedência. A descoberta foi também confirmada pelo telescópio Swift da NASA, que também estava apontado para o mesmo alvo. 

A rápida explosão de brilho ocorreu quando o buraco negro menor "engole" uma grande fatia do disco de acreção que rodeia o buraco negro maior, transformando-o num jato de gás. O jato do buraco negro menor é então mais brilhante do que o do buraco negro maior durante cerca de doze horas. Isto torna a cor de OJ 287 menos avermelhada, ou amarela, em vez do vermelho normal. Após a explosão, a cor vermelha regressa. Os mesmos resultados podem ser inferidos a partir de outras características da luz emitida por OJ287 durante o mesmo período de tempo.

O buraco negro menor poderá em breve revelar a sua existência de outras formas, uma vez que se espera que emita ondas gravitacionais nano-Hertz. As ondas gravitacionais de OJ 287 devem ser detectáveis nos próximos anos por PTAs (pulsar timing arrays).

Foram publicados artigos nos periódicos The Astrophysical Journal Letters e The Astrophysical Journal.

Fonte: University of Turku

Aglomerados estelares próximos têm origem em apenas três "famílias"

Uma equipe internacional de astrônomos liderada pela Universidade de Viena decifrou a história da formação de jovens aglomerados de estrelas, alguns dos quais podemos ver a olho nu à noite.

© ESO / STScI (aglomerado estelar Alpha Persei)

Os pesquisadores relatam que a maioria dos aglomerados estelares jovens próximos pertencem apenas a três famílias, que têm origem em regiões de formação estelar muito massivas. Esta pesquisa também fornece novos conhecimentos sobre os efeitos das supernovas (explosões violentas no fim da vida de estrelas muito massivas) na formação de estruturas gigantes de gás em galáxias como a Via Láctea. 

Utilizando dados precisos da missão Gaia da ESA e observações espectroscópicas, foram rastreadas as origens de 155 aglomerados estelares jovens num raio de cerca de 3.500 anos-luz em torno do Sol. A análise mostra que estes aglomerados estelares podem ser divididos em três famílias com origens e condições de formação comuns. Estas três famílias de estrelas têm o nome dos seus aglomerados estelares mais proeminentes: Collinder 135 (Cr135), Messier 6 (M6) e Alpha Persei (α Per). 

O estudo concluiu que devem ter ocorrido mais de 200 explosões de supernova no seio destas três famílias de aglomerados estelares, liberando enormes quantidades de energia para o seu meio envolvente. Esta energia teve provavelmente um impacto significativo na distribuição do gás na Via Láctea local. Isto poderia explicar a formação de uma superbolha, uma bolha gigante de gás e poeira com um diâmetro de 3.000 anos-luz em torno da família Cr135. 

O nosso Sistema Solar também está inserido numa bolha deste tipo, a chamada Bolha Local, que está cheia de gás muito fino e quente. A Bolha Local está provavelmente também ligada à história de uma das três famílias de aglomerados estelares. E é provável que tenha deixado vestígios na Terra, como sugerem as medições de isótopos de ferro (60Fe) na crosta terrestre. 

No futuro, a equipe planeja investigar com mais precisão se e como o nosso Sistema Solar interagiu com a matéria interestelar na Via Láctea. 

Um artigo foi publicado na revista Nature

Fonte: University of Vienna

domingo, 16 de junho de 2024

O Sistema Solar pode ter passado por uma densa nuvem interestelar

Há cerca de dois milhões de anos, a Terra era um lugar muito diferente, com os nossos primeiros antepassados humanos vivendo ao lado de tigres dentes-de-sabre, mastodontes e enormes roedores.

© Nature (ilustração da Terra mergulhada fora da heliosfera)

E talvez tivessem tido frio: A Terra atravessava um período intensamente frígido, com sucessivas eras glaciares até há cerca de 12.000 anos. As eras glaciares ocorrem por várias razões, incluindo a inclinação e rotação do planeta, a alteração das placas tectônicas, as erupções vulcânicas e os níveis de dióxido de carbono na atmosfera. Mas e se mudanças drásticas como estas não forem apenas resultado do ambiente da Terra, mas também da localização do Sol na Galáxia? 

Num novo estudo, pesquisadores liderados pela Universidade de Boston encontraram evidências de que, há cerca de dois milhões de anos, o Sistema Solar encontrou uma nuvem interestelar tão densa que poderia ter interferido com o vento solar. Os cientistas pensam que a localização do Sol no espaço pode moldar a história da Terra mais do que se pensava. 

Todo o nosso Sistema Solar está envolto num escudo protetor de plasma que emana do Sol, conhecido como heliosfera. É feito de um fluxo constante de partículas carregadas, chamado vento solar, que se estende para lá de Plutão, envolvendo os planetas numa "bolha gigante". Protege-nos da radiação e dos raios galácticos que podem alterar o DNA, e os cientistas pensam que é parte da razão pela qual a vida evoluiu na Terra do modo como o fez. De acordo com este estudo mais recente, a nuvem fria comprimiu a heliosfera de tal forma que colocou brevemente a Terra e os outros planetas do Sistema Solar fora da sua influência, podendo afetar a química atmosférica da Terra. 

"Este trabalho é o primeiro a mostrar quantitativamente que houve um encontro entre o Sol e algo para lá do Sistema Solar que teria afetado o clima da Terra", afirma Merav Opher, física espacial da Universidade de Boston, especialista na heliosfera e principal autora do estudo. Ela é filha do professor Dr. Reuven Opher (IAG/USP).

Opher e os seus colaboradores essencialmente recuaram no tempo, utilizando modelos computacionais sofisticados para visualizar a posição do Sol, a heliosfera e o resto do Sistema Solar há dois milhões de anos. Também mapearam o percurso da Corrente Local de Nuvens Frias, um sistema de nuvens grandes, densas e muito frias, feitas principalmente de átomos de hidrogênio. As suas simulações mostraram que uma das nuvens frias perto do fim dessa corrente, denominada Lince Local, poderia ter colidido com a heliosfera. Caso isso tenha acontecido, a Terra teria ficado totalmente exposta ao meio interestelar, onde o gás e a poeira se misturam com os elementos atômicos que sobraram das estrelas que explodiram, incluindo o ferro e o plutônio. Normalmente, a heliosfera filtra a maior parte destas partículas radioativas. Mas sem proteção, podem facilmente chegar à Terra. 

De acordo com o artigo, isto alinha-se com evidências geológicas que mostram um aumento dos isótopos 60Fe (ferro 60) e 244Pu (plutônio 244) nos oceanos, na neve da Antártida e nos núcleos de gelo - e na Lua - do mesmo período. O momento também coincide com registos de temperatura que indicam um período de arrefecimento.

É impossível saber o efeito exato que a nuvem fria teve na Terra, por exemplo, se poderá ter provocado uma idade do gelo. Mas há algumas outras nuvens frias no meio interestelar que o Sol provavelmente encontrou nos bilhões de anos desde que nasceu. E é provável que encontre mais algumas daqui a cerca de um milhão de anos. 

Opher e os seus colaboradores estão agora trabalhando para descobrir onde o Sol estava há sete milhões de anos e ainda mais atrás. A localização do Sol milhões de anos no passado, bem como do sistema de nuvens frias, é possível com os dados recolhidos pela missão Gaia da ESA, que está construindo o maior mapa 3D da Galáxia e fornecendo uma visão sem precedentes da velocidade a que as estrelas se movem. 

O efeito de se cruzar com tanto hidrogênio e material radioativo não é claro, pelo que Opher e a sua equipe no Centro de Ciência SHIELD (Solar wind with Hydrogen Ion Exchange and Large-scale Dynamics) da Universidade de Boston, financiado pela NASA, estão agora explorando o efeito que poderia ter tido na radiação da Terra, bem como na atmosfera e no clima.

Um artigo foi publicado na revista Nature Astronomy.

Fonte: Boston University