sábado, 28 de março de 2020

Dados do Chandra testam a "teoria de tudo"

Uma das maiores ideias da física é a possibilidade de que todas as forças, partículas e interações conhecidas possam ser ligadas numa única estrutura.


© NASA/Chandra (aglomerado de galáxias de Perseu)

A teoria das cordas é sem dúvida a proposta mais bem conhecida para uma "teoria de tudo" que uniria a nossa compreensão do Universo físico.

Apesar de existirem muitas versões diferentes da teoria das cordas circulando durante décadas pela comunidade da física, têm havido muito poucos testes experimentais. No entanto, os astrônomos que usam o observatório de raios X Chandra da NASA deram um passo significativo nessa área.

Pesquisando aglomerados galácticos, as maiores estruturas do Universo mantidas juntas pela gravidade, os pesquisadores conseguiram procurar uma partícula específica que muitos modelos da teoria das cordas preveem que deveria existir. Embora a não detecção resultante não descarte completamente a teoria das cordas, dá um golpe em certos modelos desta variedade de ideias.

A partícula que os pesquisadores estavam procurando é chamada de áxion. Estas partículas ainda não detectadas devem ter massas extraordinariamente baixas. Os cientistas não sabem o intervalo preciso de massa, mas muitas teorias apresentam massas axiais que variam de mais ou menos um milionésimo da massa de um elétron até massa zero. Alguns cientistas pensam que os áxions poderiam explicar o mistério da matéria escura, responsável pela grande maioria da matéria no Universo.

Uma propriedade incomum destas partículas de massa extremamente baixa seria a de que às vezes convertem-se em fótons à medida que passam através de campos magnéticos. O oposto também pode ser verdadeiro: os fótons também podem ser convertidos em áxions sob certas condições. A frequência com que esta conversão ocorre depende da facilidade com que a fazem, ou seja, da sua "conversibilidade."

Alguns cientistas propuseram a existência de uma classe mais ampla de partículas de massa extremamente baixa com propriedades semelhantes às dos áxions. Os áxions teriam um único valor de conversibilidade em cada massa, mas as "partículas semelhantes aos áxions" teriam um intervalo de conversibilidade na mesma massa.

"Embora possa parecer um tiro no escuro procurar partículas minúsculas como os áxions em estruturas gigantescas como aglomerados galácticos, na verdade são lugares ótimos para a procura," disse David Marsh da Universidade de Estocolmo na Suécia. "Os aglomerados de galáxias contêm campos magnéticos enormes e também costumam conter fontes brilhantes de raios X. Juntas, estas propriedades aumentam a probabilidade de detectar a conversão de partículas parecidas aos áxions."

Para procurar sinais de conversão por partículas tipo-áxion, a equipe de astrônomos examinou mais de cinco dias de observações em raios X, pelo Chandra, de material a caindo em direção ao buraco negro supermassivo no centro do aglomerado de galáxias de Perseu. Eles estudaram o espectro do Chandra, ou a quantidade de emissão de raios X observada em diferentes energias desta fonte. A longa observação e a brilhante fonte de raios X forneceram um espectro com sensibilidade suficiente para mostrar distorções que os cientistas esperavam caso partículas tipo-áxion estivessem presentes.

A ausência de detecção de tais distorções permitiu que os pesquisadores descartassem a presença da maioria dos tipos de partículas parecidas aos áxions na gama de massas às quais as suas observações eram sensíveis, abaixo de trilionésimos da massa de um elétron.

"A nossa análise não descarta a existência destas partículas, mas definitivamente não ajuda ao seu caso," disse Helen Russell da Universidade de Nottingham no Reino Unido. "Estas restrições investigam o leque de propriedades sugeridas pela teoria das cordas e podem ajudar os teóricos a descartar algumas versões das teorias das cordas."

O resultado mais recente foi cerca de três a quatro vezes mais sensível do que a melhor investigação anterior de partículas semelhantes aos áxions, proveniente de observações através do Chandra do buraco negro supermassivo da galáxia M87. Este estudo do aglomerado de galáxias de Perseu também é cerca de cem vezes mais poderoso que as medições atuais que podem ser realizadas em laboratórios aqui na Terra, para o intervalo de massa que consideraram.

Claramente, uma possível interpretação deste trabalho é que não existem partículas do tipo-áxion. Outra explicação é que as partículas têm valores de conversibilidade ainda mais baixos do que o limite de detecção desta observação, e inferiores aos esperados por alguns físicos de partículas. Também podem ter massas mais altas do que as estudadas com os dados do Chandra.

O artigo que descreve estes resultados foi publicado na revista The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

sexta-feira, 27 de março de 2020

Onde há um, há mais cem

PSO J030947.49+271757.31 é o blazar mais distante observado até à data.


© NASA/JPL-Caltech/GSFC (ilustração de um blazar)

A luz que vemos começou a sua viagem quando o Universo tinha menos de um bilhão de anos, há quase 13 bilhões de anos. O blazar foi descoberto por uma equipe de pesquisadores liderada por Silvia Belladitta, estudante de doutoramento da Universidade de Insubria, que trabalha para o INAF (Instituto Nacional de Astrofísica) em Milão, Itália.

Embora houvesse a suspeita de que o objeto fosse distante, e as observações do telescópio espacial Swift (do qual o INAF é um dos principais contribuintes) mostrassem que o seu poder de raios X correspondia ao de outros blazares, foram as observações obtidas com o óptico MODS (Multi-Double Object Spectrographs) acoplado ao LBT (Large Binocular Telescope) que confirmaram que realmente quebrou o recorde de blazar mais distante do Universo conhecido.

Os blazares são das mais brilhantes classes de objetos chamados NGAs (Núcleos Galácticos Ativos) que são buracos negros supermassivos nos centros das galáxias. Estão ativos devido à presença de um disco ou esfera de gás ionizado ao seu redor que "alimenta" a emissão vista em muitos comprimentos de onda. Os blazares emitem poderosos jatos relativistas, brilhantes o suficiente para serem vistos em todo o Universo conhecido. O feixe de um blazar é visível apenas ao longo de uma estreita linha de visão.

Se a Terra não estiver nessa linha de visão, não seria facilmente reconhecível. Assim sendo, a detecção de objetos pode ser extremamente difícil e fortuita. Mais importante, porém, este blazar é um dos buracos negros supermassivos mais antigos e distantes não obscurecidos por poeira (ao contrário da maioria dos buracos negros supermassivos). Isto permite que os astrônomos estudem este objeto em todo o espectro eletromagnético e construam uma imagem completa das suas propriedades.

Os dados obtidos pelo LBT confirmaram que PSO J0309+27 está muito longe de nós, o desvio para o vermelho tem um valor recorde de 6,1, nunca medido anteriormente para um objeto semelhante.

O PSO J0309+27 provou ser, de momento, a fonte de rádio mais poderosa e persistente do Universo primordial, nos primeiros bilhões de anos desde a sua formação. Observações feitas pelo telescópio XRT a bordo do satélite Swift também tornaram possível estabelecer que, mesmo em raios X, o PSO J0309+27 é a fonte cósmica mais brilhante já observada a estas distâncias.

Belladitta ainda realça: "É extremamente importante observar um blazar, porque para cada fonte descoberta deste tipo, sabemos que devem existir cem semelhantes, mas orientadas de maneira diferente e, portanto, fracas demais para serem vistas diretamente."

A descoberta de PSO J0309+27 permite que os astrônomos quantifiquem, pela primeira vez, o número de NGAs com poderosos jatos relativistas presentes no Universo primordial. Os blazares nestas épocas iniciais representam as "sementes" de todos os buracos negros supermassivos que existem hoje no Universo.

"A partir destas novas observações do LBT, ainda em desenvolvimento, também estimamos que o mecanismo central que aciona PSO J0309+27 é um buraco negro com uma massa equivalente a cerca de de um bilhão de vezes a massa do nosso Sol. Graças à nossa descoberta, podemos dizer que já nos primeiros bilhões de anos do Universo, existia um grande número de buracos negros muito massivos que emitiam poderosos jatos relativistas. Este resultado impõe restrições rígidas aos modelos teóricos que tentam explicar a origem destes enormes buracos negros no nosso Universo," conclui Belladitta.

A descoberta foi publicada na revista Astronomy & Astrophysics Letters.

Fonte: Italian National Institute for Astrophysics

quinta-feira, 26 de março de 2020

Galáxia com único braço

A NGC 4618 foi descoberta em 9 de abril de 1787 pelo astrônomo alemão-britânico Wilhelm Herschel, que também descobriu Urano em 1781.


© Hubble/I. Karachentsev (NGC 4618)

Apenas um ano antes de descobrir a NGC 4618, Herschel teorizou que os objetos "nebulosos" que os astrônomos estavam vendo no céu noturno provavelmente seriam grandes aglomerados de estrelas localizados muito mais longe do que as estrelas individuais que ele poderia discernir facilmente.

Desde que Herschel propôs sua teoria, os astrônomos passaram a entender que o que ele estava vendo era uma galáxia. A NGC 4618, classificada como uma galáxia espiral barrada, possui uma distinção especial entre outras galáxias espirais de ter apenas um braço girando em torno do centro da galáxia.

A NGC 4618 está localizada a cerca de 21 milhões de anos-luz de nossa galáxia na constelação Canes Venatici, ela possui um diâmetro de cerca de um terço da Via Láctea. Juntamente com sua vizinha, a NGC 4625, ela forma um par de galáxias que interage, o que significa que as duas galáxias estão próximas o suficiente para se influenciar gravitacionalmente. Estas interações podem resultar na fusão de duas (ou mais) galáxias para formar uma nova estrutura, como uma galáxia em anel.

Fonte: ESA

Sobre a origem das estrelas massivas

Esta cena de criação estelar fica perto dos arredores da famosa Nebulosa de Tarântula.


© Hubble/I. Stephens (LHA 120-N 150)

Esta nuvem de gás e poeira, assim como as muitas estrelas jovens e massivas que a cercam, é o laboratório perfeito para estudar a origem de estrelas massivas.

A nuvem rosa brilhante e as jovens estrelas que a rodeiam nesta imagem captada pelo telescópio espacial Hubble têm o nome pouco inspirador LHA 120-N 150. Esta região do espaço é o maior viveiro estelar conhecido no Universo local. A nebulosa está situada a mais de 160.000 anos-luz de distância na Grande Nuvem de Magalhães, uma galáxia anã irregular vizinha que orbita a Via Láctea.

A Grande Nuvem de Magalhães teve um ou mais encontros próximos no passado, possivelmente com a Pequena Nuvem de Magalhães. Estas interações causaram um episódio de formação energética de estrelas em nossa pequena vizinha, parte do qual é visível como a Nebulosa da Tarântula.

Também conhecida como 30 Doradus ou NGC 2070, a Nebulosa da Tarântula deve seu nome ao arranjo de manchas brilhantes que se assemelham às pernas de uma tarântula. Ela mede quase 1.000 anos-luz de diâmetro. Sua proximidade, a inclinação favorável da Grande Nuvem de Magalhães e a ausência de poeira intermediária fazem da Nebulosa da Tarântula um dos melhores laboratórios para estudar a formação de estrelas, em particular estrelas massivas. Esta nebulosa tem uma concentração excepcionalmente alta de estrelas massivas, geralmente chamadas de aglomerados de super estrelas.

Os astrônomos estudaram a LHA ​​120-N 150 para aprender mais sobre o ambiente em que estrelas massivas se formam. Modelos teóricos da formação de estrelas massivas sugerem que elas se formem em aglomerados de estrelas; mas as observações indicam que até dez por cento delas também se formaram isoladamente. A gigantesca nebulosa de Tarântula, com suas numerosas subestruturas, é o laboratório perfeito para resolver esse quebra-cabeça, pois nele estrelas maciças podem ser encontradas como membros de aglomerados e isoladamente.

Com a ajuda do telescópio espacial Hubble, os astrônomos tentam descobrir se as estrelas isoladas visíveis na nebulosa realmente se formaram sozinhas ou simplesmente se afastaram de suas irmãs estelares. No entanto, este estudo não é uma tarefa fácil; estrelas jovens, antes de serem totalmente formadas, especialmente as massivas, parecem muito semelhantes a densos pedaços de poeira.

A LHA 120-N 150 contém várias dezenas destes objetos. Eles são uma mistura de fontes não classificadas, alguns provavelmente objetos estelares jovens e outros provavelmente amontoados de poeira. Somente análises e observações detalhadas revelarão sua verdadeira natureza e isso ajudará a finalmente resolver a questão sem resposta da origem de estrelas massivas.

telescópio espacial Hubble observou a Nebulosa da Tarântula e suas subestruturas no passado, sempre se interessando pela formação e evolução das estrelas.

Os resultados científicos desta observação foram publicados no periódico Astrophyiscal Journal.

Fonte: ESA

sábado, 21 de março de 2020

Descoberto remanescente pulsante de estrela em sistema binário

Cientistas da Universidade de Sheffield descobriram uma antiga estrela pulsante num sistema binário, o que lhes permite aceder a informações importantes sobre a história de como estrelas como o nosso Sol evoluem e eventualmente morrem.


© ESO/M. Kornmesser (ilustração de um sistema binário com uma anã branca)

A descoberta da primeira estrela anã branca pulsante num binário eclipsante, por físicos da Universidade de Sheffield, significa que a equipa pode ver, pela primeira vez e em detalhe, como a evolução binária afetou a estrutura interna de uma anã branca.
Um binário eclipsante, ou sistema estelar duplo, é constituído por duas estrelas que se orbitam uma à outra e que passam periodicamente uma à frente da outra, a partir da perspetiva da Terra.

As anãs brancas são os núcleos queimados deixados para trás quando uma estrela como o Sol morre. Esta anã branca em particular pode fornecer, pela primeira vez, informações importantes sobre a estrutura, evolução e morte destas estrelas.

Pensa-se que a maioria das anãs brancas sejam compostas principalmente de carbono e oxigênio, mas esta anã em particular é composta principalmente de hélio. A equipa pensa que isso é resultado da companheira binária ter interrompido a sua evolução cedo, antes de ter hipótese de fundir o hélio em carbono e oxigênio.

Os pulsos desta estrela foram descobertos usando a HiPERCAM, uma revolucionária câmara de alta velocidade desenvolvida por uma equipa liderada pelo professor Vik Dhillon do Departamento de Física e Astronomia da Universidade de Sheffield.

A HiPERCAM pode captar uma imagem a cada milissegundo em cinco cores diferentes simultaneamente e está acoplada ao GTC (Gran Telescopio Canarias) de 10,4 metros, o maior telescópio ótico do mundo em La Palma. Isto permitiu que os cientistas detetassem os pulsos rápidos e subtis desta anã branca em particular.

Os pulsos da anã branca e do sistema binário eclipsante permitiram à equipa investigar a sua estrutura usando duas técnicas, asterossismologia e estudos de eclipses. A asterossismologia envolve a medição da rapidez com que as ondas sonoras viajam através da anã branca.

O Dr. Steven Parsons, que liderou o estudo e do mesmo departamento, disse: "A determinação da composição de uma anã branca não é simples porque estes objetos têm aproximadamente metade da massa do Sol e aproximadamente o tamanho da Terra. Isto significa que a gravidade é extremamente forte numa anã branca, cerca de um milhão de vezes maior do que aqui na Terra, de modo que à superfície de uma anã branca uma pessoa média pesaria 60 milhões de quilogramas. A gravidade faz com que todos os elementos pesados da anã branca afundem para o centro, deixando apenas os elementos mais leves na superfície e, portanto, a verdadeira composição permanece oculta por baixo.

"Esta anã branca pulsante que descobrimos é extremamente importante, pois podemos usar o movimento binário e o eclipse para medir independentemente a massa e o raio desta anã branca, o que nos ajuda a determinar a sua composição. Ainda mais interessante, as duas estrelas neste sistema binário interagiram uma com a outra no passado, transferindo material para a frente e para trás. Podemos ver como esta evolução binária afetou a estrutura interna da anã branca, algo que não conseguimos fazer antes para este tipo de sistemas binários."

O próximo passo da investigação é continuar a observar a anã branca para registar o maior número possível de pulsos usando a HiPERCAM e o telescópio espacial Hubble.

Fonte: University of Sheffield

terça-feira, 17 de março de 2020

Descobertos novos planetas menores localizados além de Netuno

Usando dados do DES (Dark Energy Survey) instalado no telescópio Blanco, pesquisadores descobriram mais de 300 objetos transnetunianos (OTNs), planetas menores localizados nos confins do Sistema Solar, incluindo mais de 100 novas descobertas.


© Fermilab/Reidar Hahn (cúpula do telescópio Blanco)

O estudo também descreve uma nova abordagem para encontrar tipos semelhantes de objetos e pode ajudar pesquisas futuras do hipotético Planeta Nove e de outros planetas não descobertos. O trabalho foi executado por pesquisadores da Universidade da Pensilvânia, EUA.

O objetivo do DES, que completou em janeiro seis anos de recolhimento de dados, é entender a natureza da energia escura, obtendo imagens de alta resolução do céu do hemisfério sul. Embora o DES não tenha sido desenhado especificamente para os OTNs, a sua abrangência e profundidade de cobertura tornaram-no particularmente hábil em encontrar novos objetos localizados além de Netuno.

Dado que o DES foi projetado para estudar galáxias e supernovas, os pesquisadores tiveram que desenvolver uma nova maneira de rastrear movimento. Dois levantamentos dedicados a OTNs recolhem medições com a frequência de uma ou duas horas, o que permite que os cientistas sigam mais facilmente os seus movimentos.

Usando os primeiros quatros anos de dados do DES, foi obtido inicialmente um conjunto de dados de 7 bilhões de 'pontos', todos os possíveis objetos detectados pelo software que estavam acima dos níveis de fundo da imagem. Seguidamente, removeu quaisquer objetos presentes em noites múltiplas - objetos como estrelas, galáxias e supernovas - para criar uma lista "transiente" de 22 milhões de objetos antes de iniciar um jogo massivo de "liga os pontos", procurando pares ou trios de objetos detectados a fim de ajudar a determinar onde o objeto apareceria nas noites subsequentes.

Para filtrar a lista de candidatos até OTNs reais, os pesquisadores voltaram ao conjunto de dados originais para ver se conseguiam encontrar mais imagens do objeto em questão.

Os pesquisadores desenvolveram uma maneira de "empilhar" várias imagens para criar uma visão mais nítida, o que ajudou a confirmar se um objeto detectado era um OTN real. Também verificaram que o seu método era capaz de observar OTNs conhecidos nas áreas do céu em estudo e foram capazes de detectar objetos falsos injetados na análise.

Após muitos meses de desenvolvimento de método e de análise, os cientistas encontraram 316 OTNs, incluindo 245 descobertas feitas pelo DES e 139 novos objetos que não tinham sido publicados anteriormente. Com apenas 3.000 objetos atualmente conhecidos, este catálogo DES representa 10% de todos os objetos transnetunianos conhecidos. Plutão, o OTN mais famoso, está 40 vezes mais distante do Sol do que a Terra, e os OTNs encontrados usando os dados do DES estão entre 30 e 90 vezes a distância Terra-Sol. Alguns destes objetos estão em órbitas extremamente longas que os levam muito além de Plutão.

Agora que o DES está completo, os pesquisadores estão executando novamente a sua análise de todo o conjunto de dados do DES, desta vez com um limite mais baixo para a detecção de objetos no primeiro estágio de filtragem. Isto significa que há um potencial ainda maior para, no futuro próximo, encontrar novos OTNs, possivelmente até 500, com base nestas estimativas.

O método desenvolvido também pode ser usado para procurar OTNs nos próximos levantamentos astronômicos, incluindo o do novo Observatório Vera C. Rubin. Este observatório vai examinar todo o céu do hemisfério sul e será capaz de detectar objetos ainda mais fracos e mais distantes do que o DES.

Este catálogo de OTNs também será uma ferramenta científica útil para pesquisas futuras do Sistema Solar. Dado que o DES recolhe um amplo espectro de dados sobre cada objeto detectado, os pesquisadores podem tentar descobrir a origem do objeto transnetuniano, tendo em conta que se espera que objetos que se formam mais perto do Sol tenham cores diferentes daqueles formados em regiões mais distantes e mais frias. E, ao estudar as órbitas destes objetos, os cientistas podem estar um passo mais perto de encontrar o Planeta Nove, um planeta hipotético do tamanho de Netuno que se pensa existir para além de Plutão.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: University of Pennsylvania

sábado, 14 de março de 2020

Estrela de nêutrons com 11 km de raio

Uma equipe internacional liderada por membros do Instituto Max Planck para Física Gravitacional (Instituto Albert Einstein) obteve novas medições do tamanho das estrelas de nêutrons.


© NASA (estrela de nêutrons com o tamanho aproximado de uma cidade)

Para tal, combinaram uma descrição geral dos primeiros princípios do comportamento desconhecido da matéria das estrelas de nêutrons com observações da fusão do binário de estrelas de nêutrons GW170817. Os seus resultados são mais rigorosos por um fator de dois do que os limites anteriores e mostram que uma estrela de nêutrons típica tem um raio próximo dos 11 quilômetros. Também descobriram que as estrelas de nêutrons que se fundem com buracos negros são, na maioria dos casos, provavelmente engolidas inteiras, a menos que o buraco negro seja pequeno e/ou gire rapidamente. Isto significa que, embora tais fusões possam ser observadas como fontes de ondas gravitacionais, seriam invisíveis no espectro eletromagnético.

"As fusões de estrelas de nêutrons binárias são uma mina de ouro de informações!" diz Collin Capano, pesquisador do Instituto Albert Einstein, em Hannover. "As estrelas de nêutrons contêm a matéria mais densa do Universo observável. Na verdade, são tão densas e compactas que podemos pensar de toda a estrela como um único núcleo atômico, ampliado para o tamanho de uma cidade. Ao medir as propriedades destes objetos, aprendemos mais sobre a física fundamental que governa a matéria no nível subatômico."

"Descobrimos que uma típica estrela de nêutrons, que é cerca de 1,4 vezes mais massiva do que o nosso Sol, tem um raio de aproximadamente 11 quilômetros," diz Badri Krishnan, que liderou a equipe no Instituto Albert Einstein. "Os nossos resultados limitam o raio até provavelmente entre 10,4 e 11,9 quilômetros. É um intervalo duas vezes mais rigoroso do que os resultados anteriores."

As estrelas de nêutrons são remanescentes compactos e extremamente densos de explosões de supernova. Não é conhecido como esta matéria extremamente densa e rica em nêutrons se comporta e é impossível criar estas condições em qualquer laboratório da Terra. Os físicos propuseram vários modelos (equações de estado), mas não se sabe qual (se é que existe) destes modelos descreve corretamente a matéria das estrelas de nêutrons na natureza.

As fusões de estrelas de nêutrons binárias, como GW170817, que foi observada em ondas gravitacionais e em todo o espetro eletromagnético em agosto de 2017, são os eventos astrofísicos mais excitantes quando se trata de aprender mais sobre a matéria em condições extremas e a física nuclear subjacente. A partir daqui os cientistas podem, por sua vez, determinar as propriedades físicas das estrelas de nêutrons, como o raio e a massa.

A equipe usou um modelo baseado numa descrição dos primeiros princípios de como as partículas subatômicas interagem nas altas densidades encontradas nas estrelas de nêutrons. Notavelmente, os cálculos teóricos em escalas inferiores a um bilionésimo de milímetro podem ser comparados com observações de um objeto astrofísico a mais de cem milhões de anos-luz de distância.

GW170817 foi provocado pela colisão de dois objetos com o tamanho de uma cidade há 120 milhões de anos, quando os dinossauros ainda vagueavam pela Terra. Isto ocorreu numa galáxia a mais de sextilhões de quilômetros de distância. A partir deste evento, foi possível obter informações sobre a física subatômica.

A descrição dos primeiros princípios, usada pelos pesquisadores, prevê uma família inteira de possíveis equações de estado para as estrelas de nêutrons, que são diretamente derivadas da física nuclear. Desta família, os autores selecionaram os membros com a maior probabilidade de explicar diferentes observações astrofísicas; escolheram modelos que:
  • concordam com as observações de ondas gravitacionais de GW170817 a partir de dados públicos do LIGO e do Virgo;
  • produzem uma estrela de nêutrons hipermassiva e de vida curta como resultado da fusão;
  • concordam com as restrições conhecidas na massa máxima da estrela de nêutrons a partir das observações eletromagnéticas de GW170817.
Isto não só permitiu que os cientistas obtivessem informações robustas sobre a física da matéria densa, mas também que obtivessem os limites mais rigorosos, até ao momento, do tamanho das estrelas de nêutrons.

Os novos resultados sugerem que, com um evento como GW170817, os detectores LIGO e Virgo, com a sensibilidade projetada, poderão distinguir facilmente, apenas com ondas gravitacionais, a fusão de duas estrelas de nêutrons ou de dois buracos negros. Para GW170817, as observações no espetro eletromagnético foram cruciais para fazer esta distinção.

A equipe também descobriu que, para binários mistos (uma estrela de neutrões que se funde com um buraco negro), se existirem apenas ondas gravitacionais da fusão, haverá dificuldade em distinguir estes eventos dos eventos de buracos negros binários. As observações no espetro eletromagnético ou de ondas gravitacionais, no rescaldo da fusão, serão cruciais para as diferenciar.

No entanto, os novos resultados também implicam que é improvável que se obtenham observações de fusões de binários mistos. "Nós mostramos que em quase todos os casos a estrela de nêutrons não será dilacerada pelo buraco negro, mas engolida por inteiro," explica Capano. "Somente quando o buraco negro é muito pequeno ou gira rapidamente, é que pode perturbar a estrela de nêutrons antes de a engolir; e só então é que podemos esperar ver algo mais além de ondas gravitacionais."

Na próxima década, os detectores existentes de ondas gravitacionais se tornarão ainda mais sensíveis, e detectores adicionais começarão as suas observações. Os astrônomos esperam detecções de ondas gravitacionais mais "audíveis" e possíveis observações da fusão de estrelas de neutrões binárias. Cada uma destas fusões proporcionará oportunidades maravilhosas para aprender mais sobre as estrela de nêutrons e sobre a física nuclear.

Os seus resultados foram publicados na revista Nature Astronomy.

Fonte: Max Planck Institute for Gravitational Physics

quinta-feira, 12 de março de 2020

Telescópio observa exoplaneta exótico onde chove ferro

Com o auxílio do Very Large Telescope (VLT) do ESO, pesquisadores observaram um planeta extremo onde suspeitam que chova ferro.


© ESO/M. Kornmesser (ilustração do lado noturno do exoplaneta WASP-76b)

O exoplaneta gigante ultra-quente tem um lado diurno onde as temperaturas sobem acima de 2.400º Celsius, ou seja, suficientemente altas para vaporizar metais. Ventos fortes transportam vapor de ferro para o lado noturno mais frio, onde este vapor condensa em gotas de ferro. Conhecido por WASP-76b, o exoplaneta está localizado a cerca de 640 anos-luz de distância da Terra, na constelação de Peixes.

Este estranho fenômeno ocorre porque o exoplaneta apenas mostra uma face, o lado diurno, à sua estrela progenitora, estando o lado noturno sempre na escuridão. Tal como a Lua que orbita em torno da Terra, WASP-76b encontra-se em rotação sincronizada, o que significa que demora tanto tempo a completar uma rotação em torno do seu eixo como a dar uma volta em torno da sua estrela.

O lado diurno recebe milhares de vezes mais radiação da sua estrela do que a Terra recebe do Sol, e por isso se encontra tão quente que as moléculas se separam em átomos e os metais, tais como o ferro, evaporam para a atmosfera. A extrema diferença de temperatura entre os lados diurno e noturno resulta em ventos vigorosos que levam o vapor de ferro do lado diurno ultra quente até ao lado noturno mais frio, onde as temperaturas diminuem para cerca de 1.500º Celsius.

De acordo com o novo estudo, WASP-76b não tem apenas diferentes temperaturas entre os lados diurno e noturno, mas apresenta também uma química diferente entre os dois lados. Com o auxílio do instrumento ESPRESSO montado no VLT, situado no deserto chileno do Atacama, os astrônomos identificaram pela primeira vez variações químicas num planeta gigante gasoso ultra quente. Os cientistas detectaram uma forte assinatura de vapor de ferro na fronteira do final da tarde, a qual separa o lado diurno do planeta do seu lado noturno.

Este resultado foi obtido em setembro de 2018, a partir das primeiras observações científicas do ESPRESSO, pelo consórcio científico que construiu o instrumento: uma equipe de Portugal, Itália, Suíça, Espanha e ESO.

O ESPRESSO (Echelle SPectrograph for Rocky Exoplanets and Stable Spectroscopic Observations) foi originalmente concebido para procurar planetas do tipo terrestre em torno de estrelas do tipo solar. No entanto, rapidamente provou ser muito mais versátil.

Um artigo foi publicado na revista Nature.

Fonte: ESO

terça-feira, 10 de março de 2020

ALMA avista estrela idosa e metamorfósica

Usando o ALMA (Atacama Large Millimeter/submillimeter Array), uma equipe internacional de astrônomos captou o momento exato em que uma estrela antiga começa a alterar o seu ambiente.


© ESO/ALMA (sistema W43A)

A imagem acima mostra o velho sistema W43A. A alta velocidade dos jatos bipolares ejetados da estrela antiga central podem ser vistos em azul, os fluxos de baixa velocidade têm cor verde e as nuvens poeirentas incorporadas pelos jatos estão a laranja.

A estrela ejetou jatos velozes e bipolares de gás que estão agora colidindo com o material circundante; a idade estimada do jato observado corresponde a menos de 60 anos. Estas são características fundamentais para entender como são produzidas as formas complexas das nebulosas planetárias.

As estrelas parecidas com o Sol evoluem para gigantes vermelhas e inchadas na fase final das suas vidas. Aí, a estrela expele gás para formar um remanescente chamado nebulosa planetária. Existe uma grande variedade nas formas das nebulosas planetárias; algumas são esféricas, mas outras são bipolares ou apresentam estruturas complicadas. Os astrônomos estão interessados nas origens desta variedade, mas a poeira e o gás espesso expelidos por uma estrela velha obscura o sistema e dificultam a análise do funcionamento interno do processo.

Para resolver este problema, uma equipe de astrônomos liderada por Daniel Tafoya da Universidade de Tecnologia de Chalmers, Suécia, apontou o ALMA para W43A, um antigo sistema estelar na direção da constelação de Águia.

Graças à alta resolução do ALMA, foi obtida uma visão muito detalhada do espaço em torno de W43A. A equipe descobriu que a velocidade dos jatos é tão alta quanto 175 km/s, o que é muito maior do que as estimativas anteriores. Com base nesta velocidade e no tamanho dos jatos, foi calculada a idade dos jatos como sendo inferior ao tempo de vida do ser humano.

"Considerando a juventude dos jatos em comparação com a vida útil de uma estrela, é seguro dizer que estamos testemunhando o 'momento exato' em que os jatos começaram a empurrar o gás circundante," explica Tafoya.

Realmente, a imagem do ALMA mapeia claramente a distribuição de nuvens empoeiradas incorporadas pelos jatos, o que é uma evidência reveladora de que está impactando o ambiente.

A equipe assume que esta incorporação é a chave para produzir uma nebulosa planetária de forma bipolar. No seu cenário, a estrela idosa originalmente ejeta gás esfericamente e o núcleo da estrela perde o seu invólucro. Se a estrela tiver uma companheira, o seu gás é "derramado" para o núcleo da estrela moribunda e uma porção deste novo gás forma os jatos. Portanto, ter ou não uma companheira é um fator importante para determinar a estrutura da nebulosa planetária resultante.

Algumas estrelas antigas mostram emissões de rádio características das moléculas de água. Supõe-se que manchas destas emissões de água indicam a região da interface entre os jatos e o material circundante. Isto é denominado "fontes de água" e pode ser um sinal de que a fonte central é um sistema binário que lança um novo jato.

Existem apenas 15 objetos 'fonte de água' identificados até ao momento, apesar de existirem mais de 100 bilhões de estrelas na nossa Via Láctea. Isto porque provavelmente a vida útil dos jatos é bastante curta, de modo que temos muita sorte em observar objetos tão raros.

O estudo foi publicado na revista The Astrophysical Journal Letters.

Fonte: National Radio Astronomy Observatory

domingo, 8 de março de 2020

Um "Jekyll e Hyde" cósmico

De acordo com observações do Observatório de raios X Chandra da NASA e do VLA (Karl F. Jansky Very Large Array) da NSF (National Science Foundation), um sistema estelar binário tem vindo a alternar entre dois alter-egos.


© Hubble (Terzan 5)

Usando quase uma década e meia de dados do Chandra, os pesquisadores notaram que um par estelar se comporta como um tipo de objeto antes de mudar a sua identidade e depois regressa ao seu estado original ao fim de alguns anos. Este é um exemplo raro de um sistema estelar que altera o seu comportamento desta maneira.

Os astrônomos encontraram esta volátil estrela dupla, ou sistema binário, numa densa coleção de estrelas, o aglomerado globular Terzan 5, localizado a mais ou menos 20.000 anos-luz da Terra, na Via Láctea. Esta dupla estelar, conhecida como Terzan 5 CX1, tem uma estrela de nêutrons (o remanescente extremamente denso deixado para trás por uma explosão de supernova) em órbita íntima com uma estrela semelhante ao Sol, mas com menos massa.

Em sistemas binários como Terzan 5 CX1, a estrela de nêutrons mais pesada puxa o material da companheira de massa inferior para um disco circundante. Os astrônomos podem detetar estes denominados discos de acreção graças à sua brilhante radiação em raios X e referem-se a estes objetos como "binários de raios X de baixa massa."

O material giratório no disco cai sobre a superfície da estrela de nêutrons, acelerando a sua rotação. A estrela de nêutrons pode girar cada vez mais depressa até que a esfera com aproximadamente 16 km de diâmetro, com mais massa do que o Sol, gira centenas de vezes por segundo. Eventualmente, a transferência de matéria diminui e o material restante é varrido pelo campo magnético giratório da estrela de nêutrons, que se torna num pulsar de milissegundo. Os astrônomos detectam pulsos de ondas de rádio destes pulsares de milissegundo enquanto o feixe de ondas de rádio da estrela de nêutrons aponta para a Terra durante cada rotação.



© Chandra (Terzan 5 em raios X)

Embora os cientistas esperem que a evolução completa de um binário de raios X de baixa massa para um pulsar de milissegundo ocorra ao longo de vários bilhões de anos, existe um período de tempo em que o sistema pode alternar rapidamente entre estes dois estados. As observações de Terzan 5 CX1 pelo Chandra mostram que estava agindo como um binário de raios X de baixa massa em 2003, porque era mais brilhante em raios X do que qualquer uma das dezenas de outras fontes no aglomerado globular. Isto era um sinal de que a estrela de nêutrons provavelmente estava acumulando matéria.

Nos dados do Chandra obtidos de 2009 a 2014, Terzan 5 CX1 havia se tornado cerca de dez vezes mais fraco em raios X. Os astrônomos também o detectaram como uma fonte de rádio com o VLA em 2012 e 2014. A quantidade de emissão de rádio e raios X e os espectros correspondentes (a quantidade de emissão em diferentes comprimentos de onda) concordam com as expectativas de um pulsar de milissegundo. Embora os dados rádio usados não permitam uma busca por pulsos de milissegundo, estes resultados implicam que Terzan 5 CX1 passou por uma transformação, passando a comportar-se como um pulsar de milissegundo e que estava ejetando material. Quando o Chandra observou Terzan 5 CX1 novamente em 2016, tornou-se mais brilhante em raios X e voltou a agir novamente como um binário de raios X de baixa massa.

Para confirmar este padrão de comportamento "Jekyll e Hyde", os astrônomos precisam de detectar pulsos de rádio enquanto Terzan 5 CX1 é fraco em termos de raios X. Estão planejadas mais observações no rádio e em raios X para procurar este comportamento, além de pesquisas sensíveis de pulsos nos dados existentes. Apenas se conhecem três exemplos confirmados destes sistemas que mudam de identidade, o primeiro descoberto em 2013 usando o Chandra e vários outros telescópios de raios X e rádio.

O estudo do binário "Jekyll e Hyde" foi liderado por Arash Bahramian do ICRAR (International Center for Radio Astronomy Research), Austrália, e publicado no periódico The Astrophysical Journal.

Dois outros estudos recentes usaram observações de Terzan 5 pelo Chandra para estudar como as estrelas de nêutrons de dois diferentes binários de raios X de baixa massa se recuperam depois de terem recebido grandes quantidades de material despejado na superfície por uma estrela companheira. Tais estudos são importantes para entender a estrutura da camada externa de uma estrela de nêutrons, conhecida como crosta.

Num destes estudos, o do binário de raios X de baixa massa Swift J174805.3–244637 (T5 X-3 para abreviar), o material despejado na estrela de nêutrons durante uma explosão de raios X detectada em 2012 pelo Chandra aqueceu a crosta da estrela. A crosta da estrela de nêutrons então arrefeceu, levando cerca de cem dias para voltar à temperatura observada antes da explosão. O ritmo de arrefecimento está de acordo com um modelo de computador deste processo.

Num estudo separado de outro binário de raios X de baixa massa em Terzan 5, IGR J17480–2446 (T5 X-2 para abreviar), a estrela de nêutrons ainda estava arrefecendo quando a sua temperatura foi registada cinco anos e meio depois de ter ocorrido um surto. Estes resultados mostram que a capacidade da crosta desta estrela de nêutrons em transferir ou conduzir calor pode ser menor do que a que os astrônomos encontraram em outras estrelas de nêutrons arrefecendo ou em binários de raios X de baixa massa. Esta diferença na capacidade de conduzir calor pode estar relacionada com o fato de T5 X-2 ter um campo magnético maior em comparação com outras estrelas de nêutrons em arrefecimento, ou ser muito mais jovem do que T5 X-3.

O trabalho sobre a estrela de nêutrons de arrefecimento rápido e lento foram publicados na revista Monthly Notices of the Royal Astronomical Society.

O estudo do binário foi publicado no periódico The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

Descoberta explosão recorde por buraco negro

Foi encontrada a maior explosão já vista no Universo. Esta gigantesca erupção recorde veio de um buraco negro num distante aglomerado de galáxias a centenas de milhões de anos-luz de distância.


© Chandra/XMM-Newton/MWA/GMRT (erupção desencadeada por um buraco negro)

"De certa forma, esta explosão é semelhante ao modo como a erupção do Monte Santa Helena em 1980 destruiu o topo da montanha," disse Simona Giacintucci do Naval Research Laboratory em Washington, EUA, autora principal do estudo. "Uma diferença fundamental é que podíamos colocar quinze Vias Lácteas seguidas na cratera criada pela erupção que perfurou o gás quente do aglomerado."

Os astrônomos fizeram esta descoberta usando dados de raios X do Observatório Chandra da NASA, do XMM-Newton da ESA, e dados rádio do MWA (Murchison Widefield Array) na Austrália e do GMRT (Giant Metrewave Radio Telescope) na Índia.

A incomparável explosão foi detectada no aglomerado de galáxias de Ofiúco, que fica a cerca de 390 milhões de anos-luz da Terra. Os aglomerados de galáxias são as maiores estruturas do Universo mantidas juntas pela gravidade, contendo milhares de galáxias individuais, matéria escura e gás quente.

No centro do aglomerado de galáxias de Ofiúco, existe uma grande galáxia que contém um buraco negro supermassivo. Os cientistas pensam que a fonte da erupção gigantesca é este buraco negro.

Embora os buracos negros sejam famosos por puxar material na sua direção, normalmente expelem quantidades prodigiosas de material e energia. Isto ocorre quando a matéria que cai em direção ao buraco negro é redirecionada para jatos, ou feixes, expelidos para o espaço e que chocam com qualquer material circundante.

As observações do Chandra relatadas em 2016 revelaram pela primeira vez pistas da explosão gigante no aglomerado de galáxias de Ofiúco. Norbert Werner e colegas divulgaram a descoberta de uma incomum borda curva na imagem do aglomerado pelo Chandra. Consideraram se isso representava parte da parede de uma cavidade no gás quente criado pelos jatos do buraco negro supermassivo. No entanto, descartaram esta possibilidade, em parte porque seria necessária uma quantidade enorme de energia para o buraco negro criar uma cavidade tão grande.

O estudo mais recente por Giacintucci e colegas mostra que ocorreu uma enorme explosão. Primeiro, mostraram que a aresta curva também é detectada pelo XMM-Newton, confirmando a observação do Chandra. O seu avanço crucial foi a utilização de novos dados de rádio do MWA e do arquivo do GMRT para mostrar que a orla curva faz realmente parte da parede de uma cavidade, porque faz fronteira com uma região cheia de emissão de rádio. Esta emissão é de elétrons acelerados até quase à velocidade da luz. A aceleração provavelmente teve origem no buraco negro supermassivo.

A quantidade de energia necessária para criar a cavidade em Ofiúco é cerca de cinco vezes maior que o recordista anterior, MS 0735+74, e centenas de milhares de vezes maior que os aglomerados típicos.

A erupção do buraco negro deve ter terminado porque os cientistas não vêm nenhuma evidência de jatos atuais nos dados de rádio. Este desligar pode ser explicado pelos dados do Chandra, que mostram que o gás mais denso e mais frio visto em raios X está atualmente localizado numa posição diferente da galáxia central. Se este gás se tiver afastado da galáxia, terá privado o buraco negro de combustível para o seu crescimento, desligando os jatos.

Este deslocamento de gás é provavelmente provocado pela agitação do gás em torno do meio do aglomerado, como vinho num copo. Normalmente, a fusão de dois aglomerado de galáxias desencadeia tal agitação, mas aqui pode ter sido deflagrada pela erupção.

Um enigma é que apenas é vista uma região gigante de emissão de rádio, pois estes sistemas geralmente contêm duas em lados opostos do buraco negro. É possível que o gás do outro lado da cavidade do aglomerado seja menos denso, de modo que as emissões de rádio desvaneceram mais rapidamente.

O artigo que descreve estes resultados foi publicado no periódico The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics