Mostrando postagens com marcador Buracos Negros. Mostrar todas as postagens
Mostrando postagens com marcador Buracos Negros. Mostrar todas as postagens

sexta-feira, 15 de novembro de 2024

Buracos negros monstruosos que dilaceram uma nuvem de gás

Cientistas, recorrendo a observações do Observatório Neil Gehrels Swift da NASA descobriram, pela primeira vez, o sinal de um par de buracos negros monstruosos perturbando uma nuvem de gás no centro de uma galáxia.

© NASA (par de buracos rodopiam numa nuvem de gás)

Trata-se de um acontecimento muito estranho, chamado AT 2021hdr, que se repete de poucos em poucos meses. Pensa-se que uma nuvem de gás envolveu os buracos negros. À medida que se orbitam um ao outro, os buracos negros interagem com a nuvem, perturbando e consumindo o seu gás. Isto produz um padrão de oscilação na luz do sistema.

A dupla de buracos negros encontra-se no centro de uma galáxia chamada 2MASX J21240027+3409114, situada a um bilhão de anos-luz de distância, na direção da constelação setentrional de Cisne. O par está separado por cerca de 26 bilhões de quilômetros, suficientemente perto para que a luz demore apenas um dia para viajar entre eles. Em conjunto, contêm 40 milhões de vezes a massa do Sol. Os cientistas estimam que os buracos negros completam uma órbita a cada 130 dias e que irão colidir e fundir-se dentro de aproximadamente 70.000 anos. 

O AT 2021hdr foi detectado pela primeira vez em março de 2021 pelo ZTF (Zwicky Transient Facility), liderado pelo Caltech, no Observatório de Palomar, no estado norte-americano da Califórnia. Foi assinalado como uma fonte potencialmente interessante pelo ALeRCE (Automatic Learning for the Rapid Classification of Events). 

Esta equipe multidisciplinar combina ferramentas de inteligência artificial com conhecimentos humanos para comunicar eventos no céu noturno à comunidade astronômica, utilizando a vasta quantidade de dados recolhidos por programas de pesquisa como o ZTF. 

Desde a primeira erupção que o ZTF tem detectado surtos a cada 60 a 90 dias. O Swift ajudou a determinar que o binário produz oscilações no ultravioleta e em raios X nas mesmas escalas de tempo em que o ZTF as vê na gama do visível. 

Os pesquisadores realizaram uma eliminação de diferentes modelos para explicar o que viram nos dados. Inicialmente, pensaram que o sinal podia ser o subproduto da atividade normal no centro galáctico. Depois consideraram a hipótese de um evento de perturbação de marés, a destruição de uma estrela que se aproximou demasiado de um dos buracos negros, poder ser a causa. Por fim, decidiram-se por outra possibilidade, a perturbação de maré de uma nuvem de gás, maior do que o próprio binário. 

Quando a nuvem encontrou os buracos negros, a gravidade rasgou-a, formando filamentos em volta do par e o atrito começou a aquecê-la. O gás tornou-se particularmente denso e quente perto dos buracos negros. À medida que o binário orbita, a complexa interação de forças ejeta parte do gás do sistema em cada rotação. Estas interações produzem a luz flutuante que o Swift e o ZTF observam. 

Um artigo foi publicado no periódico Astronomy & Astrophysics.

Fonte: NASA

domingo, 10 de novembro de 2024

Um buraco negro que mais depressa se alimenta no Universo primitivo

Usando dados do James Webb Space Telescope (JWST) e do Observatório de raios X Chandra da NASA, astrônomos do National Optical-Infrared Astronomy Research Laboratory (NOIRLab) descobriram um buraco negro supermassivo no centro de uma galáxia, apenas 1,5 bilhões de anos após o Big Bang, que está consumindo matéria a um ritmo fenomenal, mais de 40 vezes o limite teórico.

© NOIRLab (buraco negro emitindo poderosos fluxos de gás)

Embora de curta duração, o "festim" deste buraco negro pode ajudar a explicar como é que os buracos negros supermassivos cresceram tão rapidamente no Universo primitivo. 

Os buracos negros supermassivos encontram-se no centro da maioria das galáxias e os telescópios modernos continuam a observá-los em momentos surpreendentemente precoces da evolução do Universo. É difícil compreender como é que estes buracos negros foram capazes de crescer tão depressa. Mas com a descoberta de um buraco negro supermassivo de baixa massa que se alimenta de matéria a uma velocidade extrema, os astrônomos têm agora novos e valiosos conhecimentos sobre os mecanismos dos buracos negros de crescimento rápido no Universo primitivo.

O buraco negro LID-568 foi descoberto numa população de galáxias muito brilhante na parte de raios X do espectro, mas é invisível no óptico e no infravermelho próximo. A sensibilidade única do JWST ao infravermelho permite-lhe detectar estas fracas emissões homólogas. LID-568 destacou-se na amostra devido à sua intensa emissão de raios X, mas a sua posição exata não podia ser determinada apenas a partir das observações de raios X, o que suscitava preocupações quanto à correta posição do alvo no campo de visão do Webb. Assim, em vez de usar a espectroscopia tradicional, foi empregado o espectrógrafo de campo integral do instrumento NIRSpec (Near InfraRed Spectrograph). Este instrumento pode obter um espectro para cada pixel no seu campo de visão, em vez de estar limitado a um campo estreito. 

O NIRSpec do JWST permitiu obter uma visão completa do seu alvo e da região circundante, levando à descoberta inesperada de poderosos fluxos de gás em torno do buraco negro central. A velocidade e a dimensão destes fluxos levaram a equipe a inferir que uma fração substancial do crescimento massivo de LID-568 pode ter ocorrido num único episódio de acreção rápida. Ele parece estar se alimentando de matéria a um ritmo 40 vezes superior ao seu limite de Eddington. Este limite está relacionado com a luminosidade máxima que um buraco negro pode atingir, bem como com a rapidez com que pode absorver matéria, de modo a que a sua força gravitacional interna e a pressão externa gerada pelo calor da matéria comprimida e em queda permaneçam em equilíbrio. 

Estes resultados fornecem novos conhecimentos sobre a formação de buracos negros supermassivos a partir de "sementes" de buracos negros menores, que as teorias atuais sugerem que resultam ou da morte das primeiras estrelas do Universo (sementes leves) ou do colapso direto de nuvens de gás (sementes pesadas). Até agora, estas teorias careciam de confirmação observacional. 

A descoberta de LID-568 mostra também que é possível que um buraco negro ultrapasse o seu limite de Eddington e fornece a primeira oportunidade para os astrônomos estudarem como isto acontece. É possível que os poderosos fluxos observados no buraco negro LID-568 possam estar atuando como uma válvula de escape para o excesso de energia gerado pela acreção extrema, evitando que o sistema se torne demasiado instável.

Um artigo foi publicado na revista Nature Astronomy.

Fonte: Harvard-Smithsonian Center for Astrophysics

sábado, 26 de outubro de 2024

Descoberto o primeiro buraco negro num sistema triplo

Muitos dos buracos negros detectados até o momento parecem fazer parte de um par.

© Jorge Lugo (estrela distante e buraco negro consumindo estrela próxima)

Estes sistemas binários são constituídos por um buraco negro e um objeto secundário, como uma estrela, uma muito mais densa estrela de nêutrons ou outro buraco negro, que giram em volta um do outro, atraídos pela gravidade do buraco negro para formar um par orbital íntimo.

Agora, uma descoberta surpreendente está expandindo a nossa imagem dos buracos negros, dos objetos que podem abrigar e da maneira como se formam. Num estudo, físicos do MIT (Massachusetts Institute of Technology) e do Caltech (California Institute of Technology) afirmam ter observado pela primeira vez um sistema triplo que conta com a presença de um buraco negro. O novo sistema contém um buraco negro central que está consumindo uma pequena estrela e que completa uma órbita a cada 6,5 dias, uma configuração semelhante à maioria dos sistemas binários. 

Mas, surpreendentemente, uma segunda estrela parece estar também orbitando o buraco negro, embora a uma distância muito maior. Os físicos estimam que esta companheira distante complete uma órbita em torno do buraco negro a cada 70.000 anos. O fato de o buraco negro parecer ter influência gravitacional sobre um objeto tão distante está levantando questões sobre as origens do próprio buraco negro. 

Pensa-se que os buracos negros se formam a partir da explosão violenta de uma estrela moribunda, um processo conhecido como supernova, através do qual uma estrela libera uma enorme quantidade de energia e luz numa explosão final antes de colapsar para formar um buraco negro invisível. No entanto, a descoberta da equipe sugere que, se o buraco negro recém-observado resultasse de uma supernova típica, a energia que teria liberado antes de entrar em colapso teria ejetado quaisquer objetos fracamente ligados na sua periferia.

A segunda estrela, a mais externa, não deveria, portanto, estar ainda por perto. Ao invés, suspeita-se que o buraco negro se formou através de um processo mais gentil de "colapso direto", no qual uma estrela simplesmente colapsa sobre si própria, formando um buraco negro sem um último dramático fulgor. 

Uma origem tão gentil dificilmente perturbaria quaisquer objetos distantes e fracamente ligados pela gravidade. Como o novo sistema triplo inclui uma estrela muito distante, isto sugere que o buraco negro do sistema nasceu através de um colapso mais gentil e direto. E embora os astrônomos já observem há séculos supernovas mais violentas, a equipe afirma que o novo sistema triplo pode ser a primeira evidência de um buraco negro que se formou a partir deste processo mais moderado. 

Este sistema é muito interessante para a evolução dos buracos negros e também levanta a questão de saber se existem mais triplos por aí. A descoberta do buraco negro neste sistema triplo surgiu quase por acaso. Os físicos descobriram-no enquanto pesquisavam no Aladin Lite, um repositório de observações astronômicas, agregadas a partir de telescópios no espaço e em todo o mundo. Os astrônomos podem utilizar a ferramenta online para procurar imagens da mesma parte do céu, tiradas por diferentes telescópios que estão sintonizados para vários comprimentos de onda de energia e luz. 

A equipe tem vindo a procurar sinais de novos buracos negros na Via Láctea. Por curiosidade, foi analisada uma imagem de V404 Cygni, um buraco negro a cerca de 8.000 anos-luz da Terra que foi um dos primeiros objetos a ser confirmado como buraco negro, em 1992. Desde então, V404 Cygni tornou-se um dos buracos negros mais estudados, tendo sido documentado em mais de 1.300 artigos científicos. 

Ao olhar para as imagens ópticas de V404 Cygni, astrônomos viram o que pareciam ser duas manchas de luz, surpreendentemente próximas uma da outra. A primeira mancha era o que outros determinaram ser o buraco negro e uma estrela interior, que orbitava muito perto. A estrela está tão próxima que está derramando algum do seu material sobre o buraco negro, emitindo a luz que pode ser observada. A segunda mancha de luz, no entanto, foi algo que os cientistas não investigaram rigorosamente, até agora. 

A estrela exterior está a 3.500 UA do buraco negro (1 UA, ou unidade astronômica, é a distância entre a Terra e o Sol, cerca de 150 milhões de quilômetros), que é também igual a 100 vezes a distância entre Plutão e o Sol. 

A questão que se colocou então foi a de saber se a estrela exterior estaria ligada ao buraco negro e à sua estrela interior. Para responder a esta questão, os pesquisadores recorreram ao Gaia, um satélite que, desde 2014, tem seguido com precisão os movimentos de muitas estrelas da nossa Galáxia. A equipe analisou os movimentos da estrela interior e da exterior ao longo dos últimos 10 anos de dados do Gaia e descobriu que as estrelas se moviam exatamente em conjunto, em comparação com outras estrelas vizinhas. Foi calculado que a probabilidade deste tipo de movimento em conjunto é de cerca de uma em 10 milhões.

Como é que o sistema foi formado? Se o buraco negro tivesse surgido de uma supernova típica, a explosão violenta teria ejetado a estrela exterior há muito tempo. Para realmente testar esta ideia, foram efetuadas simulações para ver como um tal sistema triplo poderia ter evoluído e retido a estrela exterior. No início de cada simulação, introduziu três estrelas (sendo a terceira o buraco negro, antes de se tornar um buraco negro). Em seguida, executou milhares de simulações, cada uma com um cenário ligeiramente diferente de como a terceira estrela poderia ter-se tornado um buraco negro, afetando subsequentemente os movimentos das outras duas estrelas.

Por exemplo, simulou uma supernova, variando a quantidade e a direção da energia que liberava. Simulou também cenários de colapso direto, em que a terceira estrela simplesmente colapsava sobre si própria para formar um buraco negro, sem emitir qualquer energia.

Para além de dar pistas sobre as origens do buraco negro, a estrela exterior também revelou a idade do sistema. Os físicos observaram que a estrela exterior está no processo de se tornar uma gigante vermelha, uma fase que ocorre no fim da vida de uma estrela. Com base nesta transição estelar, determinou-se que a estrela exterior tem cerca de 4 bilhões de anos. Dado que as estrelas vizinhas nascem mais ou menos no mesmo momento, conclui-se que o sistema triplo tem também 4 bilhões de anos.

Um artigo foi publicado na revista Nature.

Fonte: Massachusetts Institute of Technology

Determinando a forma da coroa dos buracos negros

Novas descobertas, recorrendo a dados da missão IXPE (Imaging X-ray Polarimetry Explorer) da NASA, fornecem uma perspectiva sem precedentes sobre a forma e a natureza de uma estrutura importante para os buracos negros de nome coroa.

© Robert Hurt (ilustração da coroa de um buraco negro)

A coroa é uma região de plasma em movimento que faz parte do fluxo de matéria de um buraco negro, em que temos apenas uma compreensão teórica. Os novos resultados revelam a forma da coroa pela primeira vez e podem ajudar os cientistas a compreender o seu papel na alimentação e manutenção dos buracos negros. 

Muitos buracos negros, assim designados porque nem a luz consegue escapar à sua gravidade titânica, estão rodeados por discos de acreção, redemoinhos de gás cheios de detritos. Alguns buracos negros também têm jatos relativísticos, explosões ultrapoderosas de matéria lançada para o espaço a alta velocidade por eles que estão alimentado ativamente o material ao seu redor. 

Menos conhecido, talvez, é o fato de os buracos negros comedores, tal como o Sol e outras estrelas, também possuírem uma coroa superaquecida. Ao passo que a coroa do Sol, que é a atmosfera mais externa da estrela, arde a cerca de um milhão de graus Celsius, a temperatura da coroa de um buraco negro está estimada em bilhões de graus. 

Os astrofísicos já tinham identificado coroas em buracos negros de massa estelar - formados pelo colapso de uma estrela - e em buracos negros supermassivos, como o que se encontra no núcleo da Via Láctea.

A forma geométrica da coroa será uma esfera acima e abaixo do buraco negro, ou uma atmosfera gerada pelo disco de acreção, ou talvez plasma localizado na base dos jatos? E é aqui que entra o IXPE, especializado na polarização de raios X, a característica da luz que ajuda a mapear a forma e a estrutura das mais poderosas fontes de energia, iluminando o seu funcionamento interno mesmo quando os objetos são demasiado pequenos, brilhantes ou distantes para serem vistos diretamente. Assim como podemos observar em segurança a coroa do Sol durante um eclipse solar total, o IXPE fornece os meios para estudar claramente a geometria da acreção do buraco negro, ou a forma e estrutura do seu disco de acreção e estruturas relacionadas, incluindo a coroa. 

O IXPE demonstrou, entre todos os buracos negros para os quais as propriedades coronais puderam ser medidas diretamente através da polarização, que a coroa foi estendida na mesma direção que o disco de acreção, fornecendo, pela primeira vez, pistas sobre a forma da coroa e evidências claras da sua relação com o disco de acreção. Os resultados excluem a possibilidade de a coroa ter a forma de um poste de luz pairando sobre o disco.

Os pesquisadores estudaram os dados das observações de 12 buracos negros pelo IXPE, entre os quais Cygnus X-1 e Cygnus X-3, sistemas binários com buracos negros de massa estelar a cerca de 7.000 e 37.000 anos-luz da Terra, respectivamente, e LMC X-1 e LMC X-3, buracos negros de massa estelar na Grande Nuvem de Magalhães, a mais de 165.000 anos-luz de distância. O IXPE também observou vários buracos negros supermassivos, incluindo o que se encontra no centro da Galáxia do Compasso, a 13 milhões de anos-luz da Terra, e os que se encontram nas galáxias Messier 77 e NGC 4151, a 47 milhões de anos-luz e quase 62 milhões de anos-luz, respectivamente. 

Os buracos negros de massa estelar têm normalmente uma massa cerca de 10 a 30 vezes superior à do Sol, enquanto os buracos negros supermassivos podem ter uma massa milhões a dezenas de bilhões de vezes superior. Apesar destas grandes diferenças de escala, os dados do IXPE sugerem que ambos os tipos de buracos negros criam discos de acreção com geometria semelhante. Isso é surpreendente, porque a forma como os dois tipos são alimentados é completamente diferente. Os buracos negros de massa estelar retiram massa das estrelas que os acompanham, enquanto os buracos negros supermassivos devoram tudo em sua volta. Os astrônomos esperam fazer análises adicionais de ambos os tipos.

Os resultados foram publicados no periódico The Astrophysical Journal.

Fonte: NASA

sexta-feira, 11 de outubro de 2024

Buraco negro destrói estrela e vai à caça de outro astro celeste

O observatório de raios X Chandra da NASA, e outros telescópios, identificaram um buraco negro supermassivo que despedaçou uma estrela e está agora usando estes destroços estelares para esmagar ou outra estrela ou um buraco negro menor.

© NASA (disco de material criado por buraco negro)

Esta pesquisa ajuda a ligar dois mistérios cósmicos e fornece informações sobre o ambiente em torno de alguns dos maiores tipos de buracos negros. Em 2019, um telescópio óptico no estado norte-americano da Califórnia observou uma explosão de luz que foi classificada mais tarde como um "evento de perturbação de marés" (TDEs, "Tidal Disruption Events"). Trata-se de casos em que os buracos negros destroem estrelas, e se aproximarem demasiado, através das suas poderosas forças de maré. Os astrônomos deram a este TDE o nome de AT2019qiz. 

Entretanto, os cientistas estavam também seguindo casos de outro tipo de fenômenos cósmicos observados ocasionalmente em todo o Universo. Tratavam-se de breves e regulares explosões de raios X que ocorriam perto de buracos negros supermassivos. Estes eventos são chamados "erupções quase periódicas" (QPEs, "Quasi-Periodic Eruptions"). Este último estudo fornece aos cientistas evidências de que os TDEs e as QPEs estão provavelmente ligados. 

Os pesquisadores pensam que as QPEs surgem quando um objeto se esmaga no disco deixado para trás após o TDE. Embora possam existir outras explicações, os autores do estudo propõem que esta é a fonte de pelo menos algumas QPEs. Em 2023, foram usados o Chandra e o Hubble para estudar simultaneamente os detritos deixados para trás após o fim da perturbação de marés. Os dados do Chandra foram obtidos durante três observações diferentes, cada uma separada por cerca de 4 a 5 horas. A exposição total de cerca de 14 horas de tempo, pelo Chandra, revelou apenas um sinal fraco na primeira e na última observação, mas um sinal muito forte na observação do meio. 

A partir daí, os pesquiadores usaram o NICER (Neutron Star Interior Composition Explorer) da NASA para observar frequentemente AT2019qiz em busca de explosões repetidas de raios X. Os dados do NICER mostraram que AT2019qiz entra em erupção aproximadamente a cada 48 horas. Observações do Observatório Neil Gehrels Swift da NASA e do telescópio AstroSat da Índia concretizaram a descoberta. Os dados ultravioletas do Hubble, obtidos ao mesmo tempo que as observações do Chandra, permitiram aos cientistas determinar o tamanho do disco em volta do buraco negro supermassivo. Descobriram que o disco se tinha tornado suficientemente grande para que, se algum objeto estivesse orbitando o buraco negro e demorasse cerca de uma semana ou menos para completar uma órbita, colidisse com o disco e causasse erupções. 

Este resultado tem implicações na procura por mais erupções quase periódicas associadas a perturbações de marés. A descoberta de mais destas erupções permitiria medir a prevalência e as distâncias de objetos em órbitas próximas de buracos negros supermassivos. Alguns deles podem ser excelentes alvos para os futuros observatórios de ondas gravitacionais que estão planejados.

O artigo que descreve estes resultados foi publicado na revista Nature.

Fonte: Harvard-Smithsonian Center for Astrophysics

quarta-feira, 2 de outubro de 2024

Jato de um buraco negro promove erupções estelares

Numa descoberta surpreendente, os astrônomos utilizando o telescópio espacial Hubble descobriram que o jato tipo maçarico de um buraco negro supermassivo, no núcleo de uma enorme galáxia, parece causar a erupção de estrelas ao longo da sua trajetória.

© STScI (ilustração de jato e galáxia M87)

As estrelas, chamadas novas, não são apanhadas no interior do jato, mas aparentemente estão situadas numa perigosa vizinhança. Esta descoberta está confundindo os pesquisadores à procura de uma explicação.

Uma nova surge num sistema estelar duplo em que uma estrela normal, envelhecida e inchada, derrama hidrogênio sobre uma estrela companheira anã branca. Quando a anã branca tiver acumulado uma camada superficial de hidrogênio com quilômetros de espessura, essa camada explode como uma bomba nuclear gigante. A anã branca não é destruída pela erupção da nova, que ejeta a sua camada superficial e volta a sugar combustível da companheira, e o ciclo da nova recomeça.

O Hubble encontrou duas vezes mais novas explodindo perto do jato do que em outras partes da galáxia gigante M87 durante o período de estudo. O jato é lançado por um buraco negro central com 6,5 bilhões de massas solares, rodeado por um disco de matéria rodopiante. O buraco negro, alimentado pela matéria em queda, lança um jato de plasma com 3.000 anos-luz de comprimento, que atravessa o espaço quase à velocidade da luz. Qualquer coisa apanhada no feixe energético seria queimada.

© Hubble (M87)

Mas, de acordo com as novas descobertas obtida com o Hubble, aparentemente até estar perto do seu jato de energia também é arriscado. A descoberta do dobro de novas perto do jato implica que ou há o dobro de sistemas binários formadores de novas perto do jato ou que estes sistemas entram em erupção duas vezes mais do que sistemas semelhantes  em outros pontos da galáxia.

Outra ideia que pode ser considerada é que o jato está aquecendo a estrela companheira da anã, fazendo com que esta "transborde" e despeje ainda mais hidrogênio sobre a anã branca. No entanto, os pesquisadores calcularam que este aquecimento não é suficientemente grande para ter este efeito.

Pouco depois do lançamento do Hubble, em 1990, os astrônomos utilizaram o seu instrumento FOC (Faint Object Camera) de primeira geração para espreitar para o centro de M87, onde se esconde o buraco negro monstruoso. Foram notados "eventos transientes" azulados que podiam ser indícios de novas. Mas a visão do FOC era tão estreita que os astrônomos do Hubble não conseguiam olhar para longe do jato para comparar com a região próxima do jato. 

Durante mais de duas décadas, os resultados permaneceram misteriosamente provocantes. Evidências convincentes da influência do jato nas estrelas da galáxia hospedeira foram recolhidas durante um período de nove meses de observação do Hubble com câmaras mais recentes e de visão mais ampla para contar as novas em erupção. Isto constituiu um desafio para o calendário de observação do telescópio, porque exigia que se revisitasse M87 precisamente de cinco em cinco dias para tirar outra fotografia. A soma de todas as exposições de M87 levou à imagem mais profunda de M87 alguma vez obtida. O Hubble encontrou 94 novas no terço de M87 que a sua câmara consegue abranger. 

Este feito deve-se inteiramente às capacidades únicas do Hubble. As imagens dos telescópios terrestres não têm a nitidez necessária para ver as novas nas profundezas de M87. Não conseguem resolver estrelas ou erupções estelares perto do núcleo da galáxia porque a região que rodeia o buraco negro é demasiado brilhante. Só o Hubble consegue detectar as novas contra o brilhante fundo de M87. As novas são extremamente comuns no Universo. Na galáxia M87, há uma nova todos os dias. Mas como existem pelo menos 100 bilhões de galáxias em todo o Universo visível, entram em erupção, a cada segundo, cerca de 1 milhão de novas.

Um artigo foi publicado no periódico The Astrophysical Journal.

Fonte: Space Telescope Science Institute

terça-feira, 24 de setembro de 2024

Os maiores jatos de um buraco negro

Os astrônomos descobriram o maior par de jatos de um buraco negro alguma vez vistos, com um comprimento total de 23 milhões de anos-luz. Isto equivale a alinhar 140 Vias Lácteas, uma atrás da outra.

© IllustrisTNG (ilustração do mais longo sistema de jatos de um buraco negro)

A megaestrutura dos jatos, apelidada de Porfírio em homenagem a um gigante da mitologia grega, data de uma época em que o nosso Universo tinha 6,3 bilhões de anos, ou seja, menos de metade da sua idade atual de 13,8 bilhões de anos. Estes fluxos ferozes, com uma potência total equivalente a trilhões de sóis, são disparados para cima e para baixo de um buraco negro supermassivo no núcleo de uma galáxia remota.

Antes da descoberta de Porfírio, o maior sistema de jatos confirmado era Alcioneu, também com o nome de um gigante da mitologia grega. Alcioneu, que foi descoberto em 2022 pela mesma equipe que encontrou Porfírio, abrange o equivalente a cerca de 100 Vias Lácteas. Para comparação, o conhecido sistema de jatos Centaurus A, o mais próximo da Terra, estende-se por 10 Vias Lácteas. 

Esta descoberta mais recente sugere que os sistemas de jatos gigantes podem ter tido uma influência maior na formação de galáxias no Universo jovem do que se pensava. Porfírio existiu durante uma época inicial em que os filamentos finos que ligam e alimentam as galáxias, conhecidos como a teia cósmica, estavam mais próximos uns dos outros do que estão agora. Isto significa que enormes jatos como Porfírio se estendiam por uma maior porção da teia cósmica, em comparação com os jatos no Universo local.

As galáxias e os seus buracos negros centrais coevoluem, e um aspecto importante disto é que os jatos podem espalhar enormes quantidades de energia que afetam o crescimento das suas galáxias hospedeiras e de outras galáxias próximas. 

O sistema de jatos Porfírio é o maior encontrado até agora durante um levantamento do céu que revelou um número chocante de megaestruturas tênues: mais de 10.000. Esta enorme população de jatos gigantescos foi encontrada utilizando o radiotelescópio europeu LOFAR (LOw Frequency ARray). Embora se conhecessem centenas de grandes sistemas de jatos antes das observações do LOFAR, pensava-se que eram raros e, em média, de menor dimensão do que os milhares de sistemas descobertos pelo radiotelescópio.

Para procurar sistematicamente mais jatos ocultos, a equipe inspecionou as imagens de rádio a olho nu, utilizou ferramentas de aprendizagem de máquina para analisar as imagens em busca de sinais dos jatos à "espreita" e recorreu à ajuda de cientistas cidadãos de todo o mundo para melhor analisar as imagens. Para encontrar a galáxia que deu origem a Porfírio, a equipe utilizou o GMRT (Giant Metrewave Radio Telescope), na Índia, juntamente com dados auxiliares de um projeto chamado DESI (Dark Energy Spectroscopic Instrument), que opera a partir do Observatório Nacional de Kitt Peak, nos EUA. 

As observações permitiram identificar o local de origem dos jatos, uma galáxia robusta, cerca de 10 vezes mais massiva do que a Via Láctea. Foi utilizado também o Observatório W. M. Keck, no Havaí, para mostrar que Porfírio está a 7,5 bilhões de anos-luz da Terra. 

As observações do Keck revelaram também que Porfírio emergiu daquilo a que se chama um buraco negro ativo em modo radiativo, por oposição a um que está em modo de jato. Quando os buracos negros supermassivos se tornam ativos, ou seja, quando as suas imensas forças da gravidade puxam e aquecem o material circundante, pensa-se que emitem energia sob a forma de radiação ou de jatos. Os buracos negros em modo radiativo eram mais comuns no Universo jovem, ou distante, enquanto os em modo jato são mais comuns no Universo atual.

Ainda não se sabe como é que os jatos se podem estender tão longe das galáxias que os acolhem sem se desestabilizarem. Os jatos espalham raios cósmicos, calor, átomos pesados e campos magnéticos pelo espaço entre galáxias.

Um artigo foi publicado na revista Nature e outro aceito para publicação no periódico Astronomy & Astrophysics.

Fonte: W. M. Keck Observatory

Os arredores de um buraco negro e de um remanescente de supernova

O XRISM (X-Ray Imaging and Spectroscopy Mission) revelou a estrutura, o movimento e a temperatura do material em torno de um buraco negro supermassivo e num remanescente de supernova com um pormenor sem precedentes.

© JAXA (ilustração da região central de um núcleo galáctico ativo)

Os astrônomos apresentaram os primeiros resultados científicos do novo telescópio de raios X menos de um ano após o seu lançamento. 

O que é que um buraco negro gigantesco e os restos de uma estrela massiva que explodiu têm em comum? São ambos fenômenos celestes dramáticos em que um gás extremamente quente produz raios X altamente energéticos que o XRISM consegue ver. Nos seus primeiros resultados, a missão liderada pela JAXA (Japan Aerospace Exploration Agency), com a participação da ESA (European Space Agency), mostra as suas capacidades únicas para revelar a velocidade e a temperatura do gás quente, chamado plasma, e as estruturas tridimensionais do material que rodeia um buraco negro e uma explosão estelar. 

Numa das suas observações de "primeira luz", o XRISM focou-se no remanescente de supernova N132D, localizado na Grande Nuvem de Magalhães a cerca de 160.000 anos-luz da Terra. Esta "bolha" interestelar de gás quente foi expelida pela explosão de uma estrela muito massiva há cerca de 3.000 anos. Usando o seu instrumento Resolve, o XRISM desvendou a estrutura em torno de N132D com grande pormenor. 

Contrariamente às suposições anteriores de uma simples concha esférica, os cientistas descobriram que o N132D tem a forma de uma rosquinha. Usando o efeito Doppler, mediram a velocidade a que o plasma quente no remanescente se move em direção a nós ou para longe de nós, e estabeleceram que este está se expandindo a uma velocidade aparente de cerca de 1.200 km/s.

© JAXA (gráfico da temperatura e energia do remanescente N132D)

Esta imagem mostra a observação do telescópio de raios X XRISM da JAXA do remanescente de supernova N132D. No topo da imagem, o remanescente de supernova é visto em raios X. O círculo amarelo representa a área onde o instrumento Resolve do XRISM revelou que o remanescente contém ferro extremamente quente (10 bilhões Kelvin). A linha rosa mostra a borda do remanescente, onde a onda de explosão interage com o meio interestelar, e o gás quente (plasma) é mais frio (cerca de 10 milhões Kelvin).

O espectro mostra muitos elementos químicos que estão presentes no remanescente de supernova N132D. O XRISM pode identificar cada elemento medindo a energia do fóton de raios X específico dos diferentes átomos.

Os átomos de ferro foram aquecidos durante a explosão de supernova através de violentas ondas de choque que se propagam para o interior, um fenômeno que tinha sido previsto pela teoria, mas nunca antes observado. Os remanescentes de supernova como N132D contêm pistas importantes sobre a forma como as estrelas evoluem e como elementos (pesados) essenciais à nossa vida, como o ferro, são gerados e espalhados para o espaço interestelar.

No entanto, os anteriores observatórios de raios X tiveram sempre dificuldade em revelar a forma como a velocidade e a temperatura do plasma eram distribuídas. O XRISM também forneceu aspectos da misteriosa estrutura que rodeia um buraco negro supermassivo.

Apontando para a galáxia espiral NGC 4151, localizada a 62 milhões de anos-luz, as observações do XRISM oferecem uma visão sem precedentes do material muito próximo do buraco negro central da galáxia, que tem uma massa 30 milhões de vezes superior à do Sol. O XRISM captou a distribuição da matéria que circula e que eventualmente cai no buraco negro ao longo de um raio alargado, que vai de 0,001 a 0,1 anos-luz, ou seja, desde uma distância comparável à separação Sol-Úrano até 100 vezes essa distância.

Ao determinar os movimentos dos átomos de ferro a partir da sua assinatura de raios X, os cientistas mapearam uma sequência de estruturas em torno do buraco negro gigante: desde o disco que "alimenta" o buraco negro até ao toro em forma de rosquinha. 

Embora as observações de rádio e no infravermelho tenham revelado a presença de um toro em forma de rosquinha em volta de buracos negros em outras galáxias, a técnica espectroscópica do XRISM é a primeira, e atualmente a única, forma de descobrir como o gás perto do buraco negro central é formado e se move. 

As observações feitas com o XRISM complementarão as do telescópio de raios X XMM-Newton da ESA e constituirão uma excelente base para as observações planejadas com a futura missão de grande porte NewAthena da ESA. Esta última está sendo concebida para exceder significativamente o desempenho científico dos atuais observatórios de raios X espectroscópicos e de levantamento.

Fonte: Japan Aerospace Exploration Agency