Mostrando postagens com marcador Buracos Negros. Mostrar todas as postagens
Mostrando postagens com marcador Buracos Negros. Mostrar todas as postagens

segunda-feira, 24 de fevereiro de 2025

Vários buracos negros descobertos em galáxias anãs

Usando os primeiros dados do DESI (Dark Energy Spectroscopic Instrument), uma equipe de cientistas compilou a maior amostra de sempre de galáxias anãs que abrigam um buraco negro que se alimenta ativamente, bem como a mais extensa coleção de candidatos a buraco negro de massa intermediária até agora.

© NAOJ (mosaico com candidatas a galáxia anã)

Este mosaico mostra uma série de imagens de candidatas a galáxia anã que hospedam um núcleo galáctico ativo, captadas com a Hyper Suprime-Cam do Telescópio Subaru.

Esta dupla proeza não só expande a compreensão sobre a população de buracos negros no Universo, como também prepara o terreno para novas explorações sobre a formação dos primeiros buracos negros do Universo e o seu papel na evolução das galáxias. 

O DESI é um instrumento de última geração que pode captar a luz de 5.000 galáxias simultaneamente. Ele está montado no telescópio Nicholas U. Mayall de 4 metros no Observatório Nacional de Kitt Peak, um programa do NOIRLab (National Optical-Infrared Astronomy Research Laboratory). O programa está agora no seu quarto de cinco anos de observação do céu e deverá estudar cerca de 40 milhões de galáxias e quasares até ao final do projeto. O projeto DESI é uma colaboração internacional de mais de 900 investigadores de mais de 70 instituições de todo o mundo e é gerido pelo Laboratório Nacional Lawrence Berkeley do Departamento de Energia dos EUA. 

Com os primeiros dados do DESI, que incluem a validação do levantamento e 20% do primeiro ano de operações, foram obtidos um conjunto de dados sem precedentes que inclui os espectros de 410.000 galáxias, incluindo cerca de 115.000 galáxias anãs, que são galáxias pequenas e difusas contendo milhares a vários bilhões de estrelas e muito pouco gás. 

Embora os astrofísicos estejam razoavelmente confiantes de que todas as galáxias massivas, como a Via Láctea, abrigam buracos negros nos seus centros, o quadro torna-se pouco claro à medida que nos aproximamos do extremo inferior do espectro de massa. Encontrar buracos negros é já um desafio, mas identificá-los em galáxias anãs é ainda mais difícil, devido às suas pequenas dimensões e à capacidade limitada dos nossos instrumentos atuais para resolver as regiões próximas destes objetos. Um buraco negro que se alimenta ativamente é, no entanto, mais fácil de detectar. Quando um buraco negro no centro de uma galáxia começa a alimentar-se, libera uma quantidade tremenda de energia para a sua vizinhança, transformando-se num núcleo galáctico ativo (NGA).

Nesta pesquisa foram identificados um número surpreendente de 2.500 candidatas a galáxia anã que abrigam um NGA, a maior amostra alguma vez descoberta. A fração significativamente mais elevada de galáxias anãs que abrigam um NGA (2%) em relação a estudos anteriores (cerca de 0,5%) é um resultado empolgante e sugere que existe ainda número substancial de buracos negros de baixa massa ainda não descobertos.

© NAOJ (mosaico com candidatos a buraco negro de massa intermediária)

Este mosaico mostra uma série de imagens de candidatos a buraco negro de massa intermediária, organizados por ordem crescente de massa estelar, captadas com a Hyper Suprime-Cam do Telescópio Subaru.

Numa pesquisa separada dos dados DESI, a equipa identificou 300 candidatos a buraco negro de massa intermediária, a coleção mais extensa até à data. A maioria dos buracos negros ou são leves (menos de 100 vezes a massa do nosso Sol) ou supermassivos (mais de um milhão de vezes a massa do nosso Sol). Os buracos negros que se situam entre estes dois extremos são pouco conhecidos, mas pensa-se que sejam as relíquias dos primeiros buracos negros formados no Universo primitivo e as sementes dos buracos negros supermassivos que se encontram atualmente no centro das grandes galáxias.

No entanto, continuam sendo elusivos, com apenas cerca de 100 a 150 candidatos a buraco negro de massa intermediária conhecidos até agora. Com a grande população descoberta pelo DESI, os cientistas dispõem agora de um novo e poderoso conjunto de dados para estudar estes enigmas cósmicos. 

Tipicamente, espera-se que os buracos negros encontrados em galáxias anãs estejam no regime de massa intermediária. Mas, curiosamente, apenas 70 dos candidatos a buraco negro de massa intermediária recentemente descobertos se sobrepõem a candidatos a NGA. Este fato acrescenta outra camada de entusiasmo às descobertas e levanta questões sobre a formação e evolução dos buracos negros nas galáxias. Por exemplo, será que existe alguma relação entre os mecanismos de formação dos buracos negros e os tipos de galáxias que eles habitam?

Um artigo será publicado no periódico The Astrophysical Journal

Fonte: National Optical-Infrared Astronomy Research Laboratory

domingo, 2 de fevereiro de 2025

Estudo revela que buracos negros podem "cozinhar" por eles próprios

Os astrônomos deram um passo crucial para demonstrar que os buracos negros mais massivos do Universo podem criar as suas próprias refeições.

© Chandra & VLT (Aglomerado Centaurus)

Dados do observatório de raios X Chandra da NASA e do VLT (Very Large Telescope) do ESO fornecem novas evidências de que as erupções dos buracos negros podem ajudar a arrefecer gás para se alimentarem.

Este estudo baseou-se em observações de sete aglomerados de galáxias. Os centros dos aglomerados de galáxias contêm as galáxias mais massivas do Universo, que abrigam enormes buracos negros com massas que variam entre milhões e dezenas de bilhões de vezes a massa do Sol.

Os jatos destes buracos negros são impulsionados pelo seu consumo de gás. Na imagem do Aglomerado de Centaurus, os dados do Chandra representados em azul revelam raios X de filamentos de gás quente e os dados do VLT, um telescópio óptico no Chile, mostram filamentos mais frios em vermelho. Os resultados apoiam um modelo em que as erupções dos buracos negros fazem com que o gás quente arrefeça e forme filamentos estreitos de gás quente.

A turbulência no gás também desempenha um papel importante neste processo de ativação. De acordo com este modelo, parte do gás quente nestes filamentos deveria então fluir para o centro das galáxias para alimentar os buracos negros, causando uma erupção. A explosão faz com que mais gás arrefeça e alimente os buracos negros, levando a novos surtos. Este modelo prevê a existência de uma relação entre o brilho dos filamentos de gás quente e morno nos centros dos aglomerados de galáxias. Mais especificamente, nas regiões onde o gás quente é mais brilhante, o gás morno também deverá ser mais brilhante.

A equipe de astrônomos descobriu, pela primeira vez, essa relação, dando um apoio fundamental ao modelo. Este resultado também fornece uma nova compreensão destes filamentos cheios de gás, que são importantes não só para alimentar os buracos negros, mas também para provocar a formação de novas estrelas. Este avanço foi possível graças a uma técnica inovadora que isola os filamentos quentes nos dados de raios X do Chandra de outras estruturas, incluindo grandes cavidades no gás quente criadas pelos jatos dos buracos negros. A relação recém-descoberta para estes filamentos mostra uma semelhança notável com a encontrada nas caudas das galáxias medusas, que tiveram o seu gás retirado à medida que viajavam através do gás circundante, formando longas caudas. Esta semelhança revela uma ligação cósmica inesperada entre os dois objetos e implica que um processo semelhante está ocorrendo neles.

Este trabalho foi publicado na revista Nature Astronomy.

Fonte: Harvard-Smithsonian Center for Astrophysics

sábado, 18 de janeiro de 2025

Buraco negro gera jatos em evento sem precedentes

Astrônomos testemunharam estrondos de raios X e um poderoso "arroto" de plasma após a refeição de um buraco negro supermassivo.


© NASA (variações no brilho de raios X oriundas do buraco negro)

Esta animação mostra o conceito de variações no brilho dos raios X provenientes de oscilações na base do jato de plasma.

Sete anos atrás, pelos nossos relógios, o buraco negro no centro de uma galáxia a cerca de 200 milhões de anos-luz de distância comeu uma refeição rápida. Esse ato deu início a uma série de eventos que podem ter mudado sua aparência por milênios, relatou uma equipe de astrônomos na 245ª reunião da Sociedade Astronômica Americana em Washington, D.C. 

Ao longo de alguns meses, a galáxia 1ES 1927+654 de repente se tornou 100 vezes mais brilhante em comprimentos de onda visíveis do que era antes, chamando a atenção de uma busca automatizada por supernovas. Mas esta não era uma estrela explodindo. A luz vinha de material girando ao redor e entrando no buraco negro supermassivo da galáxia, que pesa o equivalente a 20 milhões de sóis. 

Os astrônomos da época suspeitavam que, para produzir a explosão de luz, o buraco negro deve ter engolido repentinamente um excesso de gás, talvez sugado de uma estrela dilacerada no campo gravitacional extremo do buraco negro. Tais eventos são raros, especialmente em torno de buracos negros supermassivos. A próxima surpresa veio no final de 2018, com uma queda repentina e extrema nos raios X.

O que estava produzindo a maior parte da emissão de raios X, em particular os raios X de alta energia, foi destruído. Estes raios X de alta energia vêm da corona, uma região emissora de raios X associada à alimentação de buracos negros. Demorou meses para que a emissão de raios X voltasse à linha de base.

Mas quando a emissão de raios X retornou, sua natureza havia mudado. Enquanto antes a emissão piscava de forma aleatória, agora o brilho variava periodicamente. Em 2022, este período era de aproximadamente 18 minutos e, em 2024, caiu para 7 minutos. Uma explicação é que o sinal vem de algo que ainda está orbitando o buraco negro. Se for assim, então a fonte do sinal está circulando o buraco negro na distância que Mercúrio orbita o Sol, equivalente a duas vezes o raio do horizonte de eventos do buraco negro, o ponto sem retorno. 

A equipe especula que pode ser uma anã branca orbitando, o núcleo restante de uma estrela semelhante ao Sol. A anã branca seria compacta o suficiente para sobreviver a um encontro tão próximo com o buraco negro sem ser instantaneamente destruída, embora provavelmente esteja perdendo um pouco de gás para a gravidade do leviatã em uma tentativa de desacelerar sua queda. A anã branca pode ter estado em órbita ao redor deste buraco negro o tempo todo, e uma explosão não relacionada simplesmente aconteceu no momento certo para que víssemos a órbita de decaimento rápido da anã branca. A missão Laser Interferometer Space Antenna (LISA), com lançamento previsto para meados da década de 2030, pode realmente detectar ondas gravitacionais deste sistema e confirmar o cenário; se a anã branca durar o suficiente. 

A explosão de anos também teve efeitos maiores: no início de 2023, cerca de 200 dias após os raios X começarem a se recuperar, a emissão de rádio perto do buraco negro aumentou repentinamente do nada. Esta emissão de rádio vem de um par de jatos de gás quente, que estão saindo do buraco negro a um terço da velocidade da luz.

Os jatos poderão durar no máximo 1.000 anos. Se o material continuar viajando em sua velocidade atual, os jatos se estenderão apenas cerca de 300 anos-luz antes de desligarem. A presença dos jatos oferece outra possibilidade para o sinal de raios X: a base do próprio jato pode ser o que está oscilando, eliminando a necessidade de uma anã branca companheira. 

Essa explicação é tentadora, mesmo que seja apenas para entender todos os fenômenos observados de uma só vez. O buraco negro pode ter comido uma estrela, um ato que interrompeu as emissões de raios X, e então expeliu alguns jatos de plasma que produziram raios X oscilantes e ondas de rádio. Outro ponto a favor deste cenário é que o brilho geral dos raios X parece estar mudando conforme o período de variações de brilho diminui. O ponto crítico é que não há uma maneira óbvia de explicar por que a base de um jato deve oscilar tão rapidamente, isso é parte do motivo pelo qual a equipe prefere a opção da anã branca, pois ela é uma hipótese testável com o lançamento do LISA, enquanto o cenário do jato oscilante não tem um teste pronto.

Fonte: Sky & Telescope

quinta-feira, 9 de janeiro de 2025

Erupção de raios gama proveniente de um buraco negro

As FRBs (Fast Radio Bursts, em português "rajadas rápidas de rádio") são breves e brilhantes explosões de ondas de rádio emitidas por objetos extremamente compactos, como estrelas de nêutrons e possivelmente buracos negros.

© MIT (ilustração de estrela de nêutrons emitindo um feixe de rádio)

Estes "fogos de artifício" fugazes duram apenas um milésimo de segundo e podem transportar uma enorme quantidade de energia, suficiente para ofuscar brevemente galáxias inteiras. 

Desde que a primeira rajada rápida de rádio foi descoberta em 2007, os astrônomos detectaram milhares de FRBs, cujas localizações vão desde o interior da Via Láctea até 8 bilhões de anos-luz de distância. A forma exata como estas explosões cósmicas de rádio são lançadas é uma incógnita ainda muito debatida. 

Agora, astrônomos do MIT (Massachusetts Institute of Technology) descobriram as origens de pelo menos uma rajada rápida de rádio usando uma nova técnica que poderá fazer o mesmo com outras FRBs. Este novo estudo centrou-se na FRB 20221022A, uma rajada rápida de rádio anteriormente descoberta e detectada numa galáxia a cerca de 200 milhões de anos-luz de distância. 

Os cientistas estudaram as alterações no brilho da FRB e determinaram que a rajada deve ter tido origem na vizinhança imediata da sua fonte, e não muito mais longe, como alguns modelos previram. A equipe estima que FRB 20221022A explodiu a partir de uma região extremamente próxima de uma estrela de nêutrons, no máximo a 10.000 quilômetros de distância. A uma distância tão curta, a rajada deve ter surgido da magnetosfera da estrela de nêutrons, uma região altamente magnética que rodeia imediatamente a estrela ultracompacta. Nestes ambientes das estrelas de nêutrons, os campos magnéticos estão realmente no limite do que o Universo pode produzir.

As detecções de rajadas rápidas de rádio têm aumentado nos últimos anos devido ao CHIME (Canadian Hydrogen Intensity Mapping Experiment). A rede de radiotelescópios é composta por quatro grandes receptores estacionários, cada um com a forma de um meio tubo, que estão sintonizados para detectar emissões de rádio dentro de uma gama altamente sensível a FRBs. Desde 2020, o CHIME detectou milhares de FRBs em todo o Universo.

A equipe pensou que, se conseguissem estimar o grau de cintilação de uma FRB, poderiam determinar o tamanho relativo da região de onde a FRB teve origem. Quanto menor for a região, mais próxima estará a rajada da sua fonte e mais provável que tenha vindo de um ambiente magneticamente turbulento. Quanto maior for a região, mais longe estará a rajada, apoiando a ideia de que as FRBs têm origem em ondas de choque longínquas.

Os resultados excluem a possibilidade da FRB 20221022A ter emergido da periferia de um objeto compacto. Em vez disso, os estudos provam pela primeira vez que as rajadas rápidas de rádio podem ter origem muito perto de uma estrela de nêutrons, em ambientes magnéticos altamente caóticos.

Esta pesquisa irá provavelmente inspirar estudos de seguimento de comportamentos semelhantes em outras FRBs e levar a esforços teóricos para reconciliar as diferenças nos seus sinais polarizados.

Um artigo foi publicado na revista Nature.

Fonte: Massachusetts Institute of Technology

sexta-feira, 3 de janeiro de 2025

Erupção enorme de raios gama proveniente de buraco negro

A primeira fotografia de um buraco negro abalou o mundo em 2019, quando o EHT (Event Horizon Telescope) divulgou uma imagem do buraco negro supermassivo no centro da galáxia M87, também conhecida como Virgo A ou NGC 4486, localizada na constelação de Virgem.

© EHT / Fermi-LAT (curva de luz de raios gama)

Curva de luz do surto de raios gama (em baixo) e coleção de imagens quase simuladas do jato de M87 (em cima) a várias escalas obtidas no rádio e em raios X. O instrumento, o intervalo de observação do comprimento de onda e a escala são indicados no canto superior esquerdo de cada imagem.

Este buraco negro está surpreendendo novamente com uma erupção de raios gama, emitindo fótons bilhões de vezes mais energéticos do que a luz visível. Um surto tão intenso não era observado há mais de uma década, fornecendo uma visão crucial sobre a forma como as partículas, como elétrons e prótons, são aceleradas nos ambientes extremos perto dos buracos negros. 

O jato que sai do centro de M87 é sete ordens de grandeza, ou seja, dezenas de milhões de vezes, maior do que o horizonte de eventos, ou a superfície do próprio buraco negro. A brilhante explosão de emissão altamente energética foi muito superior às energias tipicamente detectadas por radiotelescópios na região do buraco negro. A atividade durou cerca de três dias e provavelmente emergiu de uma região com menos de três dias-luz de tamanho. 

Um raio gama é um "pacote" de energia eletromagnética, também conhecido como fóton. Os raios gama têm a maior energia de todos os comprimentos de onda do espectro eletromagnético e são produzidos pelos ambientes mais quentes e energéticos do Universo, como as regiões em torno dos buracos negros. Os fótons da erupção de raios gama de M87 têm níveis de energia de alguns TeV (teraelétrons-volt). Os TeV são usados para medir a energia das partículas subatômicas e são equivalentes à energia de um mosquito em movimento. Trata-se de uma enorme quantidade de energia para partículas que são muitos trilhões de vezes menores do que um mosquito. 

À medida que a matéria cai em direção a um buraco negro, forma um disco de acreção onde as partículas são aceleradas devido à perda de energia gravitacional. Algumas são mesmo redirecionadas para longe dos polos do buraco negro como um poderoso fluxo impulsionado por campos magnéticos intensos. Este processo é irregular, o que muitas vezes causa uma rápida explosão de energia. 

No entanto, os raios gama não conseguem penetrar na atmosfera da Terra. Há cerca de 70 anos, os físicos descobriram que os raios gama podem ser detectados a partir do solo, observando a radiação secundária gerada quando atingem a atmosfera. 

Mais de duas dúzias de instalações observacionais terrestres e espaciais, incluindo os telescópios Fermi-LAT, telescópio espacial Hubble, NuSTAR, Chandra e Swift, juntamente com as três maiores redes de telescópios atmosféricos Cherenkov do mundo (VERITAS, H.E.S.S. e MAGIC) juntaram-se a esta segunda campanha EHT e de múltiplos comprimentos de onda em 2018. Estes observatórios são sensíveis aos fótons de raios X, bem como aos raios gama de alta e muito alta energia, respectivamente.

Um dos principais conjuntos de dados utilizados neste estudo é a chamada distribuição espectral de energia. O espectro descreve a forma como a energia de fontes astronômicas, como M87, se distribui por diferentes comprimentos de onda da luz. É como dividir a luz num arco-íris e medir a quantidade de energia presente em cada cor. Esta análise ajuda-nos a descobrir os diferentes processos que conduzem à aceleração de partículas altamente energéticas no jato do buraco negro supermassivo.

Uma análise mais aprofundada encontrou uma variação significativa na posição e no ângulo do anel, também chamado horizonte de eventos, e na posição do jato. Isto sugere que uma relação física entre as partículas e o horizonte de eventos, em diferentes escalas de tamanho, influencia a posição do jato. Uma das características mais marcantes do buraco negro de M87 é um jato bipolar que se estende a milhares de anos-luz do núcleo. Este estudo pode ajudar a resolver um debate de longa data sobre as origens dos raios cósmicos detectados na Terra.

Um artigo que descreve os resultados foram publicados no periódico Astronomy & Astrophysics.

Fonte: Harvard University

segunda-feira, 30 de dezembro de 2024

Perscrutando um buraco negro massivo no Universo primitivo

Os cientistas descobriram um enorme buraco negro no início do Universo que está dormente depois de se ter empanturrado com demasiada matéria.

© Jiarong Gu (buraco negro durante um dos seus curtos períodos de crescimento rápido)

Uma equipe internacional de astrônomos, liderada pela Universidade de Cambridge, utilizou o telescópio espacial James Webb para detectar este buraco negro no início do Universo, apenas 800 milhões de anos após o Big Bang. O buraco negro é enorme, com 400 milhões de vezes a massa do nosso Sol, o que faz dele um dos buracos negros mais massivos descobertos pelo Webb neste momento do desenvolvimento do Universo. 

O buraco negro é tão grande que representa cerca de 40% da massa total da galáxia que o acolhe: em comparação, a maioria dos buracos negros do Universo local tem cerca de 0,1% da massa da galáxia que os hospeda. No entanto, apesar do seu tamanho gigantesco, este buraco negro está acretando o gás de que necessita para crescer a um ritmo muito baixo, cerca de 100 vezes abaixo do seu limite máximo teórico, tornando-o essencialmente dormente. 

Um buraco negro tão massivo tão cedo no Universo, mas que não está crescendo, desafia os modelos existentes de como os buracos negros se desenvolvem. No entanto, os pesquisadores dizem que o cenário mais provável é que os buracos negros passem por curtos períodos de crescimento ultrarrápido, seguidos de longos períodos de dormência. 

Quando os buracos negros estão adormecidos, são muito menos luminosos, o que os torna mais difíceis de detectar, mesmo com telescópios altamente sensíveis como o Webb. Os buracos negros não podem ser observados diretamente, mas são detectados pelo brilho de um disco de acreção em seu redor, que se forma perto da orla do buraco negro. Quando os buracos negros estão crescendo ativamente, o gás no disco de acreção torna-se extremamente quente e começa a brilhar e a irradiar energia na região do ultravioleta.

De acordo com os modelos padrão, os buracos negros formam-se a partir do colapso de estrelas mortas e acumulam matéria até um limite previsto, conhecido como limite de Eddington, em que a pressão da radiação sobre a matéria ultrapassa a atração gravitacional do buraco negro. No entanto, a dimensão deste buraco negro sugere que os modelos padrão podem não explicar adequadamente como é que estes monstros se formam e crescem.

Trabalhando com colegas italianos, os pesquisadores de Cambridge realizaram uma série de simulações em computador para modelar a forma como este buraco negro adormecido poderia ter crescido até atingir uma dimensão tão massiva tão cedo no Universo. Descobriram que o cenário mais provável é que os buracos negros podem exceder o limite de Eddington durante curtos períodos, durante os quais crescem muito rapidamente, seguidos de longos períodos de inatividade.

Como os períodos de dormência são muito mais longos do que os períodos de crescimento ultrarrápido, é nestes períodos que os astrônomos têm mais probabilidades de detectar buracos negros. Devido às suas baixas luminosidades, os buracos negros dormentes são mais difíceis de detectar, mas este buraco negro é provavelmente a ponta de um iceberg muito maior, se os buracos negros no Universo primitivo passarem a maior parte do seu tempo num estado dormente.

Um artigo sobre o assunto foi publicado na revista Nature.

Fonte: University of Cambridge