Mostrando postagens com marcador Asteroides. Mostrar todas as postagens
Mostrando postagens com marcador Asteroides. Mostrar todas as postagens

sábado, 21 de setembro de 2024

A Terra poderá ter tido anéis há 466 milhões de anos

Numa descoberta que desafia a nossa compreensão da antiga história da Terra, foram encontradas evidências que sugerem que ela pode ter tido um sistema de anéis.

© Oliver Hull (ilustração da Terra com um sistema de anéis)

Este sistema de anéis, que se formou há cerca de 466 milhões de anos, no início de um intenso período de bombardeamento de meteoritos, conhecido como o pico de impacto do Ordoviciano.

Esta hipótese surpreendente resulta de reconstruções de placas tectônicas para o período Ordoviciano, que registram as posições de 21 crateras de impacto de asteroides. Todas estas crateras estão localizadas até 30 graus do equador, apesar de mais de 70% da crosta continental da Terra se encontrar fora desta região, uma anomalia que as teorias convencionais não conseguem explicar. 

Os pesquisadores pensam que este padrão de impacto localizado foi produzido depois de um grande asteroide ter tido um encontro próximo com a Terra. Quando o asteroide passou dentro do limite de Roche da Terra, partiu-se devido às forças de maré, formando um anel de detritos em torno do planeta, semelhante aos anéis que se veem atualmente em volta de Saturno e de outros gigantes gasosos.

Ao longo de milhões de anos, o material deste anel caiu gradualmente na Terra, criando o pico de impactos de meteoritos observado no registo geológico, e também é observado que as camadas de rochas sedimentares deste período contêm quantidades extraordinárias de detritos de meteoritos. O que torna esta descoberta ainda mais intrigante são as potenciais implicações climáticas de um tal sistema de anéis. 

Os pesquisadores especulam que o anel poderá ter projetado uma sombra sobre a Terra, bloqueando a luz solar e contribuindo para um evento de arrefecimento global significativo, conhecido como o Período Glaciar Hirnantiano. Este período, que ocorreu perto do final do Ordoviciano, é reconhecido como um dos mais frios dos últimos 500 milhões de anos da história da Terra.

Normalmente, os asteroides atingem a Terra em locais aleatórios, onde são vistas crateras de impacto distribuídas uniformemente na Lua e em Marte, por exemplo. Para investigar se a distribuição das crateras de impacto do Ordoviciano não é aleatória e está mais próxima do equador, os pesquisadores calcularam a área da superfície continental capaz de preservar crateras desta época. Concentraram-se em crátons estáveis, não perturbados, com rochas mais antigas do que o período Ordoviciano médio, excluindo as áreas enterradas sob sedimentos ou gelo, as regiões erodidas e as afetadas pela atividade tectônica. 

Utilizando uma abordagem GIS (Geographic Information System), foram identificadas regiões geologicamente adequadas em diferentes continentes. Regiões como a Austrália Ocidental, África, o Cráton Norte-Americano e pequenas partes da Europa foram consideradas adequadas para a preservação de tais crateras. 

Apenas 30% da área terrestre adequada foi determinada como estando perto do equador, mas todas as crateras de impacto deste período foram encontradas nesta região. A probabilidade de isto acontecer é como atirar uma moeda de três lados (se tal coisa existisse) e obter coroa 21 vezes. 

As implicações desta descoberta vão para além da geologia, levando os cientistas a reconsiderar o impacto mais alargado dos eventos celestes na história evolutiva da Terra. Também levanta novas questões sobre a possibilidade de existirem outros antigos sistemas de anéis que possam ter influenciado o desenvolvimento da vida na Terra. 

Poderão anéis semelhantes ter existido em outros pontos da história do nosso planeta, afetando tudo, desde o clima à distribuição da vida? Esta exploração abre uma nova fronteira no estudo do passado da Terra, fornecendo novas informações sobre as interações dinâmicas entre a Terra e o cosmos mais vasto.

Um artigo foi publicado no periódico Earth and Planetary Science Letters

Fonte: Monash University

quinta-feira, 19 de setembro de 2024

Nova 'mini-lua' orbitará a Terra

A Terra está prestes a ganhar um novo companheiro cósmico, um pequeno asteroide que entrará na órbita do nosso planeta por cerca de dois meses.

© Cosmo Novas (asteroide 2024 PT5)

Este fenômeno, que começará em 29 de setembro, destaca a importância do monitoramento contínuo de objetos próximos à Terra (NEOs) e oferece uma oportunidade única para a comunidade científica estudar as interações gravitacionais entre a Terra e pequenos corpos celestes. 

O asteroide, agora denominado 2024 PT5, foi detectado pela primeira vez em 7 de agosto pelo sistema ATLAS (Asteroid Terrestrial-Impact Last Alert System) da NASA. Este sistema é projetado para identificar e rastrear asteroides que possam representar uma ameaça de impacto para a Terra. 

Com um diâmetro de aproximadamente 10 metros, o 2024 PT5 foi rapidamente identificado e sua trajetória começou a ser monitorada. Os astrônomos que observaram o 2024 PT5 determinaram que ele entrará na órbita da Terra em 29 de setembro e permanecerá até 25 de novembro. Durante esse período, o asteroide fará uma única órbita ao redor do nosso planeta antes de seguir seu caminho pelo Sistema Solar. 

A detecção precoce e o acompanhamento contínuo deste objeto celeste foram possíveis graças aos avanços tecnológicos em sistemas de alerta e monitoramento, como o ATLAS, que desempenham um papel crucial na proteção da Terra contra possíveis impactos. Simulações da trajetória do asteroide mostram que ele seguirá um caminho em forma de ferradura, típico de objetos que se aproximam da Terra a uma velocidade relativa baixa. Este comportamento é semelhante ao de outro asteroide, o 2022 NX1, que também se tornou uma 'mini-lua' da Terra por um breve período em 2022. 

No entanto, há um debate na comunidade científica sobre se o 2024 PT5 pode ser classificado como uma verdadeira ‘mini-lua’, já que o objeto não completará uma revolução completa no sistema Terra-Lua. 

O estudo da trajetória do 2024 PT5 também permitiu aos pesquisadores rastrear sua origem. Eles concluíram que ele provavelmente se originou no cinturão de asteroides Arjuna, um grupo de asteroides com órbitas ao redor do Sol semelhantes à da Terra. O cinturão de asteroides Arjuna é conhecido por conter objetos que possuem órbitas quase co-orbitais com a Terra, o que facilita a captura temporária desses corpos pelo campo gravitacional terrestre. 

No entanto, há uma teoria alternativa proposta por Paul Chodas, diretor do Centro de Estudos de Objetos Próximos à Terra do Laboratório de Propulsão a Jato da NASA, que sugere que o 2024 PT5 pode ser um fragmento ejetado de um impacto na Lua, adicionando uma camada intrigante à sua história. Essa teoria é suportada por análises das características físicas e composição do asteroide, que podem ser comparadas com amostras lunares conhecidas.

Pesquisadores da Universidade Complutense de Madrid realizaram uma análise detalhada da trajetória do 2024 PT5, utilizando dados sobre seu tamanho, velocidade e trajetória. Eles concluíram que o asteroide entrará temporariamente no campo gravitacional da Terra, completando uma órbita ao redor do planeta em 53 dias antes de escapar de volta ao espaço. Este estudo envolveu a aplicação de modelos matemáticos complexos para prever o comportamento orbital do asteroide, levando em consideração as influências gravitacionais de outros corpos celestes próximos, como a Lua e outros asteroides.

Estudar asteroides como o 2024 PT5 é crucial para a compreensão das dinâmicas dos NEOs e suas interações com a Terra. Esses pequenos corpos celestes não apenas oferecem aspectos sobre a formação e evolução do sistema solar, mas também representam potenciais riscos. A detecção e monitoramento desses corpos podem ajudar a desenvolver estratégias de defesa planetária e abrir novas fronteiras para a exploração espacial.

O estudo desses corpos pode fornecer dados valiosos sobre a composição e estrutura de asteroides, informações que são essenciais para futuras missões de mineração de asteroides e exploração de recursos espaciais. Além disso, a compreensão das trajetórias e comportamentos desses objetos pode melhorar nossa capacidade de prever e mitigar possíveis impactos de asteroides na Terra, contribuindo para a segurança planetária.

Fonte: NASA

quarta-feira, 11 de setembro de 2024

Os detritos do impacto no asteroide Dimorphos podem chegar à Terra

Em 2022, a nave espacial DART da NASA fez história e mudou o Sistema Solar para sempre, ao colidir com o asteroide Dimorphos e ao deslocar de forma significativa a sua órbita em torno do maior asteroide Didymos.

© ESA (ilustração da pluma criada pelo impacto no asteroide Dimorphos)

No processo, uma nuvem de detritos foi projetada para o espaço. A mais recente modelação mostra como pequenos meteoroides provenientes destes detritos podem, eventualmente, atingir Marte e a Terra, potencialmente de uma forma observável bastante segura.

No dia 26 de setembro de 2022, a nave espacial DART (Double Asteroid Redirect Test) da NASA, com cerca de meia tonelada, embateu no asteroide Dimorphos, com 151 m de diâmetro, a uma velocidade aproximada de 6,1 km/s, encurtando a sua órbita em torno de Didymos em mais de meia hora, durante a primeira parte de uma colaboração internacional de defesa planetária. 

A nave espacial Hera da ESA será lançada no próximo mês de outubro para alcançar Dimorphos e efetuar uma "investigação da cena do acidente", recolhendo dados sobre a massa, a estrutura e a composição do asteroide, para tornar este método de impacto cinético de defesa planetária numa técnica bem compreendida e repetível.

Uma simulação da ejeção de três milhões de partículas agrupadas em três populações de tamanhos: 10 cm, 0,5 cm e 30 μm, que se deslocam a velocidades de 1 a 1.000 m/s ou a uma velocidade superior de até 2 km/s. Os resultados indicam a possibilidade de material ejetado atingir o campo gravitacional de Marte daqui a 13 anos para velocidades de lançamento da ordem dos 450 m/s, enquanto que detritos mais rápidos lançados a 770 m/s podem atingir a sua vizinhança em apenas sete anos. As partículas que se deslocam a mais de 1,5 km/s podem chegar ao sistema Terra-Lua numa escala de tempo semelhante.

O fato de os meteoroides se dirigirem para a Terra ou para Marte depende da sua posição na pluma de impacto em forma de cone da DART; o material do lado norte tem mais probabilidades de se dirigir para Marte, enquanto o material do sudoeste tem mais probabilidades de chegar à Terra. O maior destes meteoroides teria apenas o tamanho de uma bola de tênis. É certo que se queimariam na atmosfera da Terra, embora possam conseguir atravessar a mais fina atmosfera marciana. Em todo o caso, parece que apenas as partículas menores poderão chegar à Terra, pois são as que foram lançadas a maior velocidade.

Não podemos ainda determinar se estas partículas serão suficientemente grandes para produzir meteoros observáveis, pelo que será essencial um monitoramento contínuo do céu noturno. Há mais de 1.000 fluxos de meteoroides conhecidos atravessando a órbita da Terra, ligados a famosas chuvas de meteoros anuais, como as recentes Perseidas e as Táuridas.

Os astrônomos tornaram-se hábeis em rastrear a origem dos meteoros até determinados fluxos de meteoroides ou corpos de cometas ou asteroides. Este estudo envolve o mesmo tipo de cálculo, mas em sentido inverso, para prever as características e os tempos prováveis dos meteoros ligados ao impacto da DART. 

A Hera foi recentemente transportada da Europa para Cabo Canaveral, nos EUA, para ser lançada a bordo de um Falcon 9 da SpaceX em outubro. Deverá chegar ao asteroide Dimorphos e iniciar a sua exploração no final de 2026.

Um artigo foi aceito para publicação no periódico The Planetary Science Journal.

Fonte: ESA

quarta-feira, 14 de agosto de 2024

Gaia detecta possíveis luas ao redor de centenas de asteroides

O observatório estelar Gaia, da ESA, provou mais uma vez também ser um formidável explorador de asteroides, detectando potenciais luas em torno de mais de 350 asteroides que não se sabe terem uma companheira.

© ESA (órbitas de milhares de asteroides)

Esta imagem mostra as órbitas dos mais de 150.000 asteroides da terceira versão de dados do Gaia, desde as partes interiores do Sistema Solar até aos asteroides troianos à distância de Júpiter, com diferentes cores. A bola amarela no centro representa o Sol. O azul representa a parte interior do Sistema Solar, onde se encontram os asteroides próximos da Terra, os que cruzam Marte e os planetas terrestres. O cinturão principal, entre Marte e Júpiter, está em verde. Os troianos de Júpiter estão em vermelho.

Anteriormente, o Gaia tinha explorado asteroides que se sabia terem luas, os chamados "asteroides binários", e confirmado que os sinais reveladores destas pequenas luas aparecem nos dados astrométricos ultraprecisos do telescópio. Mas esta nova descoberta prova que o Gaia também pode efetuar pesquisas "cegas" para descobrir candidatas completamente novas. Se confirmada, esta nova descoberta acrescenta mais 352 candidatos binários ao registro, quase duplicando o número conhecido de asteroides com luas. 

Os asteroides são objetos fascinantes e detêm uma visão única sobre a formação e evolução do Sistema Solar. Os binários são ainda mais excitantes, pois permitem-nos estudar a forma como diferentes corpos se formam, colidem e interagem no espaço. Graças às suas capacidades únicas de estudar todo o céu, o Gaia já fez, desde o seu lançamento em 2013, uma série de importantes descobertas acerca de asteroides. Na sua terceira divulgação de dados, o Gaia identificou com precisão as posições e os movimentos de mais de 150.000 asteroides. O Gaia também recolheu dados sobre a química dos asteroides, compilando a maior coleção de "espectros de refletância" de asteroides (curvas de luz que revelam a cor e a composição de um objeto). 

As mais de 150.000 órbitas determinadas na terceira divulgação dos dados do Gaia foram refinadas e tornadas 20 vezes mais precisas no âmbito da versão FPR ("focused product release") no ano passado. Preveem-se ainda mais órbitas de asteroides no quarto lançamento de dados do Gaia, previsto para meados de 2026.

A ESA vai continuar explorando asteroides binários através da futura missão Hera, cujo lançamento está previsto para o final deste ano. A Hera dará seguimento à missão DART da NASA, que colidiu com Dimorphos, uma lua que orbita o asteroide Didymos, em 2022, como teste de deflexão de asteroides, produzindo um estudo pós-impacto de Dimorphos. Será a primeira sonda a encontrar-se com um sistema binário de asteroides. O Gaia ajudou os astrônomos a ver a sombra lançada por Didymos quando este passou em frente de estrelas mais distantes em 2022, uma técnica de observação conhecida como ocultação estelar. A viabilidade desta técnica foi drasticamente melhorada pelas órbitas de asteroides do Gaia e pelos mapas estelares dos últimos anos, provando o imenso valor da missão para a exploração do Sistema Solar.

Um artigo foi publicado no periódico Astronomy & Astrophysics.

Fonte: ESA

domingo, 28 de julho de 2024

O que é que se passa com Quíron?

Em primeiro lugar, o que é Quíron?

© Flyazure (ilustração de atividade cometária no centauro Quíron)

Originalmente descoberto em 1977 e classificado como um asteroide, o corpo menor Quíron foi o primeiro membro identificado de uma nova classe de objetos no nosso Sistema Solar, agora conhecida como centauros. Os centauros são objetos em órbitas de curta duração que residem entre o cinturão de asteroides e o cinturão de Kuiper, uma região em forma de rosquinha de corpos gelados que se estende muito para além da órbita de Netuno. Tal como Quíron, os centauros escaparam do cinturão de Kuiper e estão sendo espalhados pelos planetas gigantes. 

A maior parte dos centauros vai "saltar" durante cerca de 10 milhões de anos, antes de ser expulsa do Sistema Solar, sendo que apenas alguns sobreviverão para se tornarem cometas de curto período. Nos últimos 50 anos, Quíron continuou se destacando dos restantes centauros. Sendo um dos maiores centauros em termos de tamanho, este corpo do Sistema Solar é conhecido por se comportar como um cometa, com períodos de atividade que criam uma atmosfera difusa e poeirenta. Estudos mais recentes encontraram até evidências de um possível anel duplo gelado em torno do planetoide. 

Personagem complexo, Quíron tem intrigado os astrônomos há quase meio século. No entanto, foram os acontecimentos mais recentes dos centauros que suscitaram maior intriga. Ao analisar dados do ATLAS (Asteroid Terrestrial-impact Last Alert System) em 2021, astrônomos da Queen's University de Belfast, Irlanda do Norte, notaram que Quíron estava inesperadamente muito mais brilhante no céu noturno quando comparado com os 5 anos anteriores de observações. 

O ATLAS é uma rede de quatro pequenos telescópios robóticos no Havaí, na África do Sul e no Chile, que trabalham em conjunto para analisar todo o céu noturno numa busca diária de asteroides potencialmente perigosos para a Terra. 

Algo tinha acontecido e agora Quíron estava refletindo muito mais luz solar. Qualquer que fosse a causa, a mudança tinha ocorrido quando Quíron esteve atrás do Sol e, assim sendo, quando não foi visível da Terra durante mais de cinco meses. 

Foi revelado que Quíron registrou um aumento ou sofreu um surto de atividade cometária. Os pesquisadores da Queen's University de Belfast exploraram Quíron com o telescópio do Observatório Gemini para procurar uma coma difusa, um sinal comum de um cometa. Sem coma (cabeleira) à vista, determinaram que pode ser que a coma esteja presa a Quíron pela sua fraca gravidade, ou que esteja tão longe que é demasiado tênue para ver à volta do objeto, mesmo com o enorme telescópio Gemini. 

No entanto, o aumento de luz da poeira extra em volta de Quíron permanece visível. O que é que isto significa? Examinar este estranho acontecimento num pequeno corpo do Sistema Solar, e explorar os processos ativos que ocorrem em tempo real, ajuda a melhor compreender os processos cometários ativos nos centauros, uma fase crucial na evolução de alguns dos cometas de curto período do nosso Sistema Solar. 

Um artigo foi publicado no periódico The Planetary Science Journal

Fonte: Queen's University Belfast

quarta-feira, 1 de maio de 2024

Um asteroide é a "minilua" da Terra?

Os pesquisadores podem ter localizado o local de nascimento de 469219 Kamo'oalewa, um pequeno asteroide que foi descrito como a “minilua” da Terra.

© ESA / ESO (ilustração de um asteroide)

Ao analisar a geologia de Kamo'oalewa e simular diferentes cenários de formação, foram rastreadas até uma cratera de impacto específica no outro lado da Lua. Na sua viagem em torno do Sol, a Terra é acompanhada não só pela Lua, mas também por quase-satélites, objetos que, apesar de não estarem limitados pela gravidade do nosso planeta, co-orbitam com o Sol durante longos períodos de tempo. 

O mais próximo e estável deles é Kamo'oalewa. Este nosso vizinho percorre até 100 vezes a distância da Lua e tem uma taxa de rotação rápida, girando a cada 28 minutos. Com cerca de 36 a 60 metros de diâmetro, é pouco maior que uma rocha. 

Na verdade, depois de ter sido descoberto em 2016 por astrônomos do Observatório Haleakalā, no Havaí, que deram ao objeto o seu nome havaiano, alguns até especularam que poderia ser um pedaço de lixo espacial, remanescente de alguma missão desconhecida; desde então foi estabelecido como natural. 

O asteroide Kamoʻoalewa tem uma órbita ao redor do Sol que o mantém como companheiro constante da Terra.

© NASA / JPL-Caltech (orbita do asteroide Kamoʻoalewa)

Os asteroides como Kamo'oalewa são de interesse para geólogos planetários, pois contêm pistas sobre a história do Sistema Solar. Kamo'oalewa é uma espécie de pedra flutuante de Roseta: uma placa de rocha que, uma vez decifrada, pode desvendar mistérios antigos.

Asteroides de pequeno porte na região de Kamo’oalewa são a porção menos bem compreendida da população destes objetos próximos à Terra. Estudar a formação e evolução destes pequenos corpos fornecerá ligações importantes com os seus homólogos maiores e mais conhecidos e beneficiará a nossa compreensão da formação e evolução da população de asteroides. 

No novo estudo, os astrônomos usaram observações de telescópios terrestres para comparar a refletância, ou seja, a luz refletida da superfície de Kamo'oalewa, com a refletância de amostras de solo recolhidas durante missões lunares, bem como com a de outros asteroides próximos da Terra. Os resultados revelam que Kamo'oalewa tem mais em comum com as amostras lunares, uma semelhança que já havia sido apontada por uma equipe da Universidade do Arizona liderada por Ben Sharkey. 

Tal como a Lua, o asteroide também parece ser composto de olivina, piroxênio ou uma combinação destes minerais, e mostra os efeitos da meteorização espacial. Tudo isto sugere que Kamo'oalewa é de origem lunar: o produto de um impacto antigo. Há milhões de anos, um grande corpo parece ter colidido com a Lua, levantando poeira e detritos. Além de deixar para trás uma cratera, também ejetou alguns fragmentos grandes, como Kamo'oalewa, para o espaço sideral. 

A Lua está repleta de crateras, então a equipe queria diminuir as possibilidades. Eles conduziram simulações para reconstruir eventos de impacto lunar, estimando que tipo de impacto poderia ter produzido um asteroide do tamanho e da órbita de Kamo'oalewa, e qual teria sido o tamanho da cratera resultante. A equipe reduziu ainda mais as crateras candidatas do tamanho exigido com base em sua idade. Kamo'oalewa é mais jovem do que a maioria das crateras da Lua, e acontece que apenas uma cratera poderia ter sido formada no mesmo evento de impacto: uma cratera de 22 quilômetros de largura no outro lado da Lua chamada Giordano Bruno. As observações indicam que as suas propriedades minerais coincidem com as do asteroide. O fato de os cientistas terem conseguido aprender tanto sobre um asteroide usando apenas espectroscopia e técnicas avançadas de modelagem é uma prova do poder desta matéria. 

Duas missões futuras oferecem oportunidades para estudar Kamo'oalewa com mais detalhes e verificar a sua origem. Em 2025, a China lançará o Tianwen-2. Esta espaçonave irá escoltar Kamo'oalewa por alguns meses, fazendo medições de perto, antes de lançar uma sonda para recuperar amostras e trazê-las de volta à Terra. Então, em 2027, a missão NEO Surveyor da NASA deverá ser lançada. 

À medida que estudo avança sobre asteroides próximos da Terra, com o objetivo principal de identificar quaisquer perigos, também poderá ser possível encontrar mais destroços transportados pelo espaço do evento de impacto de Giordano Bruno.

Um artigo foi publicado na revista Nature.

Fonte: Sky & Telescope

sábado, 17 de fevereiro de 2024

Identificada molécula de água em asteroides

Utilizando dados do aposentado SOFIA (Stratospheric Observatory for Infrared Astronomy) - um projeto conjunto da NASA e do Centro Aeroespacial Alemão (DLR) - os cientistas do SwRI (Southwest Research Institute) descobriram, pela primeira vez, moléculas de água na superfície de um asteroide.

© Cosmonovas (ilustração de um asteroide)

Os cientistas analisaram quatro asteroides ricos em silicatos, utilizando o instrumento FORCAST, para isolar as assinaturas espectrais no infravermelho médio indicativas de água molecular em dois deles. 

Os asteroides são remanescentes do processo de formação planetária, pelo que as suas composições variam consoante o local onde se formaram na nebulosa solar. A distribuição da água nos asteroides é de particular interesse, porque isso pode esclarecer a forma como a água chegou à Terra.

Os asteroides anidros de silicatos formam-se perto do Sol, enquanto os materiais gelados coalescem mais longe. Compreender a localização dos asteroides e as suas composições diz-nos como os materiais na nebulosa solar foram distribuídos e evoluíram desde a sua formação. A distribuição da água no nosso Sistema Solar permitirá compreender a distribuição da água em outros sistemas solares e, uma vez que a água é necessária para toda a vida na Terra, orientará a procura de potencial vida, tanto no nosso Sistema Solar como para além dele.

O SOFIA detectou moléculas de água numa das maiores crateras do hemisfério sul da Lua. E agora nos asteroides Iris e Massalia. Observações anteriores, tanto da Lua como de asteroides, tinham detectado alguma forma de hidrogênio, mas não conseguiam distinguir entre a água e o seu parente químico próximo, o hidroxilo. Os cientistas detectaram uma quantidade de água equivalente a 35 cl presa num metro cúbico de solo espalhado pela superfície lunar, quimicamente ligada a minerais. 

Com base na intensidade da banda das características espectrais, a abundância de água no asteroide é consistente com a da Lua iluminada pelo Sol. Da mesma forma, nos asteroides, a água também pode estar ligada a minerais, bem como adsorvida a silicatos e presa ou dissolvida em vidro de impacto de silicatos.

Os dados de dois asteroides mais tênues, Partenope e Melpómene, eram demasiado ruidosos para se poder tirar uma conclusão definitiva. Aparentemente, o instrumento FORCAST não é suficientemente sensível para detectar a característica espectral da água, caso esteja presente. No entanto, com estas descobertas, a equipe está recorrendo ao telescópio espacial James Webb da NASA, o principal telescópio espacial infravermelho, para utilizar a sua ótica precisa e superior relação sinal-ruído para investigar mais alvos.

Um artigo foi publicado no periódico The Planetary Science Journal

Fonte: Southwest Research Institute

terça-feira, 7 de novembro de 2023

Descoberto que Dinkinesh afinal é um asteroide binário

No passado dia 1 de novembro, a NASA confirmou que a sua sonda espacial Lucy passou com sucesso pelo asteroide Dinkinesh, uma rocha espacial relativamente pequena situada no cinturão principal de asteroides entre Marte e Júpiter.

© NASA / Lucy (asteroide Dinkinesh e seu satélite)

É um marco na viagem da Lucy, uma vez que Dinkinesh é o primeiro de 10 asteroides que a sonda irá visitar nos próximos 12 anos. A missão Lucy faz parte do ambicioso esforço da NASA para desvendar os segredos do passado do nosso Sistema Solar. 

Embora a sonda espacial Lucy também passe por alguns asteroides relativamente próximos, como Dinkinesh, o principal objetivo da sonda é passar por alguns asteroides troianos mais distantes, que orbitam o Sol ao lado de Júpiter, como conjuntos de seixos presos às marés gravitacionais de um rochedo gigante. 

Os cientistas estão interessados em saber mais sobre estes troianos porque pensa-se que são relíquias antigas do Sistema Solar, como objetos extras que construiu os planetas.  A exploração do astro Dinkinesh mostrou que é um asteroide binário. Em alguns aspetos, estes asteroides são semelhantes ao binário próximo da Terra, Didymos e Dimorphos, que a DART viu, mas há algumas diferenças realmente interessantes para ser investigada. 

A seguir, a Lucy regressará à Terra para receber uma assistência gravitacional que a ajudará a aproximar-se do seu segundo alvo: o asteroide 52246 Donaldjohanson, assim chamado em homenagem da descoberta em 1974 do fóssil Australopithecus afarensis Lucy de 3,2 milhões de anos, pelo antropólogo americano Donald Johanson e pelo estudante Tom Gray em Hadar, no deserto de Afar, na Etiópia. O termo "Dinkinesh" é outro nome do fóssil Lucy e significa "és maravilhosa" em amárico.

Fonte: NASA

domingo, 6 de agosto de 2023

Um mistério do campo magnético no espaço

Pesquisadores da Universidade de Yale poderão ter resolvido um enigma de longa data sobre a razão pela qual certos meteoritos metálicos apresentam vestígios de um campo magnético, uma descoberta que poderá elucidar a formação de dínamos magnéticos no núcleo dos planetas.

© P. Rubin (ilustração de um asteroide metálico)

O magnetismo planetário é fundamental para compreender tanto a estrutura interna como a evolução de muitos corpos celestes. Os núcleos da Terra, de Mercúrio e de duas luas de Júpiter, Ganimedes e Io, por exemplo, geram todos campos magnéticos detectáveis. E há vestígios de magnetismo antigo encontrados em Marte e na nossa Lua. Mas também há meteoritos - pequenas rochas espaciais que caíram para a Terra - que contêm indícios de magnetismo. 

Os cientistas afirmam que alguns meteoritos ferrosos contêm remanescentes de um campo magnético gerado internamente, o que não deveria ser possível. Embora se pense que os meteoritos de ferro representem os núcleos metálicos dos asteroides (pequenos corpos planetários), não se espera que estes núcleos tenham as características internas altamente específicas necessárias para gerar e registar simultaneamente magnetismo.

Num novo estudo, os cientistas Zhongtian Zhang e David Bercovici propõem que, sob certas condições, as colisões entre asteroides podem levar à formação de asteroides metálicos que podem gerar um campo magnético e registar o magnetismo através dos seus próprios materiais. Pequenos fragmentos destes asteroides, com vestígios de magnetismo, poderiam cair na Terra como meteoritos.

Este trabalho inspirou os cientistas a considerar a questão de saber se o fenômeno "pilha de escombros" - que são criadas quando as forças gravitacionais fazem com que os fragmentos das colisões de asteroides se voltem a formar em novas combinações - poderia ser relevante para a geração de um campo magnético. 

A modelagem dos pesquisadores sugere que, após a colisão de um asteroide, é possível que se formem novos asteroides com grande teor metálico, com um núcleo interno frio, rodeado por uma camada externa líquida mais quente. Quando o núcleo mais frio começa a retirar calor da camada exterior e elementos mais leves, como o enxofre, são liberados, a convecção tem início; que, por sua vez, cria um campo magnético. 

De acordo com o modelo, este tipo de dínamo poderia gerar um campo magnético durante vários milhões de anos, o que seria o tempo suficiente para que a sua presença fosse detectada em meteoritos ferrosos pelos cientistas, bilhões de anos mais tarde.

O estudo foi publicado no periódico Proceedings of the National Academy of Sciences

Fonte: Yale University

domingo, 7 de maio de 2023

Descoberto o segundo anel "improvável" em torno do asteroide Quaoar

A descoberta do segundo anel ocorre apenas dois meses após o primeiro anel de Quaoar ter sido revelado, indicando que o sistema é mais complexo do que se pensava.

© ON / UTFPr (ilustração do segundo anel de Quaoar)

Uma equipe de pesquisadores, liderada pelo aluno de doutorado do Observatório Nacional (ON/MCTI), Chrystian Luciano Pereira, descobriu um segundo anel improvável mais interno em torno do asteroide Quaoar. A orientação da pesquisa é realizada pelo Dr. Felipe Braga Ribas, professor do Programa de Pós-Graduação em Astronomia do Observatório Nacional (ON). Ambas as descobertas foram feitas com o uso da técnica de ocultações estelares, quando um objeto do Sistema Solar passa em frente a uma estrela e bloqueia a sua luz por alguns instantes.

Este objeto é um dos pequenos corpos do nosso Sistema Solar e é conhecido como um objeto Transnetuniano (TNO) por orbitar a região além do planeta Netuno. Com mais de 1.000 km de diâmetro, Quaoar é candidato a planeta-anão. 

Os TNOs, como Quaoar, são fósseis praticamente intactos da formação do Sistema Solar. Dessa forma, catalogar suas características físicas é fundamental para entender como o Sistema Solar se formou e evoluiu até os dias atuais. 

Anéis ao redor de corpos do Sistema Solar têm sido alvo de pesquisas desde 1610, quando Galileu Galilei observou pela primeira vez um anel em torno ao apontar sua luneta para Saturno. Nos séculos seguintes, anéis foram descobertos ao redor dos outros três planetas gigantes: Júpiter, Urano e Netuno. 

Até 2013, não se sabia que anéis poderiam orbitar pequenos corpos do Sistema Solar. A surpresa ocorreu quando um sistema com dois anéis foi descoberto ao redor do objeto Centauro (10199) Chariklo, primeiro asteroide com anéis descoberto em trabalho liderado pelo Dr. Felipe Braga-Ribas (UTFPR-Curitiba/ON). Depois, em 2017, um anel foi descoberto ao redor do planeta-anão Haumea. Mais recentemente, em fevereiro deste ano, a mesma equipe divulgou a descoberta do terceiro sistema de anéis, agora ao redor do objeto Transnetuniano Quaoar. 

De acordo com os pesquisadores, diferentemente dos anéis observados em Chariklo, Haumea e nos quatro planetas gigantes, os anéis de Quaoar se encontram em uma região inesperada, muito além do limite de Roche para o corpo (para Quaoar, esse limite é estimado em 1.780 km do centro do corpo). O limite de Roche é uma região em que as forças de maré do corpo central estão em equilíbrio com a atração mútua das partículas que compõem um anel, impedindo então a acreção dessas partículas em satélites. Em outras palavras, trata-se de uma “linha imaginária” que define a distância mínima que um objeto pode se aproximar de outro antes de ser desintegrado pela força gravitacional. Quando um objeto está dentro do limite de Roche, espera-se que ele se desintegre e forme um anel em torno do objeto central. Por outro lado, se estiver além deste limite, como é o caso dos anéis do Quaoar – espera-se que as partes de agreguem e formem um satélite, e não um anel como é o caso.

A partir dos dados observacionais do primeiro anel (Q1R), os pesquisadores conseguiram detectar o segundo anel (Q2R) que, na verdade, está mais próximo do TNO. O Q2R possui cerca de 10 km de largura e, apesar de estar mais próximo de Quaoar, também se encontra fora do limite de Roche, orbitando 2.520 km do centro do objeto. Isso revela o quão curioso e complexo o sistema de Quaoar pode ser. O anel mais externo orbita Quaoar a uma distância muito próxima a região de estabilidade gerada pela ressonância spin-órbita 1:3. Isso significa que enquanto o Quaoar completa três rotações, as partículas do anel completam uma órbita. Já o anel mais interno se encontra próximo a região de ressonância spin-órbita 5:7, ou seja, enquanto Quaoar completa sete rotações, as partículas do anel completam cinco órbitas.

Esse comportamento dinâmico é observado nos anéis ao redor de Chariklo e Haumea, que também se encontram próximos à região de ressonância 1:3. Isso sugere que as ressonâncias podem estar intimamente relacionadas com a manutenção e localização desses anéis. Outro fator que pode causar o confinamento desses anéis é a presença de pequenos satélites "pastores" que ainda não foram descobertos. 

Outra propriedade interessante e não usual do anel Q1R de Quaoar é a variabilidade na sua largura e opacidade, sendo muito estreito e denso em uma região, tênue e extenso em outra. Afim de obter mais informações de Quaoar e seu curioso anel, a equipe organizou uma campanha observacional para uma ocultação estelar que foi observada em 9 de agosto de 2022, envolvendo telescópios amadores e profissionais, como por exemplo o Gemini Norte e Canadá-França-Hawaii Telescope (CFHT), com diâmetro de 8,1 e 3,6 metros, respectivamente. A alta performance dos instrumentos acoplados nos telescópios Gemini Norte e CFHT, as cameras 'Alopeke e WIRcam, respectivamente, aliado a sua localização no topo do Mauna Kea, no Havaí, permitiram a obtenção de curvas de luz com ótima qualidade.

A região densa e estreita do “primeiro” anel foi sondada por essa ocultação, revelando uma estrutura estreita confinada com aproximadamente 5 km de largura e com grande profundidade óptica (bastante densa). Esse núcleo estreito do anel é cercado por um envelope de material disperso com cerca de 60 km, se assemelhando em estrutura ao anel F de Saturno ou o arco observado nos anéis de Netuno. A região mais extensa e tênue desse anel também foi detectada, tendo uma largura média de 90 km e com menos de 1% da opacidade da região mais densa. A distância calculada entre Quaoar e esse anel é de 4.060 km. 

Trabalhos futuros acerca da determinação precisa da forma de Quaoar, em conjunto com novas observações desses anéis, serão importantes para um melhor entendimento do sistema dinâmico em que Quaoar e seus anéis se inserem e qual o real papel das ressonâncias na manutenção e confinamento desses anéis. 

Este trabalho foi realizado como parte do projeto "Lucky Star", sob a liderança do Dr. Bruno Sicardy do Observatório de Paris (França) e foi viabilizado através de uma colaboração mundial envolvendo astrônomos profissionais e amadores. Este estudo contou com a participação de pesquisadores de diversos institutos internacionais, como: Observatório Nacional (Rio de Janeiro, Brasil), Instituto de Astrofísica de Andalucía (Granada, Espanha), Universidade Tecnológica Federal do Paraná (Curitiba, Brasil), Instituto Espacial da Flórida (Orlando, Flórida), entre outros. 

Um artigo sobre a descoberta do segundo anel de Quaoar, sob o título “The two rings of (50000) Quaoar”, foi publicado no periódico Astronomy & Astrophysics Letters

Fonte: Observatório Nacional